Embedded Control Lab Manual Ch. 3 - Programming in C: Brief Overview

Chapter 3 - Programming in C

Since the heart of an embedded control system is a microprocessor, we need to be able to
develop a program of instructions for the microprocessor to use while it controls the system in
which it is embedded. When programs are developed on the same type of computer system on
which they will be run, as is most commonly done, it is called native platform development. An
example of native platform development is the use of Borland’s C/C++ to develop a program on
an Intel Pentiumll-based computer such as an IBM-compatible PC, and subsequently running the
program on the same compulter.

However, the type of program development which you will be doing in this course is known as
cross platform development, where the laboratory computer (one platform) is used to develop
programs which are targeted to run on the Motorola EVB (another platform). Thus even before
such a program can be tested, it must be transmitted (downloaded) from the computer to the EVB
(see Introl-CODE on page 10).

For this embedded microprocessor, we will be using a programming language called 'C'. C is
extremely flexible, and allows programmers to perform many low-level functions which are not
easily accessible in languages like FORTRAN or Pascal. Unfortunately, the flexibility of C also
makes it easier for the programmer to make mistakes and potentially introduce errors into their
program. To avoid this, you should be very careful to organize your program so that it is easy to
follow, with many comments so that you and others can find mistakes quickly. The example
programs were written with this in mind, so that you get an idea of what well structured programs
look like. In order to get you started in C programming, this chapter will explain the basics which
you will need to begin. If you would like more examples, they can be found in the LITEC Tutorials
under Software: C Programming.

Brief Overview

As stated above, the C language allows many things which other languages do not, making it
very easy to make errors. For this reason, it is suggested that you study this entire unit, including
the tutorials if necessary, and become familiar with the specifics before beginning the labs.
Although this may seem like a lot of work before the first lab, it will be worth your time and will
pay off quickly. If there is a question you have regarding the C language that is not included in
the manual, or in the tutorials, you will probably find the answer in a C reference text.

A Simple Program in C
The following program is similar to the first programming example used in most C
programming books and illustrates the most basic elements of a C program.

15

Ch. 3 - Programming in C: Syntax Specifics Embedded Control Lab Manual

#include <stdio.h> /* include file */

main() /* begin program here */
{ /* begin program block */

printf("'Hello World\n');

/* send Hello World
to the terminal */

} /* end the program block */

The first line instructs the compiler to include the header file for the standard input/output
functions. This line indicates that some of the functions used in the file (such as printf) are not
defined in the file, but instead are in an external library (stdio.h is a standard library header file).
This line also illustrates the use of comments in C. Comments begin with the two character
sequence “/*”* and end with the sequence “ */”. Everything between is ignored and treated as
comments by the compiler. Nested comments are not allowed.

The second line in the program is main(). Every C program contains a function called
main() which is the function that executes first. The next line is a curly bracket. Paired curly
brackets are used in C to indicate a block of code. In the case above, the block belongs to the
main() statement preceding it.

The printf line is the only statement inside the program. In C, programs are broken up into
functions. The printf function sends text to the terminal. In our case, the 68HC11 will send this
text over the serial port to the computer terminal, where we can view it. This line also illustrates
that every statement in C is followed by a semicolon. The compiler interprets the semicolon as
the end of one statement, and then allows a new statement to begin.

You may also notice that the comment after the printf statement continues over more than one
line. It is important to remember that everything is ignored by the compiler between the comment
markers. (see Specifics of the Introl Compiler on page 24)

The last line is the closing curly bracket which ends the block belonging to the main function.
More examples can be found in the tutorials under the C examples section.

Syntax Specifics

There are many syntax rules in C, but there is neither room nor time here to discuss everything
in this manual. Instead, we explain the basics, along with the specifics of the Introl-CODE
compiler which are not in your textbook. Additional information about the C language can be
found in the tutorials, and in any C reference text.

16

Embedded Control Lab Manual Ch. 3 - Programming in C: Syntax Specifics

Declarations

One thing which was distinctly missing from the first example program was a variable. The
type of variables available with the Introl-CODE compiler on the 68HC11 and their declaration
types are listed below in Table 3.1:

Table 3.1 - Introl-CODE C variable types

Type? Size (bytes) [Smallest VValue Largest Value
integer

(unsigned) char 1 0 255

signed char 1 -128 127
(signed) short 2 -32768 32767
unsigned short 2 0 65535
(signed) int 2 -32768 32767
unsigned int 2 0 65535
(signed) long 4 -2147483648 2147483647
unsigned long 4 0 4294967295
floating point

float 4 1.2x10-38 1.2x 1038
long float 4 1.2 x 10-38 1.2 x 1038
double 4 1.2 x 10-38 1.2 x 1038
long double 8 2.2 x 10-308 18 x 10307

a. The items in parentheses are not required, but are implied by the definition. We recommend
that you state these definitions explicitly to avoid errors due to misdefinition.

The format for declaring a variable in a C program is as follows:

<type> variablename;

For example, the line
int 1;

would declare an integer variable §. Although there are a large variety of variable types available,
it is important to realize that the larger the size of the data type, the more time will be required by
the 68HC11 to make the calculations. Increased calculation time is also an important
consideration when using floating-point variables. It is suggested that in the interest of keeping
programs small and efficient, you should not use floating point numbers unless absolutely
necessary.

17

Ch. 3 - Programming in C: Syntax Specifics Embedded Control Lab Manual

Repetitive Structures
Computers are very useful when repeating a specific task, and almost every program utilizes
this capability. The repetitive structures for, while,and do..while are all offered by C.

for Loops
The most common of looping structures is the for loop, which looks like this

for(initialize_statement; condition; increment){

}

In the example above, the for loop will perform the “initialize_statement” one time
before commencing the loop. The “condition” will then be checked to make sure that it is true
(non-zero). As long as the “condition” is true the statements within the loop block will be
performed. After each iteration of the loop, the increment statement is performed. For example:

for(1=0; i<10; i++) {
display(i);

The statement above will initially set i equal to zero, and then call a user-defined function
named display()10 times. Each time through the loop, the value of i is incremented by one.
After the tenth time through, i is set to 10, and the for loop is ended since i is not less than ten.

while Loops
Another frequently used loop structure is the whi le loop, which follows this format

while(condition){
Y -

When a whi le loop is encountered, the condition given in parenthesis is evaluated. If the
condition is true (evaluates to non-zero), the statements inside the braces are executed. After the
last of these statements is executed, the condition is evaluated again, and the process is repeated.
When the condition is false (evaluates to zero), the statements inside the braces are skipped over,
and execution continues after the closing brace. As an example, consider the following:

i =0;

while (i<10) {
i++;
display(i);

18

Embedded Control Lab Manual Ch. 3 - Programming in C: Syntax Specifics

The above whi le loop will give the same results as the preceding example given with the for
loop. The variable i is first initialized to zero. When the whi le is encountered in the next line,
the computer checks to see if i is less than 10. Since i begins the loop with the value 0 (which is
less than ten), the statements inside the braces will be executed. The first line in the loop, i++,
increments i by 1and is equivalentto i=i+1. The second line calls a function named display
with the current value of i passed as a parameter. After display is called, the computer returns
to the whi le statement and checks the condition (i < 10). Since after the first iteration of the
loop the value of i is 1, the condition (i < 10) evaluates to logical TRUE or equivalently “1”,
the loop will again be executed. The looping will continue until i equals 10 when the condition (i
< 10) will evaluate as being false. The program will then skip over all the statements within the
braces of the whi le construct, and proceed to execute the next statement following the closing
brace “}”.

Arrays

It may be necessary to store a list or table of values of the same type that you want to associate
in some way. An array can be used to do this. An array is a group of memory locations all of the
same name and data type. Each memory location in the array is called an element and is numbered
with the first element as number “0”. Note: Be aware, though, that arrays can quickly use up the
available variable space, and the compiler does not necessarily check this potential problem. The
array is declared with the type of data to be stored in the array as follows:

<type> arrayname[maxsize];

For example, the lines

int values[10];
float timer[60];

would declare an array named values that can store up to ten integers (values[0] values[9]) and
an array named timer that can store up to sixty floating point values (timer[0] timer[59]). The
array can be initially filled with values when it is declared, or it can later be filled with data by the

program as follows:
int c[5]={23, 10, 35, 2, 17%; /* c[0]---c[4] is filled with listed values */

int F[5]={0}; /* F[0]...f[4] is filled with zeros */
for (i=0;i<=4;i++)
f[i]=1; /* fills the elements of Ff[0]..f[4] with 0..4 */

Arrays can also have multiple dimensions. A simple example is an array with multiple rows
and columns. These arrays can also be initialized and filled as follows:

int data[3][10]={ {0}.{0}):; /* initialized data to have three rows and ten
columns filled with zeros */

data[0][5]=26; /* puts the value 26 into the element at row 0, column 5 */

data[2][9]=5; /* puts the value 5 into the element at row 2, column 9 */

19

Ch. 3 - Programming in C: Syntax Specifics Embedded Control Lab Manual

Operators

In addition to a full complement of keywords and functions, C also includes a full range of
operators. Operators usually have two arguments, and the symbol between them performs an
operation on the two arguments, replacing them with the new value. You are probably most
familiar with the mathematical operators such as + and -, but you may not be familiar with the
bitwise and logical operators which are used in C. Table 3.2 - Table 3.6 list some of the different
types of operators available. The operators are also listed in the order of precedence in Table 3.7.
Just as in algebra where multiplication precedes addition, all C operators obey a precedence which
is summarized in table Table 3.7.

Mathematical
The symbols used for many of the C mathematical operators are identical to the symbols for

standard mathematical operators, e.g., add “+”, subtract “-”, and divide “/”. Table 3.2 lists the
mathematical operators.

Table 3.2 - Mathematical operators

operator description

* multiplication

/ division

% mod (remainder)
+ addition

- subtraction

Relational, Equality, and Logical
The C language offers a full range of control structures including i f. .else, while,

do. .while,and switch. Most of these structures should be familiar from previous computing
classes, so the concepts are left to a reference text on C. In C, remember that any non-zero value is
true, and a value of zero is false. Relational, equality, and logical operators are used for tests in
control structures, and are shown in Table 3.3. All operators in this list have two arguments (one
on each side of the operator).

Table 3.3 - Relational, equality, and logical operators

operator | description operator [description
< less than == equal to

> greater than I= not equal to
<= less than or equal to [logical OR
>= greater than or equal to | |&& logical AND

20

Embedded Control Lab Manual Ch. 3 - Programming in C: Syntax Specifics

Bitwise

C can perform some low-level operations such as bit-manipulation that are difficult with other
programming languages. In fact, some of these bitwise functions are built into the language. Table
3.4 summarizes the bitwise operations available in C.

Table 3.4 - Bitwise and shift operators

operator | description example result
& bitwise AND 0x88 & OxOF 0x08
A bitwise XOR OxOF " OxFF O0xFO
| bitwise OR OxCC | OxOF OXCF
<< left shift 0x01 << 4 0x10
>> right shift 0x80 >> 6 0x02

Unary
Some C operators are meant to operate on one argument, usually the variable immediately

following the operator. Table 3.5 gives a list of those operators, along with some example for
reference purposes.

Table 3.5 - Unary operators

operator |description example equivalent
++ post-increment J = 1++; [J =013

=1+ 1;
++ pre-increment J o= ++i; [=0+ 1;

J=1i;
-- post-decrement J=i-—-; [J = 1i;

=1 - 1;
-- pre-decrement J=--i; (i =1-1;

= |;

* pointer dereference |*ptr value at a memory location

whose address is in ptr

& reference (pointer) of |&i the address of i

+ unary plus +i i

- unary minus -1 the negative of i

~ ones complement ~OxFF 0x00

! logical negation 1(0) [€)
Assignment

Most mathematical and bitwise operators in the C language can be combined with an equal sign
to create an assignment operator. For example a+=3; is a statement which will add 3 to the
current value of a. This is a very useful shorthand notation for a=a+3;. All of the assignment
operators have the same precedence as equals, and are listed in the precedence table.

21

Ch. 3 - Programming in C: Syntax Specifics Embedded Control Lab Manual

Miscellaneous
Many of the operators in C are specific to the syntax of the C language, and bear other meanings

depending on their operands. Table 3.6 below is a list of some miscellaneous operators which are
specific to the C language. This table has been included only as a reference, and you may wish to
refer to a C reference manual for complete descriptions of these operators.

Table 3.6 - Miscellaneous operators

operator |description

§) function call
1 array
> pointer to structure member access

: structure member access
(type) |type cast

sizeof size of type (in bytes)

?: if ? then: else

: combination statement

Precedence and Associativity
All operators have a precedence and an associativity. Table 3.7 illustrates the precedence of all

operators in the language”. Operators on the same row have equal precedence, and precedence
decreases as you move down the table.

* Kernighan and Ritchie, The C Programming Language

22

Embedded Control Lab Manual

Ch. 3 - Programming in C: Programming Structure Hints

Table 3.7 - Operator precedence and associativity

operators? associativity
01> left to right
I ~++ - * & (type) sizeof right to left
*1% left to right
+- left to right
<< >> left to right
<<=>>= left to right
== 1= left to right
& left to right
A left to right
| left to right
&& left to right
| left to right
?: right to left
= += -= %= [= Y= &= "= |= <<= >>= right to left
left to right

a. This table is from Kernighan and Ritchie, The C Programming Language.

Programming Structure Hints

The C programs you develop should be written in a style that is easy for yourself and others to
read and maintain (modify). Since issues pertaining to programming style are the topic of entire
text books, the following are a few helpful guidelines and hints which are generally regarded as
hallmarks of good programming style.

Strictly follow the C style convention for the indentation of blocks of code.

Select identifier names for C variables and functions which implicitly describe their
functionality.

Keep the scope of all variables as local within functions unless absolutely necessary to
globalize their scope.

As much as possible, encapsulate the functionality of chunks of code into C functions,
i.e. adopt a modular programming style. It is especially important to avoid having

functionally equivalent copies of code dispersed throughout a project comprising one
or more files. If the functionality of similar chunks of code can be encapsulated into a

23

Ch. 3 - Programming in C: Specifics of the Introl Compiler Embedded Control Lab Manual

single C function, not only will this result in a reduction of the number of lines of code,
but more of the code maintenance can be isolated to solitary functions.

— Use comments liberally throughout a program. A good rule of thumb is to include a de-
scriptive comment for about every three lines of code.

Specifics of the Introl Compiler

Even though there is an ANSI standard for the C language, not all compilers conform to these
standards, and most companies add features to the standard to differentiate their product and to take
advantage of the specific hardware for which it compiles. In general, the Introl-CODE compiler
conforms to the ANSI standard. The following section explains the important differences between
the Introl-CODE compiler.

Library Functions

As seen in the prior example programs, most of the things done in C, with the exception of low-
level functions, involve using library functions. All compilers have their own library functions, but
they are usually very close to those defined by the ANSI standard. The Introl-CODE compiler is
no exception since it includes most of the ANSI functions and contains some extensions
specifically for the 6BHC11. A list of useful functions is included in Appendix A - Programming
Information for your reference.

Assembly Code
In-line assembly can be handled by the Introl-CODE compiler via the asm function if there is

a need to optimize a certain recurring segment of code. The compiler then places the enclosed
assembly code directly into the C program. The syntax for the asm function can be found in the
Introl-CODE Reference Manual.

Comments
In accordance with the ANSI standard, nested comments (comments within comments) are not

allowed.

Definition of an Interrupt Handler Function
Introl-CODE will generate a function as an interrupt handler if it is defined with the __mod2___

type qualifier. The __mod2__ type qualifier is not portable to most other compilers. If you wish to
test compile your code on another compiler, such as Borland C/C++ or gcc on RCS, you will need
to remove __mod2__ from your function prototypes.

24

