

MPS Serial Communication Lab Exercise

Asynchronous & Synchronous Serial Communications Interface

Student's name & ID: ___

Partner's name & ID: ___

Your Section number / TA's name __________________________________

Notes:

You must work on this assignment with your partner.

Hand in a printer copy of your software listings for the team.
Hand in a neat copy of your circuit schematics for the team.

These will be returned to you so that they may be used for reference.

--------------------------do not write below this line-------------------------

Grade for performance verification (50% max.)

Grade for answers to TA's questions (20% max.)

Grade for documentation and appearance (30% max.)

POINTS TA init.

Grader's signature: ___

Date: __

 Page 1

Asynchronous & Synchronous Serial Communications Interface

GOAL

By doing this lab assignment, you will learn to program and use:
 1. The Asynchronous Serial Communications Port and the Synchronous.
 2. Serial communications among multiple processors.

PREPARATION

• Read Sections 11.1 to 11.4 from Software and Hardware Engineering by Cady & Sibigtroth.
• Write a C program that is free from syntax errors (i.e., it should assemble without error messages and

produce a .S19 file).

1. INTRODUCTION TO THE ASYNCHRONOUS SERIAL
COMMUNICATIONS INTERFACE (SCI)

The 68HC12 has two on-board asynchronous serial communications interfaces, SCI0 and SCI1, and an
additional synchronous serial peripheral interface, SPI. With an additional external chip provided on the
EVB to permit the required ±12 volt swing, these ports may be configured as standard RS-232 serial
ports. As a universal asynchronous receiver-transmitter (UART), each port has 10 registers for status,
control and data transfers. In the basic polled configuration without interrupts, a subset of 6 registers is
used. These are (the 'n' appearing in the register names is either a '0' or a '1' depending on the port
referenced and the _H12… name is that used by the DBUG.H file):

SCnDRL (_H12SCnDRL): Data Register Low - character sent or received {A Data Register High is
available for serial configurations using an uncommon character length of 9 bits.}

SCnCR2 (_H12SCnCR2): Control Register 2 - TE & RE enable transmit & receive

SCnCR1 (_H12SCnCR1): Control Register 1 - advanced features as well as parity, bit length, and
stop bits setting

SCnBDH & SCnBDL (_H12SCnBD): SCIn Baud Rate Control - a double register for setting the baud
rate {The Introl compiler only recognizes a single wide register named _H12SCnBD.}

SCnSR1 (_H12SCnSR1): SCIn Status Register 1 - TDRE & RDRF indicate data has been
transmitted or data has been received

In more sophisticated configurations, interrupts may be generated when data is received or ready to be
transmitted, transmission, framing or overrun errors detected, self-checking modes may be configured,
and auto wakeup sequences employed.

 Page 2

2. ASYNCHRONOUS SERIAL PORT SETUP

Chapter 11 of the text has a very detailed explanation of the SCI port setup. In the basic mode, a three
step sequence is all that is necessary. First, the port must be enabled for transmitting and receiving.
Second, the parity mode must be selected, the number of data bits chosen, and whether 1 or 2 stop bits
are to be used - the standard RS-232 parameters. Finally, the baud rate must be selected. The chip is
extremely flexible in allowing the selection of all standard rates as well as custom rates. Table 11-2 in the
text show what value to use in the double register SCnBDH:SCnBDL for the desired system baud rate.
Remember that the 68HC12 EVBs have an M-clock of 8 MHz and setting must be taken from that
column.

The text has Example 11-1 at the end of section 11.3 showing a working configuration. Although it is in
assembler, it is easy to understand how the registers must be configured and used to set up, transmit, and
receive data. When all else fails, you can always use D-Bug12 to look at (but not change) the registers for
SCI0, the working port used by the monitor program to communicate with the user terminal.

Transmitting a character through a port involves a simple two step procedure. First the Transmit Data
Register Empty Flag must be checked to see that it is set. If not, the program must wait and keep
checking until the bit is high. Then the data to be transmitted must be loaded into the Data Register.
Receiving data is a similar two step process. The Receive Data Register Full Flag must be checked. If it is
cleared, this indicates that no data is available and the program may go on to something else or decide to
wait for something to appear by repeatedly checking the flag. A set flag indicates that data is available
and may be read from the Data Register. Note that the same data register is used for transmitting as well
as receiving data.

3. PROGRAMMING ASSIGNMENT

PART I

The first programming assignment is to write a procedure that will have the EVB monitor both SCI ports
continuously. Whenever it detects a character coming in one port, it should echo it back out that port and
also send it out the other port. On your PC you will have two terminal windows open using either
ProComm Plus or HyperTerminal. One window will communicate through COM1: and the other through
COMn:. (Any PC serial port COM3: through COM7: may be used. Different values are assigned to the
USB-mapped communication ports, depending on when the adapter was plugged into the PC. You must
check the currently assigned value so that the second terminal window can be configured to talk to the
proper port. This is done by right clicking on the My Computer icon and selecting the Properties menu
item. Select Device Manager in the window and scroll down to the Universal serial bus controller.
Expand the list if necessary and note which port number has been assigned to the USB to serial adapter.)
COM1: will be connected to SCI0 (the normal monitor port) and COMn: to SCI1. For convenience,

 Page 3

leave SCI0 in its default configuration of 9600 baud and N-8-1 (no parity, 8 data bits, 1 stop bit). You
may also use the built-in D-Bug12 functions DB12->putchar() and DB12->getchar() to communicate
with the terminal on COM1:. To check to see if a character is available on SCI0 without locking the
program into a state where it will wait for a character requires the interrogation of the RDRF flag in
SC0SR1. getchar() will put the program in a loop that can't be broken until a character is received.

SCI1 will be configured for 28800 baud and N-8-1. You will need to configure it manually as well as
send and receive characters using the status, control, and data registers. Remember you must match the
terminal programs setup parameters to the port's configuration. Note that the PC cards in the Sun
Ultra10s support only COM1: directly. COM3: is created by using a USB to Serial converter and
software that allows the USB port and hardware to emulate a second serial port on the PC.

Write a program to poll both ports continuously and then echo any character received to both ports so
the received character will show up on both displays. An <ESC> key pressed on either terminal should
display a brief message on both screens and halt the program.

PART II

This program duplicates the functionality of the program in Part I but allows the SCI ports to generate
interrupts when characters are received and has ISRs handle the job of echoing the received characters to
the two displays. Interrupt 10 is assigned to SCI1 and 11 to SCI0. The assignment of interrupts to ISRs
follows the same convention as was used in the Interrupts and Timer ISRs lab exercise. Note that each
interrupt (10 or 11) is shared by five possible causes on the port. See Table 11-4 in the text for the list of
causes. This means that the ISRs must interrogate the SCnSR1 status register to find the particular cause
of a generated interrupt and take appropriate action for each separate cause. The main objective of this
exercise is to handle the Receive Data Register Full case but you may choose to write code to handle the
other four cases.

When you have completed the program and verified its operation, you will need to find another group
with a working version of Part II and connect your two SCI1 ports together using the 2 bus signals
TxD1, RxD1 and a ground reference. Remember transmit on one processor must be connected to receive
on the other processor. Now any character typed on the SCI0 terminal on either processor will show up
on the other processor's terminal.

PART III

Synchronous serial communications between processors are possible using the SPI port on the 68HC12

 Page 4

EVB. A synchronous, or separately clocked, serial connection can communicate at much higher rates
than standard RS-232 data rates. They also use master/slave configurations between devices where the
single master provides the clocking signal to all slave devices. Figure 11-6 in the text shows the signals
between two SPI devices and also demonstrates the mechanism where, as data from one device is clocked
out of it's shift register, data from the second device is simultaneously clocked into the register The SPI
on the 68HC12 is capable of rates up to 4 Mbits/sec. Synchronous serial devices are not as well
standardized as asynchronous RS-232 and are therefore less common. To get around the lack of extra
synchronous devices, this exercise will use a single 68HC12 and have it communicate with itself through
a loop-back connection from the MOSI to the MISO on the protoboard bus.

Using the SP0CR1 (_H12SP0CR1) register, configure the SPI port for polled use without interrupts, SPI
bits 4-7 for dedicated operation, no wired-OR, master mode, shift clock low when not shifting, serial data
sampled on the rising edge of SCK, slave select output, and most significant bit first. Configure the
SP0CR2 (_H12SP0CR2) register for active pull-up, no reduced drive capability, and normal two-wire
mode. Select a clock frequency of 1 MHz with the SP0BR (_H12SP0BR) baud rate register. Finally give
the SPI control over the output lines by setting the Port S data direction bits in DDRS to $F0.

A character written to the SP0DR (_H12SP0DR) data register will be transmitted back into the
processor's data register, but first the processor must enable the slave by clearing SS (PS7 in PORTS).
The SPIF flag in the SP0SR (_H12SP0SR) status register needs to be read to indicate when a character
has been received in the data register. Note again that the same register is used for transmitting and
receiving.

Verify this operation with a simple C program. Any character transmitted will be the same character
received while the loop-back wire is present. If the input to MISO is held to ground or +5 volts, the input
character should be $00 or $FF respectively after a transmission is received (Why?). Your program
should also verify this.

OPTION 2: The 68HC11 EVBs in the studio are configured with an SPI port similar to that on the
68HC12 EVBs. It is an older design with a few less features, but can be used as a device to communicate
with through a synchronous master/slave serial configuration. The HC11 has three registers associated
with its SPI. They are:

 7 6 5 4 3 2 1 0
$1028 SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0 SPCR
RESET
=

0 0 0 0 0 1 U U

 7 6 5 4 3 2 1 0

 Page 5

$102A SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 SPDR
 (Double buffered in, single buffered out)

 7 6 5 4 3 2 1 0
$1029 SPIF WCOL MODF SPSR
RESET
=

0 0 0 0 0 0 0 0

The data register, SPDR, and the status register, SPSR, are identical to their corresponding SP0DR and
SP0SR registers on the 68HC12. Bits 2 through 7 of the control register also correspond directly to the
same bits in SP0CR1 on the 68HC12. The last 2 SPCR bits are used to set the clock rate using a similar
scheme as on the 68HC12, but using the 2 MHz E clock divided down by a scale factor set by SPR1 and
SPR0 using the following table. Note the only shift mode on the 68HC11 is MSB first.

SPR1 SPR0 E-Clock
Divide-by

0
0
1
1

0
1
0
1

2
4
16
32

A short C program written on the 68HC11 can read in characters sent to the SPI port and echo them on
the terminal. Here again, the terminal would be a second HyperTerminal or ProComm window on the PC
communicating with the 68HC11 EVB through COM3: with the standard 9600 8-N-1 configuration.

The following is an example program for the 68HC11 compiled with the Introl compiler set up for the
68HC11 processor.

 Page 6

There are two ways to go with the RS-232 lab. One is to use software to output and
input ASCII characters at TTL levels and use a MAX232 or similar single supply R/T
chip to communicate with the PC.

The other way is to simply connect two EVBs (one HC12 and one HC11?) and have them
talk to each other using the built in interface. Let me know which sounds most
likely to be successful.

I talked to Steve D. about the serial communication exercise. We thought a
good approach would be to use whatever library functions exist first to get
a program running on the HC12 that would communicate to the PC COM1 via SCI0
using the built-in utilities (putchar, getchar) to a HyperTerm (or ProComm)
screen while at the same time SCI1 would be connected to the PC's COM3
(through a USB converter) and going to a second HyperTerm screen. The
exercise would be to have the HC12 read input (with echo) from either port
and output to the other port. This way each group would be self-sufficient.

The follow-up task would be to redo the above using C statements and low
level bit operations to manually set up the second serial port (SCI1) and to
input & output data. This is assuming we find a way that Introl C supports a
second serial port for the first task. Otherwise this will be the first
task. I'm not sure if it's more worthwhile to emphasize writing interrupt
routines for handling the communications or polling code. If we did the
interrupt version, we probably would not have too much time left to look at
synchronous serial communications.

An extra credit exercise would be to get 2 HC12s to communicate with each
other. This would require a modified DB-9 cable (crossing Tx & Rx) and Steve
didn't think he'd get to making them in time.

