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ABSTRACT We propose to locate the failed links and recover the trans-
@}ssion delays on normal linkeémultaneouslyrom a set of
nonadaptivepath measurements. A path measurement is a
a"failure” if it includes at least one failed link, since itapk-

Compressed sensing (CS) theory promises one can reco
real-valued sparse signal from a small number of linear me

surements. Motivated by network monitoring with link fail- ts will be lost. Otherwise. we obtain the real-valued path
ures, we for the first time consider the problem of recoverin A Lo i . P
elay which is the sum of the link delays of links it passes

signals that contain both real-valued entries and coroupfi : )
where the real entries represent transmission delays en n&Proth' We assume that the number of failed links and the

mal links and the corruptions represent failed links. Ualik humber of nonzero link delays are both small. As far as we

conventional CS, here a measurement is real-valued only lﬁ,now, recovering sparse signals tha; contain failures isva n
it does not include a failed link, and it is corrupted other-prOblem and has not been systematically addressed before.

e Weprove (1 11) () o ) ronace % [0 10 1L e consder e roler of recover
measurements are enough to recovematimensional sig- ! ? b b'lg 4 CS and GT : bl Up'S tion 2 Wu !
nals that contait nonzero real entries anticorruptions. We Into a combine an problem (Section 2). We pro-

. - . vide bounds of the number of measurements needed to re-
provide explicit constructions of measurements and ragove

algorithms. We also analyze the performance of signal reco%o_l\_/ e;asglzhlslgvlczls g\t}ggrees Iizc)i tagga(\:sourpeprireen![t(;,(v)l:;tﬁi ti)nnd
ery when the measurements contain errors. ( )- P P

) _ method as well as efficient recovery algorithms (Section 3).
Index Terms—compressed sensing, group testing, fundayyhen the measurements are erroneous, the number of mea-
mental limits, network tomography, corruptions. surements needed is also characterized (Section 4).

1. INTRODUCTION 2. PROBLEM FORMULATION

Compressed sensing (CS) [1-4] indicates that ifran Letx € R" (R = R U oc) denote the unknown signal to
dimensional signal is:-sparse, i.e., it only has nonzero recover.oco indicates a corruption. Let = Mx denote ob-
entries, then one can efficiently recover the signal fronfained measurements, whev€™*" is the measurement ma-
O(klog(n/k)) nonadaptive linear measurements. Networktrix. If z; = oo, theny; = oo for all i such that\/;; # 0. Set
tomography [5-10] attempts to infer system internal char (y) := {i € [m] : y; = oo} denotes corrupted measure-
acteristics (e.g., link queueing delays) of the Internetfr ments. Note that in conventional C8,y are real vectors.
indirect end-to-end (aggregate) measurements (e.g., path [¢] (¢ € N) represents the sét, ..., ¢}. For setS C [q],
delay measurements). Since only a small number of bottld-S| denotes its cardinality, an§i“ denotes its complimentary
neck links experience large delays, some recent papers liket in[¢]. GivenS C [n] andM, let N'(S) := {i € [m] :
[11-14] have considered the application of CS in networkdj € S,s.t. M;; # 0} denote the set of indices of measure-
tomography, where the goal is to recover real-valued sparggents that passes through at least one entty, ilet A/¢(.5)
link delays from a small number of path delay measurementslenote its complimentary set. For seandB, AU B denotes

In communication networks, a link between two routersthe union andd\ B contains elements that areinhbut not in
may fail either temporarily or permanently. If a link fails) ~ B. Given matrixM, M4p denotes the submatrix with row
the packets that travel through it will be lost. Link failure indices inA and column indices 3.
localization has been extensively mvgsnggted, e.g-18) Definition 1. x € R” is d-corruptedk-sparse(simplified as
where one attempts to locate the failed I|nk§ fro‘r‘n boolea},ra k)-type) if|S| < d and|T| < k, whereS = {j | ¢; = oo}
path measurements. A path measurement is a “success”Jf' ;" (10 < |z;] < oo}
it does not pass any failed links. Otherwise, it is treated as J '
a “failure”. This is a group testing (GT) problem [19], see Definition 2. Matrix M™>*™ is called (,k)-type identifiable
[20-23] as some recent examples of a rich literature. if and only if for every two d,k)-type vectorsx and z such



Table 1. Number of nonadaptive measurements
d corruptions O(d?logn) [21,23]
k-sparse real signals O(klogn) [1,2,4]
(d, k)-type signals | O((d+1) max(d, k) logn) (here)

thatx # z, it holds thatM x # Mz.
A (d,k)-type vector indicates that there are at mofgtiled

links and at mosk links with nonzero transmission delays.

Throughout the paper, we consider ther“all” performance
that requiresV/ to identityall (d,k)-type vectors.
For example, consider matrix

1 1.0 00
01 100
M= 00110
0 0 011

One can check that/ can identify all2-sparse signals iR>
when there is no corruption, i.eM is (0,2)-type identifi-
able. However, when there exists one corruption, &g=
[0,0.5,00,0,0]", we havey = Mx = [0.5, 00, 00, 0]”. Al-
though fromy and M, we can infer thatt3 = oo and lo-
cate the corruption, we cannot decide whether= 0.5 or
xo = 0.5. Thus,M is not (1,1)-type identifiable.

Given0-1 matrix M, lety; = min;ecp,; [NV (j)] andy, =
max;c[, |V (j)| denote the minimum and maximum number
of non-zero entries in a column. Giv&nh C [n], E(T) :=
> jer WW(4)] measures the total number of nonzero entries
in the columns i

Definition 4 (Expander) M corresponds to &k, d,v;, vu)-
expander § € (0,1)) if IN(T)| > (1 — §)E(T) for every
T C [n] with |T'| < k.

We say M corresponds to &k, d,~)-expander ify, =
Y. = 7. If M corresponds to &2k, d, 7, 7., )-expander for
dvu/v < 1/6 [25], then one can correctly recovirsparse
signals via;-minimization, which returns the vector with the
least/;-norm among all the vectors that can produce the ob-
tained measurements. There exist both random and explicit
constructions of expanders.

Proposition 1. [26] Forany 1 < k < n/2, e > 0, one can

explicitly construct ak, e, v)-expander withn = kv/e©(")
andy = 90((log(log(n)/€))®)

3. RECOVERY OF CORRUPTED SPARSE SIGNALS

In network tomography}/™*™ is naturally &-1 matrix since
a path delay measurement is an aggregate sum of the corre-

Whend = 0, the problem reduces to CS problem wheresponding link delays. A lower bound af for 0-1 matrix M

one aims to recovet-sparse signals. When= 0, it reduces
to the GT problem where one wants to locdtfilures from

to be {,k)-type identifiable is stated as follows.

boolean measurements. Here we need to not only locate tfFoposition 2. A 0-1 (d,k)-type identifiable matrix/ has at
d corruptions but also recover the uncorrupted values, amorl§ast(dlog(n/d) + klog((n — d)/k)]/ log(k + 2) rows.

which at most: entries are non-zero. Table 1 compares ou
result here on the number of measurements needed with ex-
isting results in GT and CS. The results in GT and CS can bé

viewed as special cases for our generalized result.
We remark that the Choir code in [24](i$, k)-identifiable

for somek. But the construction is not directly extendable

to generald and does not attempt to reduge (m = n in

I

Proof. Consider {,k)-type vectors that all the non-zero finite

1 d k n n—i
alues are ‘1", There ard == 37, 37, (7)(";") such
vectors. In this case, each measurement could be an integer
from0 to k, orco. There are at mod8 := (k + 2)™ possible
outcomes. We neeB > A, and the claim follows. O

Next we consider the upper bounds of the number of mea-

[24]). Here for any givem, d, andk, we want to design  grements needed. We start with a sufficient condition for

(d, k) identifiableM with m as small as possible.

(d,k)-type identifiable matrices.

We first introduce disjunct matrices in GT and expanders

in CS that will be useful for our analysis.

Definition 3 (Disjunct matrices) M is called(d, e)-disjunct
if for every S C [n] and everyi € [n] such that ¢ S and
IS| < d, N (i)\N(S)| > e holds.

A (d,0)-disjunct matrix is calledi-disjunct for simplifi-
cation. One can locate up tbcorruptions with ai-disjunct
matrix [21]. The locating algorithm is simple [213; is iden-
tified to be corrupted if and only it/ (j) C F(y).

We remark that &d + 2k)-disjunct matrix is ad,k)-type
identifiable, and one can construdid+ 2k)-disjunct matrix

with O((d + 2k)? log n) measurements [21,23]. This number

is larger than our result in Table 1 whén>> d. We focus
on the region that >> k >> d in this paper.

Definition 5. M is called asG(d, 2k, §,vi,v..) if for every
S C [n] with | S| < d, there exist€F C N¢(.S) such that the
submatrixM’ = Mgse is a(2k, §,vi, 7., )-expander.

Theorem 1. AG(d, 2k, 8, vy, v.) matrix M is (d,k)-type iden-
tifiable if 6-y,, /v < 1/6.

Proof. Since~; > 0, M is d-disjunct, and one can cor-
rectly identify up tod corruptions. Since there always ex-
ist some uncorrupted measurements that correspond to a
(d, 2k, ~;, v, )-expander, then all the real-valued entries can
be correctly recovered vig -minimization. O

One important property fo§ (d, 2k, 6, i, v..) matrices is
that we have a polynomial algorithm for recoverivg The



Algorithm 1 Recovery algorithm for error free case
Input: y, M
1 Vi, z; is identified as corrupted iff/ (i) C F(y).
2 Let D be the set of identified corruptionB. = N¢(D).
3 X, = augminy, ||z||; S.t. Mrpez = yi.
4 Return: CorruptionsD, uncorrupted values,..

recovery algorithm is summarized in Algorithm 1.
applies the identification algorithm in GT to locates upito
corruptions, which takes tim@(nm). Then it recovers the
uncorrupted real values with-minimization, which has run-

It first

GivenT C S¢with |T| = t, from Lemma 1, we have
—82(1-(-p)tr
128 R
2 @
Pr(E(T) > (1 +6/8)ptr] < e0 Pir/192, (5)

whereN (T') and E(T') are defined respect to matid ..
Sincep = §/ max(d, 2k), through Taylor expansion, one can
check that for alk < 2k, it holds that

(1—6/8)[1— (1 —p)r>(1-06)(1+65/8)ptr.

From (4) to (6) and the Union bound, we have

PrIN(T)| < (1= 5/8)[1 - (1—p)']r] <e

(6)

ning timeO(n?). For comparison, a combinatorial search al-  Pr{N(T)| < (1 8)E(T), givenT] < e=#I7Ir - (7)

gorithm to recovex takes timeO(n ‘”k))

Now we present one main result regarding the number of

measurements needed faf to beG(d, 2k, 6, v, Vu)-

Theorem 2. M™*" is a 0-1 matrix with i.i.d. entriesM;;,
andP(M;; = 1) = p = §/ max(d, 2k), where constand
(0, (V73 — 7)/12). If m = O(dmax(d, k)logn), then with
probability 1 — o(1), M is G(d, 2k, 0, yi, Yu) With §7, /v <

1/6, and is thus {,k)-type identifiable.

Proof. Pick anye € (0,1). Let I,,, denote the event that for
every setS C [n] with |S] < d, it holds that (L) N¢(S)| >
(1 — €)1 — p)¥m, and (2) for a fixedGd C N°(S) with
|G| = (1 —¢)(1 — p)¥m, Mgs. corresponds to &k, §, (1 —
9)p|Gl, (1 + 0)p|G|)-expander.

Sinced(1+46)/(1—-4) < 1/6 from the assumption, clearly
if I,,, happens, the claim holds. We will prove that whens
as statedPr|[I,,,] goes to 1 as goes to infinity.

Given S with |S| = let F; denote the event that
IN¢(S)| > (1 —¢€)(1— p)dm holds. GivenG C N¢(S) with
|G| = r, let E,. denote the event thdt/;s. corresponds to

a (2k,9, (1 — 9)p|G|, (1 + §)p|G|)-expander. Sincé/ has

i.i.d. entries, once andr are fixed,Pr[F,] and Pr[E,] do
not depend or$ andG. From the union bound,
i) < Z( ) F{1+ PriEG o0 _pyaml))- (1)

We will next calculatePr|[I¢]. The following form of
Chernoff bound [27] is applied in our analysis.

Lemma 1. Let X be the sum of. independent random vari-
ablesz; € {0,1}, and letu be its expectatioriv € (0, 1),

PriX > (146)u] < e 3", and Pr(X < (1—8)u] < e~ 2"

Given S with |S| = s < d, from Lemma 1, we have

Pr[F¢] < Pr[F5] < e~ (1-»)"m/2, )

GivenG C N¢(S) with |G| = r, let D,. denote the event that
the number of nonzero entries in every columnéf s. is in

[(1—6&)pr, (1+ d)pr]. From Lemma 1 and the Union bound, )

PriDg] < ne=9°pr/3 + ne=9°rr/2 < Ine=rr/3,

3)

wherec; is a constant independent®f, p, k, andn.
From the Union bound, we have

2k
Prigs] < Pripg + 3 () PN < (1 - 9)B(T),
givenT with |T'| = ¢]

2k
< 2ne—52pr/3 + Z et(log(n/t)+1)—0152ptr’
t=1

where the second inequality follows from (3) and (7).
Plugging (8) and (2) into (1), we haver[IS,] — 0 when
n — oo, provided that

m > 2(dlog(n/d) +logn)/(p(1 — €)(1 — p)*5?).

Sincep = §/ max(d, 2k), then(1 — p)¢ > 1/4. Then when
m > 8 max(d, 2k)(dlog(n/d) + logn) /s,

with probabilityl — o(1), M is (d,k)-type identifiable.

(8)

O

Theorem 2 indicates that a randomly generatédnatrix
with O((d + 1) max(d, k) logn) measurements isl{t)-type
identifiable with high probability. We compare this resuittw
exiting onesin CS and GT in Table 1. We next provide an ex-
plicit measurement construction method based on expanders

Theorem 3. M is (d,k)-type identifiable if it corresponds to

a(d+ 2k,e/d, 'y)-expanderwnh% < 1/6.

Proof. VS with |S| = s < d, andvT C S°with |T| =t <

2k, from the expansion property ahf'(S)| < sv, we have

IN(SUT)| = IN(S)| > (1 —e(d+1)/d)ty.  (9)

Then the number of non-zero entries in each colunin
Mpre(s)ge 1S betweer(l —e(d+1)/d)y and~y.

Since My (syr has at mosty non-zero entries, from
(9) one can check thablpre(syse is a (2k, (d“) (1 —
(d“))'y ~)-expander. The claim follows. O

From Theorem 3 with Proposition 1, an explicit con-
struction of ¢,k)-type identifiable matrix use®(d°™" (d +
k)20 (dlog(log(n)/)*)) measurements, and this number is
larger than that in Theorem 2 with random construction.



Algorithm 2 Recovery algorithm for up té errors 5. NUMERICAL RESULTS

Input: y, M
1 For eachS C [n] with S| < d, if IN(S)\F(y)| + o
|[F(y)\N(S)| < h, S is the set of corruptions, denoted _os} [——m=e0
o
2 R=[n][\(NM(D) U F(y)), My = Mgpe. 1.
3 x, = augmin, ||z||; S.t. M,z = yg. é“-“
4 Return: CorruptionsD, uncorrupted values,.. éno-z
4. ERRONEOUS MEASUREMENTS e s & =
We next consider the case the measurements contain errors. Fig. 1. Identification of corruptions

Let ol denote theth row of M. We consider two types of
errors: (1)y; = oo whenalx € R, and (2)y; € R when
aiTx = oo. We assume that the total number of these two 121000, m=600
types of errors is at mogt, and these errors can happen at
arbitrary unknown locations. The goal is to design measure-
ment matrix)/ such thatall (d, k)-type signals can be cor-
rectly recovereaho matter where thé errors are

If M is a(d,2h + 1)-disjunct matrix, then one can iden-
tify d corruptions in the presence of at mdserrors [21].

d=15
0.6 { —+—d=10
=pd=5
—w—d=0

Normalized recovery error for uncorrupted part

Then one sufficient condition for identifyingl,&)-type sig- ol .
nals from measurements that contaiarrors is as follows, Number of nonzero real values
Proposition 3. If M is (d, 2h + 1)-disjunct, and for every Fig. 2. Recovery of sparse signals with corruptions

of up tod corruptions and for everyd with up toh errors,
there exist€? C [m]\(NV(S)U H) s.t. Mgs- corresponds to

a(2k, 9, %,%)—expanderwitrﬁu/m < 1/6, then all(d, k)- We fix n = 1000 and the number dfl’s in each column
type signals can be recovered in the presende @frors. of M to be5, and randomly generate(al matrix M with

The proof follows clearly from previous discussions andm = 600 andm = 800 respectively. We first consider the
is skipped. The recovery algorithm for such matrices isstat Performance of identifying corruptions in Fig. 1. For each
in Algorithm 2. We prove that these matrices can be obtained, We randomly choose the locations of the corruptions, and
through random construction with the same probabijligs ~ the results are averaged ov#l0 runs. Whenm = 600, 10

thatin Theorem 2. The bound of the number of measuremen@9ITuptions can be correctly identified.
needed is as follows. In Fig. 2, we fixd and increase the number of non-zero en-

triesk. The locations of corruptions and non-zero entries are

randomly chosen, and non-zero entries are sampled as i.i.d.

Gaussian random variables. Algorithm 1 is applied to recove

(d,k)-type signals. Letx* contain the uncorrupted entries,

Proof. The proof follow the same line as that for Theoremand letx, denote our reconstructionx* — x,||2/[|x*||2 is

2, and we skip the details. Ldt, denote the event that for the normalized recovery error of the uncorrupted part. The

every setS with |S| < d and every sefl with |[H| < h, results are averaged ov&l0 runs. Whenmn = 600, we can

(D Ne(S) > (1 — ) (1 —p)im, (2) My (sys- has at least recover all(5, 220)-type signals or al{10, 200)-type signals.

(1 — 8)p(1 — €)(1 — p)¥m nonzero entries in each column,

(3) Mg s- corresponds to &k, 3, (1 — &)pr’, [(1 + d2)pr’)- 6. CONCLUSION

expander for a fixed?’' in N¢(S)\H with |G| =" = (1 —

€)(1 — p)¥m — h entries. If1,,, happens, and if it holds that  We considered recovering sparse link delay values from path

d delay measurements in the presence of link failures and for

2h+ 1< (1=0)p( =) —p)m, 10 ihe f)i/rst time formulated it in?o a CS problem with corrup-

then one can identify alld(k)-type signals fromn measure- tions. We provided bounds of the number of nonadaptive

ments that contain at mokterrors at arbitrary locations. measurements needed to identify both corruptions and real

One can check tha®r[I¢,] — 0 whenn — oo provided entries. Explicit constructions and efficient recoveryoalg
thatm is as stated in the Theorem. And (10) follows for thisrithms are also provided. One ongoing work is to explore
choice ofm. Then the claim follows. O  construction methods with fewer measurements.

Theorem 4. One can identify alld,k)-type signals fromn =
O(max(d, k)(dlogn + hlog(max(d, k)) + hloglogn) mea-
surements that contailerrors in arbitrary locations.
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