An easy way to design
complex program controllers

With less than a handful of functional integrated circuits,
an engineer can use a general method to readily put together a logic
program controller to direct even the most involved operations

by Charles L. Richards, seaco Computer Displays Inc., Garland, Texas*

O When an electronics engineer needs to design a com-
plicated program controller. he may well experience a
sinking feeling—it could mean a return to the textbooks
to relearn the techniques of transfer tables. combina-
tional and sequential logic. and component min-
imization. But a new general design method relieves the
engineer of these burdens and allows him to configure
and prototype even an extremely complex logic control-
ler with a minimum of effort. time. and cost.

What's more. the generalized approach applies not
only to straightforward sequential controllers. but also
those that implement nonsequenual YES-NO and mui-
tiple-choice decisions. That is. a controller can be made

to index one state (or step) at a time. or to jump forward
or backward to any predetermined state. or to choose
which input condition out of many in the same state is
to cause it to either index or jump.

In fact. the method is so easy to learn and apply that
an engineer using it for the first time was abie to design

1. Key logic elements. The state counter, muttipiexer, and decoder, in color, are the main davices needed 10 produce a sequental controier
that indexes from one step to the next. Adding secondary devices permits both nonsecuental and pnority ~antrot actinng,

CONMNECT PRIMARY
TRANSFER CONDITIONS
HER

CONMNECT BECONDARY
THANSFER CONDITIONS

f i 1
coMuerT | =Y 1
JUNA 4=
ApDREsSEs | | It

HERE !
N |]| T
=ie=Ze-fl anpREss ir— 2 3is
SF_F'E:‘E { A2IT MULTIFLEXER
TouiTEs l_: SECONCARY SELECTOR
1%=181T pyreyt

HERE L e=liantnes = T
4

OR ALL

UK L S
FUNCTIONS — B T
HERE F

CLOCE—c o iiale

- 9. thsy &1 R . "'\I
1— ENABLE t— |
il— =
] - 3
’;‘EESESE — : DATAIN . i
T 4 FRIMARY |
STATE 3 TRANSFER S -
FAUNTER [*= FUKCTIONS ATEn L f
— HERE = SICONOARY '
+ GERERATER
1 2 iy
— i e |
) Y
Qo il TERAR MR TRMmETE SE2 s araiet Datas, Teaas
Electronics/February 1973 107

FUNCTION
Z

FUNCTION
Y

2. Transters defined. Diamond denotes transfer condition, while
rectangle denotes transter function. One function 1s the action ini-
tiatec by a transter condition ot YES, while a transfer condition of NO
can nitiate the cther transter function.

and prototype a controller involving 54 different states.
with many states having five decision levels. The con-
troller required 17% integrated circuits. had no logic er-
rors. and worked perfectly the first time power was ap-
plied.

The three integrated circuits shown in color in Fig. |
forni the kernel of the logic-program controller. These
primary devices are a k-bit state (or step) counter. an n-
bit multiplexer. and an n-bit decoder. Here. n. the num-

ber of controller states. equals. 2~ For an eight-state

controller. the three IC devices in plastic dual in-line
packuges cost about S12. even when bought at their
maximum. singie-unit prices.

By adding another multiplexer and decoder. shown at
the nght of Fig. 1. to handle secondary input conditions.
the controller can be made to perform condition-prior-
ity and nonsequential—or Jump—operations. Appro-
priate jump addresses are fed back to the primary state
counter through AND and NAND gates. More compli-
cated program control can be obtained simply by add-
ing more multiplexers and decoders.

Flow diagram tells all

The design process starts with a statement relating
the controller’s inputs to the outpur actions to be ini-
tiated by the inputs. The sequence of events can be rep-
resented by a flow diagram of the individual states in
the over-all program. The diagram can be readily con-
verted to a group of logic-state equations. which then
clearly tell how to connect the inputs and outputs, in-
cluding address jumps.

To explain how the generalized controller can be ap-
plied to three applications of varying complexity, it is
necessary to define the terms transfer condition and
transfer function. These are shown symbolically as the
diamond and square in Fig. 2.

The diamond-shaped box represents the transfer con-
dition. which concerns a YES or NO decision. The num-
ber in a diamond is the state (or step) number for that
transfer condition. The transfer condition can be imple-
mented physically by such two-state devices as a therm-
ostat switch. a flip-flop. or a pulse.

The transfer function, denoted by the rectangles in

108

Fig. 2. is an action that is started or stopped by the
transfer condition. As examples. the transfer function
can gate a digital counter or start a motor. As shown. a
YES transfer condition initiates one transfer function
and a NO another transfer function.

Furthermore. depending on the controller's appli-
cation. the transter conditions can be either indepen-
dent of or dependent on the transfer functions. In a de-
pendent cuse. for example. the transfer condition might
trigger a transfer function that starts a count of 1.000
events. The occurrence of the 1.000th count then serves
as the next transfer condition. In an independent case.
the next transfer condition might be an input from a
timer occurring 500 milliseconds after the count starts,
whether or not the count has reached 1 000

Probably the simplest program controller is one that se-
quences from one step to the next. Figure 3 contains the
fHow diagram for an eight-state sequence controller.
Transfer functions are not required from any NO condi-
tions. so NO-outputs are simply svmbolically looped
back as a condition input. The corresponding logic
equations are:

FUNCTION A =(STATE 0) (CONDITION A) A

FUNCTION B =(STATE 1) (CONDITION B)a

FUNCTION C =(STATE 2)(CONDITION C)a

FUNCTION D=(STATE 3) (CONDITION D)a

FUNCTION E =(STATE 4) (CONDITION E) A

FUNCTION F = (STATE 5) (CONDITION F)a

FUNCTION G =(STATE 6) (CONDITION G) A

FUNCTION H=(STATE 7) (CONDITION H) A

In logic convention. the product of two terms means
that an output will occur TRUE when each term is TRUE.
That is. for example. FUNCTION A becomes TRUE when
both STATE 0 and CONDITION A are TRUE. Thus. the se-
quence of events is for the controller to remain TRUE in
STATE 0 until CONDITION A becomes TRUE. at which
point the controller initiates FUNCTION A and steps to
STATE 1. Then the controller remains TRUE in STATE |
until CONDITION B becomes TRUE. initiates FUNCTION B,
and steps to STATE 3. When the controller reaches STATE
7. it remains there until CONDITION H becomes TRUE,
initiates FUNCTION H, and steps to STATE 0—ready for a
new cycle. In the equations above, the delta denotes on
increment, or step. to the next state.

This eight-state sequence uses commercial integrated
circuits. As shown in Fig. 4, the state counter is 2 type

m our-bit counter. But only three bits are used in
this application. since k = 3 provides the eight state ad-
dresses. binary 000 to 111. corresponding to the 0 to 7
states. The counter’s outputs address the 8-to-1 multi-
plexer (tvpe 74131)\to select the corresponding transfer
condition and address the 3-to-8 decoder (type 7442) to
select the corresponding output transfer function.

For example. when the counter in Fig. 4 outputs 101,
the counter thus simultaneously addresses STATE 5. That
is, it addresses CONDITION F of the multiplexer and
FUNCTION F at the decoder.

Electronics/February 1, 1973

2 2 2 2 : ¢ : g
- @ ¢ b : : : :
RESET reatA - I ~H. e L AN = ;: ¢ >4 < PCs > o X > -
© U v ° : 6
CONDITION H
CONDITION G
CONDITION F
CONDITION E
CONDHTION O
CONDITION C
i CONDTION &
A (4] 1 i d 4] B
E 8701
= MULTIPLEXER
2 5 1141581]
__EG STROBE
¥ ¥
! ob FUNCTION & 1
i 3103 FUNCTION 8 Ii
DECODER P
5 L FUNCTION C
C NET | |
ik FUNCTION O L
. TRy
& FUNCTION E J
&
FUNCTION F |
Functioy 2 P '
CENERATOR FUKCTION G |
i = |
| FUNCTIEN H
74432}

4. Sequence controlier. in a step-Dy-step sequence controller, which can be implemented with as few as three IC packages. the multi-
plexer's Y-output enables the counter to increment the state address for the multipiexer and decoder to yield the required function.

Assume the counter has been RESET to binary 000.
corresponding to STATE 0 in the tlow chart. This count
on the multiplexer's address inputs gates the status of
CONDITION A from the multiplexer's input to its com-
plementary Y and W outputs. As long as CONDITION A is
NO. the Y output is low and the W output is high. The
low Y signal inhibits the counter’s ENABLE-P INPUT. 50
the counter cannot increment even when a CLOCK pulse
is present. The W output connects to the decoder’s most-
ificant-bit output (D) which. if high. inhibits the
zcoder's O to 7 outputs. But when multiplexer output
W goes low it enables the decoder output addressed by
the state counter.

Electronics/February 1, 1973

When CONDITION A becomes YES. two things hap-
pen: the muitiplexer's Y output goes high and allows the
state counter 10 increment on the next CLOCK pulse:
and the W output goes low and enables the decoder. ad-
dressed to 000. to produce a low output on line 0. thus
vielding a signal to initiate FUNCTION A. (Here. a low-
voltage output is defined as a TRUE FUNCTION A)

When the next CLOCK pulse oceurs. the state counter
increments o 001 (or STATE 1). FUNCTION A goes back
high. and the'muluplexer’s 00 -address then gates CON.
DITION B through the multipiexer. but FUNCTION B from
the decoder appeurs only when CONDITION B becomes
YES and the counter increments to the next state. In this

109

S. Decide and jump. Controller executes steps 1n sequence unless a condition is NO, in which case—as shown in color—the controlier ini-
tiates a secondary tunction and jumps 10 a new state. Inputs 10 state counter establish address for muitiplexer and decoder.

CONDITION H
CONDITION G
CONDNTION F
CONDITION E
T ey |
CONDTION D
COHDITION €
CONDITION B
CONDITION &
o2 iy & L] ! i 3 i % K !
T e 870
fie SC4 c MULTIFLEXER
45T o [78151)
ETATE A e
COUNTER ‘—’I:C T
{Ta183 | |
= Enp -] — ! I p————
[| FUNCTION C o ; FUNCTIONE
T0:5 T e
DECODER FTETON G Sha DECODER
— —h . 7 fr——
AKD L 5
1 ” FURCTIOR F L2 FUNCTION E
1= B lp——r =
o B FUNCTHON G 1 % .
FRIMARY e L. FL HCTION | SECONDARY: & FURLTION H
FUSCTION 7 FUNCTION E
GERERATOR : m—J GEHERATOR B
R = ———
7] N 7442} rm—————s

6. Generating jumps. Addng a secondary decoder (function generator) provides the outputs for the secondary conditions, shown in Fig. S,
which are aiso fed back to the state-counter's inputs through gates to produce the new jump address for the multipiexer and decoders.

manner. the controller steps through to STATE 7 (111).
and when CONDITION H becomes YES. FUNCTION H is
generated. the state counter steps to STATE 0 (000). and
the controller is ready for the next cycle of operation.
Note in Fig. 4 that the address inputs for the state
counter are grounded. The reason is that in this appli-
cation the required state-by-state indexing is carried out
by a CLOCK pulse each time a selected YES condition
drives the multiplexer’s v output high to ENABLE the
counter. (In more complex controllers. the counter’s in-
puts are addressed according to program requirements.
as will shortly be explained.) Simple as it is. however.
the sequence controller can prove useful. for example.

110

where eight conditions must be performed in prescribed
order to insure safe and proper operation of a produc-
tion machine.

2. Designing a nonsequential
alternate-function controller

More complex. and certainly more realistic. is a pro-
gram controller that must trigger one transfer function
when a condition is YES and another function if the con-
dition is NO. Also required is that the controller se-

Electronics/February 1, 1973

quence to the next state if the condition is YES or jump -

to a nonsequential state if NO.

Figure 5 contains the flow diagram for a controller
that can perform these YES-NO decisions and nonse-
quential jumps. Here. for example. when it is in STATE |
and CONDITION B is YES. it will initiate FUNCTION C: but
when CONDITION B is NO. it will initiate FUNCTION 8
and jump to STATE 4. The logic equations. developed
from inspection of the flow diagram (Fig. 3). are:

FUNCTION A'=(STATE 0)(CONDITION A1 A

FUNCTION B =(STATE 1) (CONDITION By =>4

FUNCTION C=(STATE 1)«CONDITION B) A

FUNCTION D =(STATE 2) (CONDITION C) 5

FUNCTION E =(STATE 3) (CONDITION DI = 6

FUNCTION F=(STATE 3)(CONDITIOND) A

FUNCTION G =(STATE 4) (CONDITION E) A

FUNCTION H=(STATE 5){CONDITION F1-> 6

FUNCTION 1=(STATE 5) (CONDITION F) 3

FUNCTION J =(STATE 6) (CONDITION G) &

FUNCTION K=(STATE 7)(CONDITION H) A

FUNCTION L=(STATE 7"(CONDITION H)y=> 0
The horizontal arrows in the equation point to the re-
quired jump state. as determined from the application
flow diagram.

Here. the complement (FALSE) of a function—denoted
by the ban over. for example. FUNCTION A—must ac-
tually be interpreted as the initiation of the required
function so as to be internally consistent with the volt-
age-level convention of the devices in this particular
controller. In these devices. a TRUE logic level means a
high voltage level: a FALSE logic level means a low volt-
age level. Thus. the equations above are logically con-
sistent with their electnical circuit (Fig. 6).

This implementation is substantially similar to that of
the simple sequence controller. except for the addition
of the secondary decoder to develop the nonsequential
addresses for those transter functions generated by the
four NO conditions. Also required are NAND gates o
drive the state counter to .he coriect state address and
an AND gate to LOAD that address into the counter. [f.
in Fig. 3. all conditions go YES in sequence. then the op-
eration is the same as that for the previous sequence
controller.

Suppose. though. the controller has sequenced
through to STATE 3. CONDITION D. which if YES initiates
FURCTION F. However. if CONDITION D is NO. the tlow
diagram indicates the controller should jump 1o STATE 6.
CONDITION G. Referring to Fig. 6. all transfer conditions
are inputted through the §-to-1 multiplexer. with the
particular condition gated through the multiplexer
(transfer-condition selector) depending on the address
produced by the state counter. Also. depending on the
counter’s state address. the primary decoder will pro-
duce one primary function. or the secondary decoder
one secondary function. Here. secondary function B oc-
curs at STATE !. £ at STATE 3. H at STATE 5. and L at
STATE 7. Thus. the controller uses the secondary deco-
der’s 1.3.5. and 7 outputs.

The primary and secondary transter functions initiate
the desired external actions mandated by the particular
application. A YES primary condition wiil cause the con-
troiler 1o index to the next state. But the secondary
functions are fed back as inputs to the state counter to

Electronics/February 1, 1973

generate a jump address and to load the state counter
with that address.

Connecting jump addresses

As shown in Fig. 5 and by the logic equations. the re-
quired address jumps are:

FunctionB —4:E—6:H—6:L— 0

These state numbers are obtained by addressing the
state counter’s binarv-weighted inputs. The counter’s
highest-ordered input (D) is permanently set to low
level. or binary 0. by grounding. since the A. B. and C in-
puts can yield the required eight state addresses.

In Fig. 6. these addresses are developed through two
NAND gates. FUNCTION B inputted t0 one NAND gate
puts a high-level signal on the counter’s C input and
generates the 100 which is the jump-to-STATE 4 address
applied to the multiplexer and decoders. And FUNC-
TION E is fed through both NAND gates to activate the 8
and C inputs to generate 110. the STATE 6 address. The 0
jump address occurs simply when there are no input sig-
nals on the NAND gates. Note that since only even-num-
bered jump addresses are used. the state counter’s A in-
put is permanently grounded. In applications requiring
odd-numbered addresses. the A input would also be ac-
cessed through a NAND gate by the odd-numbered
functions.

All secondarv-decoder jump outputs serve as inputs
10 an AND gate that in turn connects to the state counter
LOAD input. Because of the voltage-level convention.
the AND gate actually performs an OR logic function.
Therefore. whenever any jump tunction appears at the
AND gate inputs. the counter’s A, B. or € Inpuis LOAD
the counter to set up the jump address at its output.

A few other electrical connections are required. The
multiplexer must enable the primary function generator
for primary (YES) gecisions or the secondary-tunction
generator for secondary (NO) decisions. This is aceom-
plished by connecting the multipiexer’s Y-output to the
D (inhibit) terminal of the secondary decoder and the W
output to the D terminal of primary decoder. The Y out-
put also connects to the counter’s ENABLE-P terminal.

Assume the controtler stute counter has been RESET
10 STATE 0. As long as CONDITION A is NO. the ~econd-
arv-function generator’s 0 output is low ~but this output
is not used. When CONDITION A becomes YES. the pri-
marv-function geaerator’s Q-output goes low o generate
FUNCTION A. Al the same time the multiplexer’s Y out-
put goes high 1o drive the state counter’s ENABLE-P in-
put and. on the next CLOCK pulse. the counter incie-
ments to STATE 1. Here. as shown in Figs. 5 and 6.1f
CONDITION B is YES. the primaryv-function gencrator is
enabled. because W is low. to produce FUNCTION CLand.
because Y is high. the state counter increments to STATE
2 on the next CLOCK. However. it CONDITION B is NO
the low Y signal on the secondarv-function generator’s
D terminal enables that decoder to vield TCSCTION B
And the counter must jump to STATE 4. Theretore.
FUNCTION B gots ted o the counter’s € input through
the NAND gate. and to the LOAD input through the AND
gate. Thus. the next CLOCK pulse loads the counter to a
count of 100. or STATE 4.

In this manner. the controller will cither index to the
next state Or jump to a preseribed state. As shown in

1

7. Priority control. Flow diagram indicates controlier must give tirst priority, at any state, to primary conditions, at left, but if a primary condi-
ton s NO and seconaary condtion—in color—is YES, then controlier initiates secondary function and jumps.

CONQITION O
CONDITION C

Pt it i

CONDITION &

p—me e e e,

CONDITION G
CONDITION F

CONDITION K
COMDITION 1
CONDITION H

Vec

CONDITH

ol |

|)

os
ce

ke

|- 1
¢

LEIT
STATE

MULTIPLEXER -

H & 3]
BTO
PRIMARY

(T4151)

COUNTER 2 I
(74163

Ewn

FORCTTOR R |

———— aN[
(TAHZY)

A II:‘—-‘ A s h—

¥

b
i
I
Fa

? ITOE e 3-T0-8 .
FRIMARY SECONDARY
DOECOODER FURCTION O DECODER N

. | ———— e

r c

3 FURCTION F . 3
e e T

(7442)

8. Dual decislon. Adding a secondary multiplexer, upper right, provides gating of secondary, or low-priority, inputs, with the primary multi-
piexer's enabie and inhibtt outputs choosing whether to give priorty to primary or secondary transfer conditions.

Fig. 5. initiation of FUNCTION L will bvpass FUNCTION K
and reset the controller to STATE O. but if CONDITION H
is YES. the controller will first initiate FUNCTION K and
then increment 10 STATE 0.

3. Designing a nonsequential
pricrity-condition controller

Consider now any application in which. at one or more
states. two input conditions exist and the program con-
troller has to choose which condition will initiate the

112

next function. Thus. the controlier must follow a set of
priority rules. This controller is slightly more complex.
electrically. than the previous two examples. but is still
easily put together with standard ICs.

In STATE 0 of Fig. 7. for instance CONDITION A could
represent a thermostat switch which. if closed (YES) ini-
tiates FUNCTION A and indexes the controller to STATE 1.
But if the thermostat is open (NO). then CONDITION B
should be implemented. Here CONDITION B could be a
timer input. In STATE 0 the controller is to give first pri-
ority to-the temperature input. but if the temperature
does not close the thermostat. then after some elapsed
time the controller will operate through CONDITION B

Electronics/February 1973

and jump 1o STATE 2. And if the temperature and time
are both YES. then the controller is to obey the move
dictated by the priority assignment. CONDITION A. Fig-
ure 7 includes eight high-priority conditions—A. C. D, F,
G. H. I, and K—and three low-priority conditions—B. E.
and J—at STATE 0. 2, and 6 with jumps to. respectively,
STATES 2. 4. and 0. Also a jump is needed to STATE 6
when CONDITION G. at STATE 4. 1s NO.

Inspection of the flow diagram (Fig. 7) leads to the
following logic equations. which indicate the connec-
tions between the devices making up the controller (Fig.
8). Again the delta means index 1o next state. and the
horizontal arrow means jump to the indicated state.

FUNCTION A=(STATE 0) (CONDITION A) 3
FUNCTION B=
(STATE 0){CONDITION) (CONDITION B) > 2
FUNCTION C=(STATE 1 (CONDITION C) 3
FUNCTION D=(STATE 2)(CONDITION D) 5
FUNCTIONE=
(STATE 2)(CONDITION D) (CONDITON E)=> 4
FUNCTION F=(STATE 3) (CONDITION F) 3
FUNCTION G=(STATE 4)(CONDITION G) A
FUNCTION H=(STATE 4) (CONDITION G => 6
FUNCTION T =(STATE 5)(CONDITION H) A
FUNCTION J =(STATE 6) (CONDITION 1) A
FONCTIONK =
(STATE 61 (CONDITION T1(CONDITION)=» 0
FUNCTION L'=(STATE 7)(CONDITION K) 3
Here again the logic equations show that the reguired
function results when the corresponding decoder output
goes low. 10 be consistent with device electrical levels.

Generating priorities

In Fig. 8. the high-priority conditions are the same as

the primary conditions used in the previous examples,
and they are gated through the multiplexer generating
the high-priority transfer condition. Another multi-
plexer generates the low-priority transter conditions.
Again two decoders are used. one to output the high-
priority functions. the other the low-priority functions.
Since this application also requires nonsequential
jumps. the jump addresses are obtazined by the same
procedure of feeding back appropriate secondary (or
low-priority) output functions through NAND gates to
the state counter. And the presence of any one of these
jump functions and the AND gate (operating in an OR
mode) loads the address into the state counter. As in the
preceding example. the addresses developed by the
state counter drive the multiplexers and decoders.

Of particular interest in this example is how the de-
vices are connected so that they properly assess the re-
quired priority (if any) in a given state. and enable or
inhibit the associated integrated circuits. The Y output
of the primarv multiplexer connects to the siate
counter's ENABLE-P terminal to provide sequential in-
dexing when needed. This Y output also goes to the
STROBE terminal of the low-priority multiplexer. which
inhibits the low-priority transfer-function selector (mul-
tiplexer) any time the selectad high-prioritv transfer
condition is TRUE. As in the preceding example. when a
multiplexer's W output. the complement of Y. is low. it
inhibits the function output of the related decoder.

Consider now some of the alternative actions pro-

Electronics/Fetruary 1, 1973

S

vided by this program controller that choose and imple-
ment a function depending on the priorities assigned to
two conditions at a given state. Assume the controller
has been RESET to STATE 0. Here. the high-priority (pri-
mary) multiplexer is addressed to select CONDITION A
and the low-priority (secondary) multiplexer to select
CONDITION B.

If CONDITION A is YES (or TRUE). three things hap-
pen: the Y output of the primary multiplexer ENABLES
the state counter to index to the next step. the W output
of the same multiplexer removes the inhibit on the D
terminal of the primarv decoder and thus generates the
addressed FUNCTION A: the Y output. connected to the
STROBE terminal of the secondary multiplexer. inhib-
its— through that multiplexer’s W output—the secondarv
transfer-function generator (decoder). As required. the
controller gencrates FUNCTION A and steps 10 STATE L.

However. suppose the controller is in STATE 0 and
that CONDITION A is NO and CONDITION B is YES. As
shown in Fig. 7. the controller in this situation is to ini-
tiate FUNCTION B and jump 1o STATE 2. Since CONDI-
TION A is NO. the low-priority transfer-function gener-
ator is enabled. resulting in FUNCTION B appearing on
output line 0. as required. Furthermore. this function is
fed back to the state counter’s NaND gate which enubles
input-terminal B to a 100 address so the controller
jumps to STATE 4. as required.

For the case where CONDITION A and B are both YES.
the controller is to give priority to. and react 0. CONDI-
TION A only. This action is the result of the high ¥ out-
put of the primary multiplexer inhibiting the secondary
multiplexer «nd thus preveniing CONDITION 8 from
being gated through to the decoder. Theretore. the con-
troller ignores CONDITION B and the primarv v output
enables the state counter to increment to STATE 1. Of
course. if CONDITICNS A and B are both No. the control-
ler stavs in STATEO.

In some states. as for example STATE 2. the controller
is required to step to STATE 4 only when a condition
(here CONDITION F) becomes YES. Because the second-
ary mulitiplexer and decoder are inhibited. the control-
ler indexes in the same manner as in the sequence con-
troller in the first example.

Even without having to make a priority decision. this
controller can ulso perform YES-NO nonsequential
jumps. as is required at STATE 4. Here. the controller is
to generate FUNCIION G and step to STATE § if CONDI-
TION G is YES. or generate FUNCTION H if CONDITION G
is NO. In the YES. or primary condition. the primarv
multiplexer inhibits the secondarv multiplexer. so the
controller simply generates FUNCTION G aad goes to
STATE &. If CONDITION G is NO. the controller must ini-
tate FUNCTION H and jump to STATE 6. To accomplish
this. a YES condition is permanently connected to input
4 of the secondary controller. shown as the logic one
connection in Fig. 8. Being in STATE 3. with the second-
ary multiplexer enabled through its STROBE connection
and the secondary decoder enabled through its D input.
the controlier can then “gate™ this permanent YES con-
dition through the multiplexer and decoder to generate
FUNCTION H. as required. Furthermore. this output is
fed to the B and C NAND gates to produce the 110 corre-
sponding to the required jump address of 6. O

113

