

MOTOROLA INSTRUCTION SET A - 3

Appendix A INSTRUCTION SET

A-1 INTRODUCTION

The programming model indicates that the DSP56300 Core central processor
architecture can be viewed as three functional units operating in parallel: data arithmetic
logic unit (ALU), address generation unit (AGU), and program control unit. The goal of the
instruction set is to provide the capability to keep each of these units busy each instruction
cycle, achieving maximum speed and minimum program size.

This section introduces the DSP56300 Core instruction set and instruction format. The
complete range of instruction capabilities combined with the flexible addressing modes
used in this processor provide a very powerful assembly language for implementing digital
signal processing (DSP) algorithms. The instruction set has been designed to allow
efficient coding for DSP high-level language compilers such as the C compiler. Execution
time is minimized by the hardware looping capabilities, use of an instruction pipeline, and
parallel moves.

A-2 INSTRUCTION FORMATS AND SYNTAX

The DSP56300 Core instructions consist of one or two 24-bit words – an operation word
and an optional extension word. This extension word can be either effective address
extension word or an immediate data extension word. General formats of the instruction
word are shown in Figure A-1 Most instructions specify data movement on the XDB, YDB,
and data ALU operations in the same operation word. The DSP56300 Core is designed
to perform each of these operations in parallel.

The data bus movement field provides the operand reference type, which selects the type
of memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and/or YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An extension word
following the operation word is used to provide immediate data, absolute address or
address displacement, if required. Examples of operations that may include the extension
word include move operation such as: MOVE X:$100,X0

A - 4 INSTRUCTION SET MOTOROLA

Figure A-1. General Formats of an Instruction

Word

The opcode field of the operation word specifies the data ALU operation or the program
control unit operation to be performed.

The operation codes form a very versatile microcontroller unit (MCU) style instruction set,
providing highly parallel operations in most programming situations.

The instruction syntax has two formats - Parallel and NonParallel, as shown in Table A-1
and Table A-2. Parallel instruction is organized into five columns: opcode, operands, and
two parallel-move fields, each of them is optional, and an optional condition field. The
condition field is used to disable the execution of the opcode if the condition is not true,
and cannot be used in conjunction with the parallel move fields. Assembly-language
source codes for some typical one-word instructions are shown in Table A-1. Because of
the multiple bus structure and the parallelism of the DSP56300 Core, up to three data
transfers can be specified in the instruction word – one on the X data bus (XDB), one on
the Y data bus (YDB), and one within the data ALU. These transfers are explicitly
specified. A fourth data transfer is implied and occurs in the program control unit
(instruction word prefetch, program looping control, etc.). The opcode column indicates
the data ALU operation to be performed but may be excluded if only a MOVE operation is
needed. The operands column specifies the operands to be used by the opcode. The XDB
and YDB columns specify optional data transfers over the XDB and/or YDB and the
associated addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which
address space is being referenced.

NON-PARALLEL OPERATION CODE

DATA BUS MOVEMENT

 23 8 7 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

OPTIONAL IMMEDIATE DATA EXTENSION

 23 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

 23 8 7 0

X X X X X X X X

X X X X X X X X

OPCODE

OPCODE
DATA BUS MOVEMENT

MOTOROLA INSTRUCTION SET A - 5

Table A-1. Parallel Instructions Format

NonParallel instruction is basically organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown in
Table A-2. Nonparallel instructions include all the program control, looping and peripherals
read/write instructions. They also include some Data ALU instructions that are impossible
to be encoded in the opcode field of the Parallel format.

Table A-2. NonParallel Instructions Format

A-2.1 Operand Sizes

Operand sizes are defined as follows: a byte is 8 bits long, a word is 24 bits long, a long
word is 48 bits long, and an accumulator is 56 bits long (see following diagram). The
operand size for each instruction is either explicitly encoded in the instruction or implicitly
defined by the instruction operation.

Opcode Operands XDB YDB Condition

Example 1: MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

Example 2: MOVE X:-(R1),X1

Example 3: MAC X1,Y1,B

Example 4: MPY X0,Y0,A IF eq

Opcode Operands

Example 1: JEQ (R5)

Example 2: MOVEP #data,X:ipr

Example 3: RTS

BYTE

WORD

LONG WORD

ACCUMULATOR
55 0

47 0

23 0

7 0

A - 6 INSTRUCTION SET MOTOROLA

When in Sixteen Bit Arithmetic mode the operand sizes are as follows: a byte is 8 bits long,
a word is 16 bits long, a long word is 32 bits long, and an accumulator is 40 bits long.

A-2.2 Data Organization in Registers

The ten data ALU registers support 8- or 24-bit data operands, and 16-bit data in Sixteen
Bit mode. Instructions also support 48- or 56-bit data operands (32- or 40-bit in Sixteen
Bit mode) by concatenating groups of specific data ALU registers. The eight address
registers in the AGU support 24-bit address or data operands. The eight AGU offset
registers support 24-bit offsets or may support 24-bit address or data operands. The eight
AGU modifier registers support 24-bit modifiers or may support 24-bit address or data
operands. The program counter (PC) supports 24-bit address operands. The status
register (SR) and operating mode register (OMR) support 8,16 or 24-bit data operands.
Both the loop counter (LC) and loop address (LA) registers support 24-bit address
operands.

A-2.3 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register; long-
word operands occupy two concatenated registers. The least significant bit (LSB) is the
right-most bit (bit 0); whereas, the most significant bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). When in Sixteen Bit mode, the least
significant bit (LSB) is bit 8; bits 24 to 31 are ignored for long-word operands; whereas,
the most significant bit (MSB) is the left-most bit.

The two accumulator extension registers are eight bits wide. When an accumulator
extension register is used as a source operand, it occupies the low-order portion (bits 0–
7) of the word; the high-order portion (bits 8–23) is sign extended (see Table A-2). When
used as a destination operand, this register receives the low-order portion of the word,
and the high-order portion is not used. Accumulator operands occupy an entire group of
three registers (i.e., A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit 0 for 24 bit
mode and bit 8 for Sixteen Bit mode), and the MSB is the left-most bit (bit 55).

When a 56-bit accumulator (A or B) is specified as a

source

 operand S, the accumulator
value is optionally shifted according to the scaling mode bits S0 and S1 in the system
status register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in

BYTE

WORD

LONG WORD

ACCUMULATOR
55 0

47 0

23 0

7 0

MOTOROLA INSTRUCTION SET A - 7

the destination is limited to a maximum positive or negative saturation constant to
minimize truncation error. Limiting does not occur if an individual 24-bit accumulator
register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-bit
accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the condition code register is latched.

When a 56-bit accumulator (A or B) is specified as a

destination

 operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits by sign
extending the MS bit of the source operand (bit 23) and appending the source operand
with 24 LS zeros. Note that for 24-bit source operands both the automatic sign-extension
and zeroing features may be disabled by specifying the destination register to be one of
the individual 24-bit accumulator registers (A1 or B1).

Figure A-2. Reading and Writing the ALU Extension Registers

When in Sixteen Bit mode, the move operations associated with Data ALU registers are
altered. For further details refer to Section 3.4.1.

A-2.4 AGU Registers

The 24 AGU registers, which are 24 bits wide, may be accessed as word operands for
address, address offset, address modifier, and data storage. The notation Rn is used to
designate one of the eight address registers, R0–R7; the notation Nn is used to designate
one of the eight address offset registers, N0–N7; and the notation Mn is used to designate
one of the eight address modifier registers, M0–M7.

A-2.5 Program Control Registers

The 24-bit OMR has the chip operating mode register (COM) occupying the low-order
eight bits and the extended chip operating mode register (EOM) occupying the middle-
order eight bits and the system stack control status register (SCS) occupying the high-
order eight bits. The Operating Mode Register (OMR) and the Vector Base Address (VBA)
are accessed as word operands; however, not all of their bits are defined. These bits read
as zero and should be written with zero for future compatibility. The 24-bit SR has the user
condition code register (CCR) occupying the low-order eight bits and the system mode

 23 8 7 0

BUS

NOT USED
LSB OF
WORD

A2/B2

BUS

REGISTER A2, B2 USED
AS A DESTINATION

REGISTER A2, B2
USED AS A SOURCE

SIGN EXTENSION
OF A2/B2

CONTENTS
OF A2/B2

NOT USED
REGISTER A2, B2

 23 8 7 0

 23 8 7 0

A - 8 INSTRUCTION SET MOTOROLA

register (MR) occupying the middle-order eight bits and the extended mode register
(EMR) occupying the high-order eight bits. The SR may be accessed as a word operand.
The MR and CCR may be accessed individually as word operands (see Figure A-3). The
Loop Counter (LC), Loop Last Address (LA), stack size (SZ), system stack high (SSH),
and system stack low (SSL) registers are 24 bits wide and are accessed as word
operands. The system stack pointer (SP) is a 24-bit register that is accessed as a word
operand. The PC, a special 24-bit-wide program counter register, is generally referenced
implicitly as a word operand, but may also be referenced explicitly (by all PC-relative
operation codes) also as a word operand.

A-2.6 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 48-bit system stack (SS) can store the concatenated PC and SR
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The 24-bit-
wide X and Y memories can store word and byte operands. When in Sixteen Bit Arithmetic
mode the X and Y memories can store 16-bit words, that occupy the low-portion of the
memory word. Byte operands, which usually occupy the low-order portion of the X or Y
memory word, are either zero extended or sign extended on the XDB or YDB.

Figure A-3. Reading and Writing Control Registers

A-3 INSTRUCTION GROUPS

The instruction set is divided into the following groups:
• Arithmetic
• Logical
• Bit Manipulation

23 8 7
BUS

NOT USED LSB

BUS

MR, CCR, COM and SCS
AS A DESTINATION

 AS A SOURCE
MR, CCR, COM and SCS

MR, CCR, COM and SCS

ZERO FILL

23 8 7

MOTOROLA INSTRUCTION SET A - 9

• Loop
• Move
• Program Control

Each instruction group is described in the following paragraphs.

A-3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the data ALU.
These instructions may affect all of the CCR bits. Arithmetic instructions are register
based (register direct addressing modes used for operands) so that the data ALU
operation indicated by the instruction does not use the XDB, the YDB, or the global data
bus (GDB). Optional data transfers may be specified with most arithmetic instructions,
which allows for parallel data movement over the XDB and YDB or over the GDB during a
data ALU operation. This parallel movement allows new data to be prefetched for use in
subsequent instructions and allows results calculated in previous instructions to be
stored.A

✔

 sign in a table cell in the “Parallel Instruction” column indicates that the
corresponding instruction is a parallel instruction, while a blank table cell indicates that the
instruction is not a parallel instruction. The move operation that can be specified in parallel
to the instruction marked is one of the parallel instructions listed in Table A-7. Arithmetic
instructions can be executed conditionally, based on the condition codes generated by the
previous instructions. Conditional arithmetic instructions don’t allow parallel data
movement over the various data busses. Table A-3 lists the arithmetic instructions.

Table A-3. Arithmetic Instructions

Mnemonic Description
Parallel

Instruction

ABS Absolute Value

✔

ADC Add Long with Carry

✔

ADD Add

✔

ADD (imm.) Add (immediate operand)

ADDL Shift Left and Add

✔

ADDR Shift Right and Add

✔

ASL Arithmetic Shift Left

✔

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)

ASR Arithmetic Shift Right

✔

ASR (mb.) Arithmetic Shift Right (multi-bit)

A - 10 INSTRUCTION SET MOTOROLA

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand

✔

CMP Compare

✔

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude

✔

CMPU Compare Unsigned

DEC Decrement Accumulator

DIV Divide Iteration

DMAC Double Precision Multiply-Accumulate

INC Increment Accumulator

MAC Signed Multiply-Accumulate

✔

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate (immediate operand)

MACR Signed Multiply-Accumulate and Round

✔

MACRI Signed Multiply-Accumulate and Round (immediate
operand)

MAX Transfer By Signed Value

✔

MAXM Transfer By Magnitude

✔

MPY Signed Multiply

✔

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply (immediate operand)

MPYR Signed Multiply and Round

✔

MPYRI Signed Multiply and Round (immediate operand)

NEG Negate Accumulator

✔

NORM Normalize

NORMF Fast Accumulator Normalize

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 11

A-3.2 Logical Instructions

The logical instructions, which execute in one instruction cycle, perform all of the logical
operations within the data ALU (except ANDI and ORI). They may affect all of the CCR
bits and, like the arithmetic instructions, are register based. Optional data transfers may
be specified with most logical instructions, allowing parallel data movement over the XDB
and YDB or over the GDB during a data ALU operation. This parallel movement allows
new data to be prefetched for use in subsequent instructions and allows results calculated
in previous instructions to be stored. A

✔

 sign in a table cell in the “Parallel Instruction”
column indicates that the corresponding instruction is a parallel instruction, while a blank
table cell indicates that the instruction is not a parallel instruction. The move operation that
can be specified in parallel to the instruction marked is one of the parallel instructions
listed in Table A-7. Table A-4 lists the logical instructions.

Table A-4. Logical Instructions

RND Round

✔

SBC Subtract Long with Carry

✔

SUB Subtract

✔

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract

✔

SUBR Shift Right and Subtract

✔

Tcc Transfer Conditionally

TFR Transfer Data ALU Register

✔

TST Test an Operand

✔

Mnemonic Description
Parallel

Instruction

AND Logical AND

✔

AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

EOR Logical Exclusive OR

✔

EOR (imm.) Logical Exclusive OR (immediate operand)

Mnemonic Description
Parallel

Instruction

A - 12 INSTRUCTION SET MOTOROLA

A-3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location and
then optionally set, clear, or invert the bit. The carry bit of the CCR will contain the result
of the bit test. Table A-5 lists the bit manipulation instructions.

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field (immediate operand)

LSL Logical Shift Left

✔

LSL (mb.) Logical Shift Left (multi-bit)

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right

✔

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement

✔

OR Logical Inclusive OR

✔

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate to Control Register

ROL Rotate Left

✔

ROR Rotate Right

✔

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 13

Table A-5. Bit Manipulation Instructions

A-3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles – i.e., it runs as fast as straight-
line code. Replacing straight-line code with DO loops can significantly reduce program
memory. The loop instructions control hardware looping by 1) initiating a program loop and
establishing looping parameters or by 2))restoring the registers by pulling the SS when
terminating a loop. Initialization includes saving registers used by a program loop (LA and
LC) on the SS so that program loops can be nested. The address of the first instruction in
a program loop is also saved to allow no-overhead looping. Table A-6 lists the loop
instructions.

Table A-6. Loop Instructions

The ENDDO instruction is not used for normal termination of a DO loop; it is only used to
terminate a DO loop before the LC has been decremented to one.

A-3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the GDB.

Mnemonic Description
Parallel

Instruction

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Mnemonic Description
Parallel

Instruction

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DOR Start Hardware Loop to PC-Related End-Of-Loop
Location

DO FOREVER Start Forever Hardware Loop

DOR FOREVER Start Forever Hardware Loop to PC-Related End-
Of-Loop Location

ENDDO Abort and Exit from Hardware Loop

A - 14 INSTRUCTION SET MOTOROLA

Move instructions, most of which allow Data ALU opcode in parallel, do not affect the CCR
except the limit bit L if limiting is performed when reading a data ALU accumulator register.
Table A-7 lists the move instructions.

MOTOROLA INSTRUCTION SET A - 15

Table A-7. Move Instructions

A-3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC, SS and the program Cache. Program control instructions may affect the
CCR bits as specified in the instruction. Optional data transfers over the XDB and YDB
may be specified in some of the program control instructions. Table A-8 lists the program
control instructions.

Table A-8. Program Control Instructions

Mnemonic Description
Parallel

Instruction

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register

✔

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

U MOVE Update Move

✔

Mnemonic Description
Parallel

Instruction

IFcc.U Execute Conditionally and Update CCR

IFcc Execute Conditionally

Bcc Branch Conditionally

BRA Branch Always

BRCLR Branch if Bit Clear

BRSET Branch if Bit Set

BScc Branch to Subroutine Conditionally

BSR Branch to Subroutine Always

BSCLR Branch to Subroutine if Bit Clear

BSSET Branch to Subroutine if Bit Set

A - 16 INSTRUCTION SET MOTOROLA

DEBUGcc Enter into the Debug Mode Conditionally

DEBUG Enter into the Debug Mode Always

Jcc Jump Conditionally

JMP Jump Always

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally

JSR Jump to Subroutine Always

JSCLR Jump to Subroutine if Bit Clear

JSSET Jump to Subroutine if Bit Set

NOP No Operation

PLOCK Lock Program Cache Sector

PUNLOCK Unlock Program Cache Sector

PLOCKR Lock PC-Related Program Cache Sector

PUNLOCKR Unlock PC-Related Program Cache Sector

PFREE Unlock all Program Cache Locked Sectors

PFLUSH Reset Program Cache State

PFLUSHUN Reset Program Cache State to all Unlocked Sectors

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

TRAPcc Trap Conditionally

TRAP Trap Always

WAIT Wait for Interrupt (Low-Power Standby)

Mnemonic Description
Parallel

Instruction

MOTOROLA INSTRUCTION SET A - 17

A-4 INSTRUCTION GUIDE

The following information is included in each instruction description:

1.

Name and Mnemonic:

 The mnemonic is highlighted in

bold

 type for easy
reference.

2.

Assembler Syntax and Operation:

 For each instruction syntax, the
corresponding operation is symbolically described. If there are several
operations indicated on a single line in the operation field, those
operations do not necessarily occur in the order shown but are generally
assumed to occur in parallel. If a parallel data move is allowed, it will be
indicated in parenthesis in both the assembler syntax and operation fields.
If a letter in the mnemonic is optional, it will be shown in parenthesis in the
assembler syntax field.

3.

Description:

 A complete text description of the instruction is given
together with any special cases and/or condition code anomalies of which
the user should be aware when using that instruction.

4.

Condition Codes:

 The status register is depicted with the condition code
bits which can be affected by the instruction. Not all bits in the status
register are used. Those which are reserved are indicated with a gray box
covering its area.

5.

Instruction Format: The instruction fields, the instruction opcode, and the
instruction extension word are specified for each instruction syntax. When
the extension word is optional, it is so indicated. The values which can be
assumed by each of the variables in the various instruction fields are
shown under the instruction field’s heading.

A-4.1 NOTATION

Each instruction description contains symbols used to abbreviate certain operands and
operations. Table A-9 lists the symbols used and their respective meanings. Depending
on the context, registers refer to either the register itself or the contents of the register.

Table A-9. Instruction Description Notation

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 Bits)

Yn Input Register Y1 or Y0 (24 Bits)

An Accumulator Registers A2, A1, A0 (A2 — 8 Bits, A1 and A0 — 24 Bits)

Bn Accumulator Registers B2, B1, B0 (B2 — 8 Bits, B1 and B0 — 24 Bits)

X Input Register X = X1: X0 (48 Bits)

A - 18 INSTRUCTION SET MOTOROLA

Y Input Register Y = Y1: Y0 (48 Bits)

A Accumulator A = A2: A1: A0 (56 Bits)

B Accumulator B = B2: B1: B0 (56 BIts)

AB Accumulators A and B = A1: B1 (48 Bits)

BA Accumulators B and A = B1: A1 (48 Bits)

A10 Accumulator A = A1: A0 (48 Bits)

B10 Accumulator B= B1:B0 (48 bits)

Program Control Unit Registers Operands

PC Program Counter Register (24 Bits)

EMR Extended Mode Register (8 Bits)

MR Mode Register (8 Bits)

CCR Condition Code Register (8 Bits)

SR Status Register = EMR:MR:CCR (24 Bits)

SCS System Stack Control Status Register (8 Bits)

EOM Extended Chip Operating Mode Register (8 Bits)

COM Chip Operating Mode Register (8 Bits)

OMR Operating Mode Register = SCS:EOM:COM (24 Bits)

SZ System Stack Size Register (24 Bits)

SC System Stack Counter Register (5 Bits)

VBA Vector Base Address (24 Bits, 8 of them are always zero)

LA Hardware Loop Address Register (24 Bits)

LC Hardware Loop Counter Register (24 Bits)

SP System Stack Pointer Register (24 Bits)

SSH Upper Portion of the Current Top of the Stack (24 Bits)

SSL Lower Portion of the Current Top of the Stack (24 Bits)

SS System Stack RAM = SSH: SSL (16 Locations by 32 Bits)

Data ALU Registers Operands

MOTOROLA INSTRUCTION SET A - 19

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxx Absolute or Long Displacement Address (24 Bits)

xxx Short or Short Displacement Jump Address (12 Bits)

xxx Short Displacement Jump Address (9 Bits)

aaa Short Displacement Address (7 Bits Sign Extended)

aa Absolute Short Address (6 Bits, Zero Extended)

pp High I/O Short Address (6 Bits, Ones Extended)

qq Low I/O Short Address (6 Bits)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 Bits)

#xx Immediate Short Data (8 Bits)

#xxx Immediate Short Data (12 Bits)

#xxxxxx Immediate Data (24 Bits)

r Rounding Constant

#bbbbb Operand Bit Select (5 Bits)

Unary Operands

- Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

A - 20 INSTRUCTION SET MOTOROLA

PULL Pull Specified Value from the System Stack (SS) Operator

READ Read the Top of the System Stack (SS) Operator

PURGE Delete the Top Value on the System Stack (SS) Operator

| | Absolute Value Operator

Binary Operands

+ Addition Operator

- Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

➞ “Is Transferred To” Operator

: Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress

DM Double Precision Multiply Bit Indicating if the Chip is in Double Precision Multiply Mode

SB Sixteen Bit Arithmetic Mode

RM Rounding Mode

Unary Operands

MOTOROLA INSTRUCTION SET A - 21

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use

U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the Data ALU Result is Set

Z Zero Bit Indicating if the Data ALU Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow has Occurred in Data ALU

C Carry Bit Indicating if a Carry or Borrow Occurred in Data ALU Result

() Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction Which Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Address ALU Registers Operands

Rn Address Registers R0 - R7 (24 Bits)

Nn Address Offset Registers N0 - N7 (24 Bits)

Mn Address Modifier Registers M0 - M7 (24 Bits)

Mode Register Symbols

A - 22 INSTRUCTION SET MOTOROLA

A-5 CONDITION CODE COMPUTATION

The condition code register (CCR) portion of the status register (SR) consists of eight
defined bits.

Condition Codes:

S — Scaling Bit N — Negative Bit

L — Limit Bit Z — Zero Bit

E — Extension Bit V — Overflow Bit

U — Unnormalized Bit C — Carry Bit

The E, U, N, Z, V, and C bits are true condition code bits that reflect the condition of the
result of a data ALU operation. These condition code bits are not “sticky” and are not
affected by address ALU calculations or by data transfers over the X, Y, or global data
buses. The L bit is a “sticky” overflow bit which indicates that an overflow has occurred
in the data ALU or that data limiting has occurred when moving the contents of the A and/
or B accumulators. The S bit is a “sticky” bit used in block floating point operations to
indicate the need to scale the number in A or B.

The full description of every instruction contains an illustration showing how the instruction
affects the various condition codes.

7 6 5 4 3 2 1 0

S L E U N Z V C

CCR

MOTOROLA INSTRUCTION SET A - 23

An instruction can affect a condition code according to three different rules:

The standard definition of the condition code bits follows.

S (Scaling Bit) This bit is computed, according to the logical equations in the table
below, when an instruction or a parallel move reads the contents of
accumulator A or B to XDB or YDB. It is a “sticky” bit, cleared only by
an instruction that specifically clears it, or hardware reset.

The scaling bit (S) is used to detect data growth, which is required in
Block Floating Point FFT operation. The scaling bit will be set if the
absolute value in the accumulator, before scaling, was greater or equal
to 0.25 and smaller than 0.75. Typically, the bit is tested after each pass
of a radix 2 decimation-in-time FFT and, if it is set, the appropriate
scaling mode should be activated in the next pass. The Block Floating
Point FFT algorithm is described in the Motorola application note
APR4/D, “Implementation of Fast Fourier Transforms on Motorola’s
DSP56000/DSP56001 and DSP96002 Digital Signal Processors.”

 L (Limit Bit) Set if the overflow bit V is set or if an instruction or a parallel move
causes the data shifter/limiters to perform a limiting operation while
reading the contents of accumulator A or B to XDB or YDB. In
Arithmetic Saturation Mode, the limit bit is also set when an arithmetic
saturation occurs in the Data ALU result. Not affected otherwise. This
bit is “sticky” and must be cleared only by an instruction that specifically
clears it, or hardware reset.

 E (Extension Bit) Cleared if all the bits of the signed integer portion of the Data ALU

standard
mark

The affect on the condition code

✕ Unchanged by the instruction

✔ Changed by the instruction, according to the standard definition of the condition code

● Changed by the instruction, according to a special definition of the condition code,
depicted as part of the instruction full description

S0 S1
Scaling
Mode

S bit equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR B45) OR S (previous)

0 1 Scale down S = (A47 XOR A46) OR (B47 XOR B46) OR S (previous)

1 0 Scale up S = (A45 XOR A44) OR (B45 XOR B44) OR S (previous)

1 1 Reserved S undefined

A - 24 INSTRUCTION SET MOTOROLA

result are the same – i.e., the bit patterns are either 00. . . 00 or 11. . .
11. Set otherwise.
The signed integer portion is defined by the scaling mode as shown in
the following table:

Note that the signed integer portion of an accumulator IS NOT
necessarily the same as the extension register portion of that
accumulator. The signed integer portion of an accumulator consists of
the MS 8, 9, or 10 bits of that accumulator, depending on the scaling
mode being used. The extension register portion of an accumulator
(A2 or B2) is always the MS 8 bits of that accumulator. The E bit refers
to the signed integer portion of an accumulator and NOT the
extension register portion of that accumulator. For example, if the
current scaling mode is set for no scaling (i.e., S1=S0=0), the signed
integer portion of the A or B accumulator consists of bits 47 through
55. If the A accumulator contained the signed 56-bit value
$00:800000:000000 as a result of a data ALU operation, the E bit
would be set (E=1) since the 9 MS bits of that accumulator were not
all the same (i.e., neither 00.. 00 nor 11.. 11). This means that data
limiting will occur if that 56-bit value is specified as a source operand
in a move-type operation. This limiting operation will result in either a
positive or negative, 24-bit or 48-bit saturation constant being stored in
the specified destination. The only situation in which the signed integer
portion of an accumulator and the extension register portion of an
accumulator are the same is in the “Scale Down” scaling mode (i.e.,
S1=0 and S0=1).

S1 S0
Scaling
Mode

Integer Portion

0 0 No Scaling Bits 55,54..............48,47

0 1 Scale Down Bits 55,54..............49,48

1 0 Scale Up Bits 55,54..............47,46

MOTOROLA INSTRUCTION SET A - 25

U (Unnormalized Bit) Set if the two MS bits of the MSP portion of the Data ALU result are
the same. Cleared otherwise. The MSP portion is defined by the
scaling mode. The U bit is computed as follows:

The result of calculating the U bit in this fashion is that the definition
of positive normalized number, p, is 0.5 ≤ p < 1.0 and the definition
of negative normalized number, n, is -1.0 ≤ n < -0.5.

N (Negative Bit) Set if the MS bit (bit 55 in arithmetic instructions or bit 47 in logical
instructions) of the Data ALU result is set. Cleared otherwise.

Z (Zero Bit) Set if the Data ALU result equals zero. Cleared otherwise.

V (Overflow Bit) Set if an arithmetic overflow occurs in the 56-bit Data ALU result
(40-bit result in Sixteen Bit mode). Cleared otherwise. This
indicates that the result cannot be represented in the 56-bit (40-bit)
accumulator; thus, the accumulator has overflowed.
In Arithmetic Saturation Mode, an arithmetic overflow occurs if the
Data ALU result is not representable in the accumulator without the
extension part, i.e. 48-bit accumulator (32-bit in Sixteen Bit Mode).

C (Carry Bit) Set if a carry is generated out of the MS bit of the Data ALU result
of an addition or if a borrow is generated out of the MS bit of the
Data ALU result of a subtraction. Cleared otherwise. The carry or
borrow is generated out of bit 55 of the Data ALU result. The carry
bit is also affected by bit manipulation, rotate, shift and compare
instructions. The carry bit is not affected by the Arithmetic
Saturation Mode.

S1 S0
Scaling
Mode

U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

A - 26 INSTRUCTION SET MOTOROLA

A-6 INSTRUCTIONS DESCRIPTIONS

The following section describes each instruction in the DSP56300 Core instruction set in
complete detail. Instructions which allow parallel moves include the notation “(parallel
move)” in both the Assembler Syntax and the Operation fields. The MOVE instruction is
equivalent to a NOP with parallel moves. Therefore, a detailed description of each parallel
move is given with the MOVE instruction details.

Whenever an instruction uses an accumulator as both a destination operand for data ALU
operation and as a source for a parallel move operation, the parallel move operation will
use the value in the accumulator prior to execution of any data ALU operation.

MOTOROLA INSTRUCTION SET A - 27

A-6.1 Absolute Value (ABS)

Description: Take the absolute value of the destination operand D and store the result in
the destination accumulator.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ABS ABS
Absolute Value

Operation: Assembler Syntax:

| D | ➞ D (parallel move) ABS D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ABS D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 28 INSTRUCTION SET MOTOROLA

A-6.2 Add Long with Carry (ADC)

Description: Add the source operand S and the carry bit C of the condition code register
to the destination operand D and store the result in the destination accumulator. Long
words (48 bits) may be added to the (56-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long-
word operands if the extension register of the destination accumulator
(A2 or B2) is the sign extension of bit 47 of the destination accumulator
(A or B).

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADC ADC
Add Long with Carry

Operation: Assembler Syntax:

S+C+D ➞ D (parallel move) ADC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADC S,D DATA BUS MOVE FIELD 0 0 1 J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-11 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 29

A-6.3 Add (ADD)

Description: Add the source operand S to the destination operand D and store the result
in the destination accumulator. The source can be a register (word - 24 bits, long word -
48 bits or accumulator - 56 bits), short immediate (6 bits) or long immediate (24 bits).

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Note: The carry bit is set correctly using word or long-word source operands if
the extension register of the destination accumulator (A2 or B2) is the
sign extension of bit 47 of the destination accumulator (A or B). Thus, the
carry bit is always set correctly using accumulator source operands, but
can be set incorrectly if A1, B1, A10, B10 or immediate operand are used
as source operands and A2 and B2 are not replicas of bit 47.

Condition Codes:

ADD ADD
Add

Operation: Assembler Syntax:

S+D➞D (parallel move) ADD S,D (parallel move)

#xx+D➞D ADD #xx,D

#xxxxxx+D➞D ADD #xxxxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 30 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

ADD S,D DATA BUS MOVE FIELD 0 J J J d 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0

ADD #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-14 on page A-240)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 31

A-6.4 Shift Left and Add Accumulators (ADDL)

Description: Add the source operand S to two times the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the addition
operation. The carry bit is set correctly if the source operand does not overflow as a result
of the left shift operation. The overflow bit may be set as a result of either the shifting or
addition operation (or both). This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADDL ADDL
Shift Left and Add Accumulators

Operation: Assembler Syntax:

S+2∗ D➞D (parallel move) ADDL S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✔

CCR

● V Set if overflow has occurred in A or B result or the MS bit of the destination
operand is changed as a result of the instruction’s left shift

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADDL S,D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

A - 32 INSTRUCTION SET MOTOROLA

A-6.5 Shift Right and Add Accumulators (ADDR)

Description: Add the source operand S to one-half the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the addition
operation. In contrast to the ADDL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the addition operation and not by an overflow due to the
initial shifting operation. This instruction is useful for efficient divide and decimation in time
(DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

ADDR ADDR
Shift Right and Add Accumulators

Operation: Assembler Syntax:

S+D / 2➞D (parallel move) ADDR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ADDR S,D DATA BUS MOVE FIELD 0 0 0 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

MOTOROLA INSTRUCTION SET A - 33

A-6.6 Logical AND (AND)

Description: Logically AND the source operand S with bits 47-24 of the destination
operand D and store the result in bits 47-24 of the destination accumulator. The source
can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This instruction is
a 24-bit operation. The remaining bits of the destination operand D are not affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

AND AND
Logical AND

Operation: Assembler Syntax:

S • D[47:24]➞D[47:24] (parallel move) AND S,D (parallel move)

#xx • D[47:24]➞D[47:24] AND #xx,D

#xxxxxx • D[47:24]➞D[47:24] AND #xxxxxx,D

where •denotes the logical AND operator

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✕ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 34 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

AND S,D DATA BUS MOVE FIELD 0 1 J J d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0

AND #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 35

A-6.7 AND Immediate with Control Register (ANDI)

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register (CCR) is specified as
the destination operand.

Condition Codes:

Instruction Formats and opcodes:

ANDI ANDI
AND Immediate with Control Register

Operation: Assembler Syntax:
#xx • D➞D AND(I) #xx,D
where •denotes the logical AND operator

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For CCR Operand:
● S Cleared if bit 7 of the immediate operand is cleared
● L Cleared if bit 6 of the immediate operand is cleared
● E Cleared if bit 5 of the immediate operand is cleared
● U Cleared if bit 4 of the immediate operand is cleared
● N Cleared if bit 3 of the immediate operand is cleared
● Z Cleared if bit 2 of the immediate operand is cleared
● V Cleared if bit 1 of the immediate operand is cleared
● C Cleared if bit 0 of the immediate operand is cleared
For MR and OMR Operands: The condition codes are not affected using these
operands.

23 16 15 8 7 0

AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E

A - 36 INSTRUCTION SET MOTOROLA

Instruction fields:

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-13 on
page A-239)

{#xx} iiiiiiii Immediate Short Data

MOTOROLA INSTRUCTION SET A - 37

A-6.8 Arithmetic Shift Accumulator Left (ASL)

Assembler Syntax:

ASL D (parallel move)

ASL #ii,S2,D

ASL S1,S2,D

Description:

Single bit shift:

Arithmetically shift the destination accumulator D one bit to the left and store the result in
the destination accumulator. The MS bit of D prior to instruction execution is shifted into
the carry bit C and a zero is shifted into the LS bit of the destination accumulator D.

Multi-bit shift:

The contents of the source accumulator S2 are shifted left #ii bits. Bits shifted out of
position 55 are lost, but for the last bit which is latched in the carry bit C. Zeros are supplied
to the vacated positions on the right. The result is placed into destination accumulator D.
The number of bits to shift is determined by the 6-bit immediate field in the instruction, or
by the 6-bit unsigned integer located in the 6 LSBs of the control register S1. If a zero shift
count is specified, the carry bit is cleared. The difference between ASL and LSL is that
ASL operates on the entire 56 bits of the accumulator and therefore sets the V bit if the
number overflowed.

This is a 56 bit operation.

ASL ASL
Arithmetic Shift Accumulator Left

47
Operation:

0 C

0

2355

A - 38 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ●

CCR

● V Set if bit 55 is changed any time during the shift operation. Cleared otherwise.
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero.
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 8 7 0

ASL D DATA BUS MOVE FIELD 0 0 1 1 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0

ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

Example: ASL #7,A, B

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0

4
4
7

2
Shift left 7

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Shift left 7

0

0

0

C

0 1 0 0 1 1 0 0

1 0 1 0 1 0 0 0A

B

MOTOROLA INSTRUCTION SET A - 39

Instruction Fields:

In the control register S1: bits 5-0 (LSB) are used as #ii field, and the rest of the register
is ignored.

{S2} S Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiiii 6 bit unsigned integer [0-55] denoting the shift amount

A - 40 INSTRUCTION SET MOTOROLA

A-6.9 Arithmetic Shift Accumulator Right (ASR)

Assembler Syntax:

ASR D (parallel move)

 ASR #ii,S2,D

ASR S1,S2,D

Description:

Single bit shift:

Arithmetically shift the destination operand D one bit to the right and store the result in the
destination accumulator. The LS bit of D prior to instruction execution is shifted into the
carry bit C, and the MS bit of D is held constant.

Multi-bit shift:

The contents of the source accumulator S2 are shifted right #ii bits. Bits shifted out of
position 0 are lost, but for the last bit which is latched in the carry bit. Copies of the MSB
are supplied to the vacated positions on the left. The result is placed into destination
accumulator D. The number of bits to shift is determined by the 6-bit immediate field in the
instruction, or by the 6-bit unsigned integer located in the 6 LSBs of the control register
S1. If a zero shift count is specified, the carry bit is cleared.

This is a 56- or 40-bit operation, depending on SA bit value in status register.

Note: if the number of shifts indicated by the 6 LSBs of the control register or by the
immediate field, exceeds the value of 56 (40 in sixteen bit arithmetic mode), then the result
would be undefined.

ASR ASR
Arithmetic Shift Accumulator Right

Operation:
0 C55 47 23

MOTOROLA INSTRUCTION SET A - 41

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 8 7 0

ASR D DATA BUS MOVE FIELD 0 0 1 0 d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0

ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

Example: ASR X0,A,B

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x 0 0 0 0 1 1

0
2
3

shift = 3

X0

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1

0

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0

Shift right 3 Shift right 3

A

B 0

c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

5
5

5
5

A - 42 INSTRUCTION SET MOTOROLA

Instruction Fields:

In the control register S1: bits 5-0 (LSB) are used as #ii field, and the rest of the register
is ignored.

{S2} S Source accumulator [A,B] (see Table A-10 on page A-239)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiiii 6 bit unsigned integer [0-55] denoting the shift amount

MOTOROLA INSTRUCTION SET A - 43

A-6.10 Branch Conditionally (Bcc)

Description: If the specified condition is true, program execution continues at location
PC+displacement. If the specified condition is false, the PC is incremented and program
execution continues sequentially. The displacement is a 2’s complement 24-bit integer that
represents the relative distance from the current PC to the destination PC. Short
Displacement, Long Displacement and Address Register PC Relative addressing modes
may be used. The Short Displacement 9-bit data is sign extended to form the PC relative
displacement.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Bcc Bcc
Branch Conditionally

Operation: Assembler Syntax:

If cc, then PC+xxxx ➞ PC Bcc xxxx
else PC+1 ➞ PC

If cc, then PC+xxx ➞ PC Bcc xxx
else PC+1 ➞ PC

If cc, then PC+Rn ➞ PC Bcc Rn
else PC+1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

A - 44 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

Bcc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 C C C C

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

MOTOROLA INSTRUCTION SET A - 45

A-6.11 Bit Test and Change (BCHG)

Description: Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the carry bit C of the
condition code register. The bit to be tested is selected by an immediate bit number from
0–23. This instruction performs a read-modify-write operation on the destination location
using two destination accesses before releasing the bus. This instruction provides a test-
and-change capability which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes:

BCHG BCHG
Bit Test and Change

Operation: Assembler Syntax:

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:ea

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:aa

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:pp

D[n] ➞ C D[n] ➞ D[n] BCHG #n,[XorY]:qq

D[n] ➞ C D[n] ➞ D[n] BCHG #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For destination operand SR:
● C Complemented if bit 0 is specified. Not affected otherwise.
● V Complemented if bit 1 is specified. Not affected otherwise.
● Z Complemented if bit 2 is specified. Not affected otherwise.
● N Complemented if bit 3 is specified. Not affected otherwise.
● U Complemented if bit 4 is specified. Not affected otherwise.
● E Complemented if bit 5 is specified. Not affected otherwise.
● L Complemented if bit 6 is specified. Not affected otherwise.
● S Complemented if bit 7 is specified. Not affected otherwise.

A - 46 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.
MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise
For other destination operands: MR status bits are not affected.

23 16 15 8 7 0

BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b

MOTOROLA INSTRUCTION SET A - 47

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X /Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

A - 48 INSTRUCTION SET MOTOROLA

A-6.12 Bit Test and Clear (BCLR)

Description: Test the nth bit of the destination operand D, clear it and store the result in
the destination location. The state of the nth bit is stored in the carry bit C of the condition
code register. The bit to be tested is selected by an immediate bit number from 0–23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-clear
capability which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

Condition Codes:

BCLR BCLR
Bit Test and Clear

Operation: Assembler Syntax:

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:ea

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:aa

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:pp

D[n] ➞ C 0 ➞ D[n] BCLR #n,[XorY]:qq

D[n] ➞ C 0 ➞ D[n] BCLR #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

CCR Condition Codes:
For destination operand SR:
● C Cleared if bit 0 is specified. Not affected otherwise.
● V Cleared if bit 1 is specified. Not affected otherwise.
● Z Cleared if bit 2 is specified. Not affected otherwise.
● N Cleared if bit 3 is specified. Not affected otherwise.
● U Cleared if bit 4 is specified. Not affected otherwise.

MOTOROLA INSTRUCTION SET A - 49

● E Cleared if bit 5 is specified. Not affected otherwise.
● L Cleared if bit 6 is specified. Not affected otherwise.
● S Cleared if bit 7 is specified. Not affected otherwise.

For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.

MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise

A - 50 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0

BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

MOTOROLA INSTRUCTION SET A - 51

A-6.13 Branch Always (BRA)

Description:

Program execution continues at location PC+displacement. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. Short Displacement, Long Displacement and Address Register PC
Relative addressing modes may be used. The Short Displacement 9-bit data is sign
extended to form the PC relative displacement.

Condition Codes

:

BRA BRA

Branch Always

Operation: Assembler Syntax:

PC+xxxx

➞

 Pc BRA xxxx

PC+xxx

➞

 Pc BRA xxx

PC+Rn

➞

 Pc BRA Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

A - 52 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes

:

Instruction Fields

:

23 16 15 8 7 0

BRA xxxx

0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRA xxx

0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0

BRA Rn

0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0

{xxxx}

24-bit PC Relative Long Displacement

{xxx} aaaaaaaaa

Signed PC Relative Short Displacement

{Rn} RRR

Address register [R0-R7]

MOTOROLA INSTRUCTION SET A - 53

A-6.14 Branch if Bit Clear (BRCLR)

Description:

The nth bit in the source operand is tested. If the tested bit is cleared,
program execution continues at location PC+displacement. If the tested bit is set, the PC
is incremented and program execution continues sequentially. However, the address
register specified in the effective address field is always updated independently of the
condition. The displacement is a 2’s complement 24-bit integer that represents the relative
distance from the current PC to the destination PC. The 24-bit displacement is contained
in the extension word of the instruction. All memory alterable addressing modes may be
used to reference the source operand. Absolute Short, I/O Short and Register Direct
addressing modes may also be used. Note that if the specified source operand S is the
SSH, the stack pointer register will be decremented by one. The bit to be tested is selected
by an immediate bit number 0-23.

BRCLR BRCLR

Branch if bit Clear

Operation: Assembler Syntax:

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:ea,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y],aa,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:pp,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,[X or Y]:qq,xxxx
else PC+ 1

➞

PC

If S{n}=0 then PC+xxxx

➞

PC BRCLR #n,S,xxxx
else PC+ 1

➞

PC

A - 54 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

BRCLR #n,[X or Y]:ea,xxxx

0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:aa,xxxx

0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:pp,xxxx

0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,[X or Y]:qq,xxxx

0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRCLR #n,S,xxxx

0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 0 b b b b b

PC RELATIVE DISPLACEMENT

MOTOROLA INSTRUCTION SET A - 55

Instruction Fields

:

{#n} bbbbb

Bit number [0-23]

{ea} MMMRRR

Effective Address (see Table A-19 on page A-242)

{X/Y} S

Memory Space [X,Y] (see Table A-17 on page A-241)

{xxxx}

24-bit PC relative displacement

{aa} aaaaaa

Absolute Address [0-63]

{pp} pppppp

I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]

{qq} qqqqqq

I/O Short Address [64 addresses: $FFFF80-$FFFFBF]

{S} DDDDDD

Source register [all on-chip registers] (see Table A-22 on page A-
243)

A - 56 INSTRUCTION SET MOTOROLA

A-6.15 Exit Current Do Loop Conditionally (BRKcc)

Description:

 Exit conditionally the current hardware DO loop before the current loop
counter (LC) equals one. It also terminates the DO FOREVER (or DOR FOREVER) loop.
If the value of the current DO loop counter (LC) is needed, it must be read before the
execution of the BRKcc instruction. Initially, the PC is updated from the LA, the loop flag
(LF) and the ForeVer flag (FV) are restored and the remaining portion of the status register
(SR) is purged from the system stack. The loop address (LA) and the loop counter (LC)
registers are then restored from the system stack.

The conditions that the term “

cc

” can specify are listed on Table A-43 on page A-251.

Condition Codes

:

Instruction Formats and opcodes:

Instruction Fields

:

BRKcc BRKcc

Exit Current Do Loop Conditionally

Operation: Assembler Syntax:

If cc LA+1

➞

PC; SSL(LF,FV)

➞

 SR; SP-1

➞

 SP BRKcc
SSH

 ➞

 LA; SSL

➞

 LC; SP-1

➞

 SP
else PC+1

➞

 PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

BRKcc

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C

{cc} CCCC

Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 57

A-6.16 Branch if Bit Set (BRSET)

Description:

The nth bit in the source operand is tested. If the tested bit is set, program
execution continues at location PC+displacement. If the tested bit is cleared, the PC is
incremented and program execution continues sequentially. However, the address
register specified in the effective address field is always updated independently of the
condition. The displacement is a 2’s complement 24-bit integer that represents the relative
distance from the current PC to the destination PC. The 24-bit displacement is contained
in the extension word of the instruction. All memory alterable addressing modes may be
used to reference the source operand. Absolute Short, I/O Short and Register Direct
addressing modes may also be used. Note that if the specified source operand S is the
SSH, the stack pointer register will be decremented by one. The bit to be tested is selected
by an immediate bit number 0-23.

BRSET BRSET

Branch if bit Set

Operation: Assembler Syntax:

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:ea,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y],aa,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:pp,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,[X or Y]:qq,xxxx
else PC+ 1

➞

PC

If S{n}=1 then PC+xxxx

➞

PC BRSET #n,S,xxxx
else PC+ 1

➞

PC

A - 58 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BRSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BRSET #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 1 b b b b b

PC RELATIVE DISPLACEMENT

MOTOROLA INSTRUCTION SET A - 59

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

A - 60 INSTRUCTION SET MOTOROLA

A-6.17 Branch to Subroutine Conditionally (BScc)

Description: If the specified condition is true, the address of the instruction immediately
following the BScc instruction and the status register are pushed onto the stack. Program
execution then continues at location PC+displacement. If the specified condition is false,
the PC is incremented and program execution continues sequentially. The displacement
is a 2’s complement 24-bit integer that represents the relative distance from the current
PC to the destination PC. Short Displacement, Long Displacement and Address Register
PC Relative addressing modes may be used. The Short Displacement 9-bit data is sign
extended to form the PC relative displacement.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

BScc BScc
Branch to Subroutine Conditionally

Operation: Assembler Syntax:

If cc, then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BScc xxxx
else PC+1➞PC

If cc, then PC ➞SSH;SR ➞SSL;PC+xxx ➞PC BScc xxx
else PC+1➞PC

If cc, then PC ➞SSH;SR ➞SSL;PC+Rn ➞PC BScc Rn
else PC+1➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 61

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BScc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 C C C C

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0

BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

A - 62 INSTRUCTION SET MOTOROLA

A-6.18 Branch to Subroutine if Bit Clear (BSCLR)

Description: The nth bit in the source operand is tested. If the tested bit is cleared, the
address of the instruction immediately following the BSCLR instruction and the status
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is set, the PC is incremented and program execution
continues sequentially. However, the address register specified in the effective address
field is always updated independently of the condition. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes may be used to reference the source
operand. Absolute Short, I/O Short and Register Direct addressing modes may also be
used. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one; if the condition is true, the push operation will write over the stack
level where the SSH value was taken. The bit to be tested is selected by an immediate bit
number 0-23.

BSCLR BSCLR
Branch to Subroutine if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:ea,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y],aa,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:pp,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,[X or Y]:qq,xxxx
else PC+1➞PC

If S{n}=0 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSCLR #n,S,xxxx
else PC+1➞PC

MOTOROLA INSTRUCTION SET A - 63

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 0 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSCLR #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 0 b b b b b

PC RELATIVE DISPLACEMENT

A - 64 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 65

A-6.19 Bit Test and Set (BSET)

Description: Test the nth bit of the destination operand D, set it, and store the result in the
destination location. The state of the nth bit is stored in the carry bit C of the condition code
register. The bit to be tested is selected by an immediate bit number from 0–23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-set
capability which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

When this instruction performs a bit manipulation/test on either the A or B 56-bit
accumulator, it optionally shifts the accumulator value according to scaling mode bits S0
and S1 in the system status register (SR). In the data out of the shifter indicates that the
accumulator extension register is in use, the instruction will act on the limited value (limited
on the maximum positive or negative saturation constant). In addition the “L” flag in the SR
will be set accordingly.

Condition Codes:

BSET BSET
Bit Test and Set

Operation: Assembler Syntax:

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:ea

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:aa

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:pp

D[n] ➞ C 1➞ D[n] BSET #n,[XorY]:qq

D[n] ➞ C 1➞ D[n] BSET #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

A - 66 INSTRUCTION SET MOTOROLA

CCR Condition Codes:
For destination operand SR:
● C Set if bit 0 is specified. Not affected otherwise.
● V Set if bit 1 is specified. Not affected otherwise.
● Z Set if bit 2 is specified. Not affected otherwise.
● N Set if bit 3 is specified. Not affected otherwise.
● U Set if bit 4 is specified. Not affected otherwise.
● E Set if bit 5 is specified. Not affected otherwise.
● L Set if bit 6 is specified. Not affected otherwise.
● S Set if bit 7 is specified. Not affected otherwise.
For other destination operands:
● C Set if bit tested is set. Cleared otherwise.
● V Not affected.
● Z Not affected.
● N Not affected.
● U Not affected.
● E Not affected.
● L According to the standard definition.
● S According to the standard definition.

MR Status Bits:
For destination operand SR:
● I0 Changed if bit 8 is specified. Not affected otherwise
● I1 Changed if bit 9 is specified. Not affected otherwise
● So Changed if bit 10 is specified. Not affected otherwise
● S1 Changed if bit 11 is specified. Not affected otherwise
● RM Changed if bit 12 is specified. Not affected otherwise
● SB Changed if bit 13 is specified. Not affected otherwise
● DM Changed if bit 14 is specified. Not affected otherwise
● LF Changed if bit 15 is specified. Not affected otherwise
For other destination operands: MR status bits are not affected.

MOTOROLA INSTRUCTION SET A - 67

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 b b b b b

23 16 15 8 7 0

BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

A - 68 INSTRUCTION SET MOTOROLA

A-6.20 Branch to Subroutine (BSR)

Description: The address of the instruction immediately following the BSR instruction
and the status register are pushed onto the stack. Program execution then continues at
location PC+displacement. The displacement is a 2’s complement 24-bit integer that
represents the relative distance from the current PC to the destination PC. Short
Displacement, Long Displacement and Address Register PC Relative addressing modes
may be used. The Short Displacement 9-bit data is sign extended to form the PC relative
displacement.

Condition Codes:

BSR BSR
Branch to Subroutine

Operation: Assembler Syntax:

PC ➞SSH;SR ➞SSL;PC+xxxx➞PC BSR xxxx

PC ➞SSH;SR ➞SSL;PC+xxx➞PC BSR xxx

PC ➞SSH;SR ➞SSL;PC+Rn➞PC BSR Rn

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 69

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BSR xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0

BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0

{xxxx} 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0-R7]

A - 70 INSTRUCTION SET MOTOROLA

A-6.21 Branch to Subroutine if Bit Set (BSSET)

Description: The nth bit in the source operand is tested. If the tested bit is set, the
address of the instruction immediately following the BSSET instruction and the status
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is cleared, the PC is incremented and program
execution continues sequentially. However, the address register specified in the effective
address field is always updated independently of the condition. The displacement is a 2’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes may be used to reference the source
operand. Absolute Short, I/O Short and Register Direct addressing modes may also be
used. Note that if the specified source operand S is the SSH, the stack pointer register will
be decremented by one; if the condition is true, the push operation will write over the stack
level where the SSH value was taken. The bit to be tested is selected by an immediate bit
number 0-23.

BSSET BSSET
Branch to Subroutine if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:ea,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y],aa,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:pp,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,[X or Y]:qq,xxxx
else PC+1➞PC

If S{n}=1 then PC ➞SSH;SR ➞SSL;PC+xxxx ➞PC BSSET #n,S,xxxx
else PC+1➞PC

MOTOROLA INSTRUCTION SET A - 71

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

BSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 1 b b b b b

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

BSSET #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 1 b b b b b

PC RELATIVE DISPLACEMENT

A - 72 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 73

A-6.22 Bit Test (BTST)

Description: Test the nth bit of the destination operand D. The state of the nth bit is stored
in the carry bit C of the condition code register. The bit to be tested is selected by an
immediate bit number from 0–23. This instruction is useful for performing serial to parallel
conversion when used with the appropriate rotate instructions. This instruction can use all
memory alterable addressing modes.

Condition Codes:

BTST BTST
Bit Test

Operation: Assembler Syntax:

D[n] ➞ C BTST #n,[XorY]:ea

D[n] ➞ C BTST #n,[XorY]:aa

D[n] ➞ C BTST #n,[XorY]:pp

D[n] ➞ C BTST #n,[XorY]:qq

D[n] ➞ C BTST #n,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

● C Set if bit tested is set. Cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction
SP — Stack Pointer:
For destination operand SSH: SP — Decrement by 1.
For other destination operands: Not affected

A - 74 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 b b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 b b b b b

23 16 15 8 7 0

BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 b b b b b

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table A-22 on page

A-243)

MOTOROLA INSTRUCTION SET A - 75

A-6.23 Count Leading Bits (CLB)

Description: Count leading zeros or ones according to bit 55 of the source accumulator.
Scan bits 55-0 of the source accumulator starting from bit 55. The MSP of the destination
accumulator is loaded with 9 minus the number of consecutive leading ones or zeros
found. The result is a signed integer in MSP whose range of possible values is from +8 to
-47. This is a 56-bit operation. The LSP of the destination accumulator D is filled with
zeros. The EXP of the destination accumulator D is sign extended.

Notes:

1) If the source accumulator is all zeros then the result will be zero.

2) When in sixteen bit arithmetic mode, the count ignores the unused 8 least significant
bits of the MSP and LSP of the source accumulator. Therefore the result is a signed
integer whose range of possible values is from +8 to -31.

3) This instruction may be used in conjunction with NORMF instruction, to specify the shift
direction and amount needed for normalization.

Condition Codes:

CLB CLB
Count Leading Bits

Operation: Assembler Syntax:

If S[55]=0 then
9 - (Number of consecutive leading zeros in S[55:0]) ➞ D[47:24]

CLB S,D

else
 9 - (Number of consecutive leading ones in S[55:0]) ➞ D[47:24]

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set. Cleared otherwise
● Z Set if bits 47-24 of the result are zero.
● V Always cleared
✕ This bit is unchanged by the instruction

A - 76 INSTRUCTION SET MOTOROLA

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} S Source accumulator [A,B] (see Table A-10 on page A-239)

Example: CLB B,A

5 Leading ones

Result in A is 9 - 5 = 4

0 1 0 0

4
4
7

2

1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0

B

A

1 1 1 1 1 0 1 1

0 0

0

0 0 0 0 0 0 0 0

MOTOROLA INSTRUCTION SET A - 77

A-6.24 Clear accumulator (CLR)

Description: Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

CLR CLR
Clear Accumulator

Operation: Assembler Syntax:

0➞ D (parallel move) CLR D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ● ● ● ● ● ✕

CCR

● E Always cleared
● U Always set
● N Always cleared
● Z Always set
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

CLR D DATA BUS MOVE FIELD 0 0 0 1 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 78 INSTRUCTION SET MOTOROLA

A-6.25 Compare (CMP)

Description: Subtract the source one operand from the source two accumulator, S2, and
update the condition code register. The result of the subtraction operation is not stored.

The source one operand can be a register (word - 24 bits or accumulator - 56 bits), short
immediate (6 bits) or long immediate (24 bits). When using 6-bit immediate data, the data
is interpreted as an unsigned integer. That is, the 6 bits will be right aligned and the
remaining bits will be zeroed to form a 24-bit source operand.

Note: This instruction subtracts 56-bit operands. When a word is specified as the
source one operand, it is sign extended and zero filled to form a valid 56-bit
operand. For the carry to be set correctly as a result of the subtraction, S2 must
be properly sign extended. S2 can be improperly sign extended by writing A1
or B1 explicitly prior to executing the compare so that A2 or B2, respectively,
may not represent the correct sign extension. This note particularly applies to
the case where it is extended to compare 24-bit operands such as X0 with A1.

Condition Codes:

CMP CMP
Compare

Operation: Assembler Syntax:

S2 – S1 (parallel move) CMP S1, S2 (parallel move)

S2 – #xx CMP #xx, S2

S2 – #xxxxxx CMP #xxxxxx , S2

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 79

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

CMP S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0

CMP #xxxxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

IMMEDIATE DATA EXTENSION

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{S2} d Source two accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

A - 80 INSTRUCTION SET MOTOROLA

A-6.26 Compare Magnitude (CMPM)

Description: Subtract the absolute value (magnitude) of the source one operand, S1,
from the absolute value of the source two accumulator, S2, and update the condition code
register. The result of the subtraction operation is not stored.

Note: This instruction subtracts 56-bit operands. When a word is specified as
S1, it is sign extended and zero filled to form a valid 56-bit operand. For
the carry to be set correctly as a result of the subtraction, S2 must be
properly sign extended. S2 can be improperly sign extended by writing
A1 or B1 explicitly prior to executing the compare so that A2 or B2, re-
spectively, may not represent the correct sign extension. This note par-
ticularly applies to the case where it is extended to compare 24-bit
operands such as X0 with A1.

Condition Codes:

Instruction Formats and opcodes:

CMPM CMPM
Compare Magnitude

Operation: Assembler Syntax:

|S2| – |S1|(parallel move) CMPM S1, S2 (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

CMPM S1, S2 DATA BUS MOVE FIELD 0 J J J d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 81

Instruction Fields:

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{S2} d Source two accumulator [A,B] (see Table A-10 on page A-239)

A - 82 INSTRUCTION SET MOTOROLA

A-6.27 Compare Unsigned (CMPU)

Description: Subtract the source one operand, S1, from the source two accumulator, S2,
and update the condition code register. The result of the subtraction operation is not
stored.

Note: This instruction subtracts a 24 or 48-bit unsigned operand from a 48-bit
unsigned operand. When a 24-bit word is specified as S1 it is aligned to the left
and zero filled to form a valid 48-bit operand. If an accumulator is specified as
an operand, the value in the EXP does not affect the operation.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

CMPU CMPU
Compare Unsigned

Operation: Assembler Syntax:

S2 – S1 CMPU S1, S2

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✔ ● ● ✔

CCR

● V Always cleared
● Z Set if bits 47-0 of the result are zero
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d

{S1} ggg Source one register [A,B,X0,Y0,X1,Y1] (see Table A-15 on page A-240)
{S2} d Source two accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 83

A-6.28 Enter Debug Mode (DEBUG)

Description: Enter the debug mode and wait for OnCE commands.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

DEBUG DEBUG
Enter Debug Mode

Operation: Assembler Syntax:

Enter the debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

A - 84 INSTRUCTION SET MOTOROLA

A-6.29 Enter Debug Mode Conditionally (DEBUGcc)

Description: If the specified condition is true, enter the debug mode and wait for OnCE
commands. If the specified condition is false, continue with the next instruction.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

DEBUGcc DEBUGcc
Enter Debug Mode Conditionally

Operation: Assembler Syntax:

If cc, then enter the debug mode DEBUGcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 85

A-6.30 Decrement by One (DEC)

Description: Decrement by one the specified operand and store the result in the
destination accumulator. One is subtracted from the LSB of D.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

DEC DEC
Decrement by One

Operation: Assembler Syntax:

D - 1➞ D DEC D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DEC D 0 1 0 1 d

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 86 INSTRUCTION SET MOTOROLA

A-6.31 Divide Iteration (DIV)

Operation: IfD[55]⊕ S[23]=1,

Assembler Syntax: DIV S,D

Description:

Divide the destination operand D by the source operand S and store the result in the
destination accumulator D. The 48-bit dividend must be a positive fraction which has
been sign extended to 56-bits and is stored in the full 56-bit destination
accumulator D. The 24-bit divisor is a signed fraction and is stored in the source
operand S. Each DIV iteration calculates one quotient bit using a nonrestoring fractional
division algorithm (see description on the next page). After the execution of the first DIV
instruction, the destination operand holds both the partial remainder and the formed
quotient. The partial remainder occupies the high-order portion of the destination
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (A0 or B0) and is a positive fraction. One bit of
the formed quotient is shifted into the LS bit of the destination accumulator at the start of
each DIV iteration. The formed quotient is the true quotient if the true quotient is positive.
If the true quotient is negative, the formed quotient must be negated. Valid results are
obtained only when |D| < |S| and the operands are interpreted as fractions. Note that
this condition ensures that the magnitude of the quotient is less than one (i.e., is fractional)
and precludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous

DIV DIV
Divide Iteration

55 47 23 0

C+Sthen

55 47 23 0

C–Selse

Destination Accumulator D

Destination Accumulator D

where ⊕ denotes the logical exclusive OR operator

D

D

MOTOROLA INSTRUCTION SET A - 87

partial remainder. To produce an N-bit quotient, the DIV instruction is executed N times
where N is the number of bits of precision desired in the quotient, 1;leN;le24. Thus, for a
full-precision (24 bit) quotient, 24 DIV iterations are required. In general, executing the DIV
instruction N times produces an N-bit quotient and a 48-bit remainder which has (48–N)
bits of precision and whose N MS bits are zeros. The partial remainder is not a true
remainder and must be corrected due to the nonrestoring nature of the division algorithm
before it may be used. Therefore, once the divide is complete, it is necessary to reverse
the last DIV operation and restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of the
following operations (see the previous Operation diagram):

1. Compare the source and destination operand sign bits: An exclusive
OR operation is performed on bit 55 of the destination operand D and bit
23 of the source operand S;

2. Shift the partial remainder and the quotient: The 55-bit destination ac-
cumulator D is shifted one bit to the left. The carry bit C is moved into the
LS bit (bit 0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 24-
bit source operand S (signed divisor) is either added to or subtracted from
the MSP portion of the destination accumulator (A1 or B1), and the result
is stored back into the MSP portion of that destination accumulator. If the
result of the exclusive OR operation previously described was a “1” (i.e.,
the sign bits were different), the source operand S is added to the accu-
mulator. If the result of the exclusive OR operation was a “0” (i.e., the sign
bits were the same), the source operand S is subtracted from the accumu-
lator. Due to the automatic sign extension of the 24-bit signed divisor, the
addition or subtraction operation correctly sets the carry bit C of the con-
dition code register with the next quotient bit.

For extended precision division (i.e., for N-bit quotients where N>24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For further
information on division algorithms, refer to pages 524–530 of Theory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 of
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages 213–
223 of Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang (John
Wiley and Sons, 1979), or other references as required.

A - 88 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ● ✕ ✕ ✕ ✕ ● ●

CCR

● L Set if overflow bit V is set
● V Set if the MS bit of the destination operand is changed as a result of the

instruction’s left shift operation
● C Set if bit 55 of the result is cleared.
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 89

A-6.32 Double Precision MAC with 24 bit Right Shift (DMAC)

Description: Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D, which has been previously
shifted 24 bits to the right. The multiplication can be performed on signed numbers (ss),
unsigned numbers (uu), or mixed (unsigned ∗ signed, (su)). The “–” sign option is used to
negate the specified product prior to accumulation. The default sign option is “+”. This
instruction is optimized for multiprecision multiplication support.

Condition Codes:

Instruction Formats and opcodes:

DMAC DMAC
Double (Multi) Precision Multiply Accumulate

with Right Shift

Operation: Assembler Syntax:

[D>>24]±S1∗ S2➞D
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D>>24]±S1∗ S2➞D
(S1 signed, S2 unsigned)

DMACsu (±)S2,S1,D (no parallel move)

[D>>24]±S1∗ S2➞D
(S1 unsigned, S2 unsigned)

DMACuu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q

A - 90 INSTRUCTION SET MOTOROLA

Instruction Fields:

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
 (see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±±} k Sign [+,-] (see Table A-29 on page A-244)
{ss,su,uu} ss [ss,su,uu] (see Table A-39 on page A-248)

MOTOROLA INSTRUCTION SET A - 91

A-6.33 Start Hardware Loop (DO)

Description: Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is terminated
by the destination operand (previously shown as “expr”). No overhead other than the
execution of this DO instruction is required to set up this loop. DO loops can be nested
and the loop count can be passed as a parameter.

During the first instruction cycle, the current contents of the loop address (LA) and the loop
counter (LC) registers are pushed onto the system stack. The DO instruction’s source
operand is then loaded into the loop counter (LC) register. The LC register contains the
remaining number of times the DO loop will be executed and can be accessed from inside
the DO loop subject to certain restrictions. If LC initial value is zero and the 16-bit
compatibility mode bit (bit 13, SC, in the Chip Status Register) is cleared, the DO loop is
not executed. If LC initial value is zero but SC is set, the DO loop will be executed 65,536
times. All address register indirect addressing modes may be used to generate the
effective address of the source operand. If immediate short data is specified, the 12 LS
bits of LC are loaded with the 12-bit immediate value, and the 12 MS bits of LC are

DO DO
Start Hardware Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DO [Xor Y]:ea,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[Xor Y]:aa ➞ LC DO [Xor Y]:aa,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DO #xxx,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DO S,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF

End of Loop:
SSL(LF) ➞ SR;SP–1 ➞ SP
SSH ➞ LA;SSL ➞ LC;SP – 1 ➞ SP

A - 92 INSTRUCTION SET MOTOROLA

cleared.

During the second instruction cycle, the current contents of the program counter (PC)
register and the status register (SR) are pushed onto the system stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism which permits the nesting of DO loops.
The DO instruction’s destination operand (shown as “expr”) is then loaded into the loop
address (LA) register. This 24 bit operand is located in the instruction’s 24-bit absolute
address extension word as shown in the opcode section. The value in the program counter
(PC) register pushed onto the system stack is the address of the first instruction following
the DO instruction (i.e., the first actual instruction in the DO loop). This value is read (i.e.,
copied but not pulled) from the top of the system stack to return to the top of the loop for
another pass through the loop.

During the third instruction cycle, the loop flag (LF) is set. This results in the PC being
repeatedly compared with LA to determine if the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the loop
counter (LC) is tested. If LC is not equal to one, it is decremented by one and SSH is
loaded into the PC to fetch the first instruction in the loop again. If LC equals one, the “end-
of-loop” processing begins.

When executing a DO loop, the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-loop addresses must also be nested and are not allowed to
be equal. The assembler generates an error message when DO loops are improperly
nested.

Note: The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop ex-
pression “expr” and subtracting one. This is done to accommodate the
case where the last word in the DO loop is a two-word instruction. Thus,
the end-of-loop expression “expr” in the source code must represent the
address of the instruction AFTER the last instruction in the loop.

During the “end-of-loop” processing, the loop flag (LF) from the lower portion (SSL) of SP
is written into the status register (SR), the contents of the loop address (LA) register are
restored from the upper portion (SSH) of (SP–1), the contents of the loop counter (LC) are
restored from the lower portion (SSL) of (SP–1) and the stack pointer (SP) is decremented
by two. Instruction fetches now continue at the address of the instruction following the last
instruction in the DO loop. Note that LF is the only bit in the status register (SR) that is
restored after a hardware DO loop has been exited.

Note: The loop flag (LF) is cleared by a hardware reset.

MOTOROLA INSTRUCTION SET A - 93

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ✕ ✕ ✕ ✕ ✕ ✕

CCR

● S Set if the instruction sends A/B accumulator contents to XDB or YDB.
● L Set if data limiting occurred [see note 2]
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

ABSOLUTE ADDRESS EXTENSION WORD

23 16 15 8 7 0

DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

ABSOLUTE ADDRESS EXTENSION WORD

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{expr} 24-bit Absolute Address in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registers, except SSH] (see Table A-

22 on page A-243)

A - 94 INSTRUCTION SET MOTOROLA

Note:

For DO SP, expr The actual value that will be loaded into the loop counter
(LC) is the value of the stack pointer (SP) before the
execution of the DO instruction, incremented by 1.

Thus, if SP=3, the execution of the DO SP,expr instruction will load the loop
counter (LC) with the value LC=4.

For DO SSL, expr The loop counter (LC) will be loaded with its previous value
which was saved on the stack by the DO instruction itself.

MOTOROLA INSTRUCTION SET A - 95

A-6.34 Start Infinite Loop (DO FOREVER)

Description: Begin a hardware DO loop that is to be repeated for ever and whose range
of execution is terminated by the destination operand (shown above as “expr”). No
overhead other than the execution of this DO FOREVER instruction is required to set up
this loop. DO FOREVER loops can be nested. During the first instruction cycle, the current
contents of the Loop Address (LA) and the Loop Counter (LC) registers are pushed onto
the system stack. The loop counter (LC) register is pushed onto the stack but is not
updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter (PC)
register and the Status Register (SR) are pushed onto the system stack. Stacking the LA,
LC, PC, and SR registers permits nesting DO FOREVER loops. The DO FOREVER in-
struction’s destination operand (shown as “expr”) is then loaded into the Loop Address
(LA) register . This 24-bit operand is located in the instruction’s 24-bit absolute address
extension word as shown in the opcode section. The value in the Program Counter (PC)
register pushed onto the system stack is the address of the first instruction following the
DO FOREVER instruction (i.e., the first actual instruction in the DO FOREVER loop). This
value is read (i.e., copied but not pulled) from the top of the system stack to return to the
top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. This
results in the PC being repeatedly compared with LA to determine if the last instruction in
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is loaded into the PC to fetch the first instruction in the loop again. The
loop counter (LC) register is then decremented by one without being tested. This register
can be used by the programer to count the number of loops already executed.

When executing a DO FOREVER loop, the instructions are actually fetched each time
through the loop. Therefore, a DO FOREVER loop can be interrupted. DO FOREVER
loops can also be nested. When DO FOREVER loops are nested, the end of loop
addresses must also be nested and are not allowed to be equal. The assembler generates
an error message when DO FOREVER loops are improperly nested.

DO FOREVER DO FOREVER
Start Infinite Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL DO FOREVER,expr
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;expr –1 ➞ LA
1 ➞ LF; 1 ➞FV

A - 96 INSTRUCTION SET MOTOROLA

Note: The assembler calculates the end-of-loop address to be loaded into LA
(the absolute address extension word) by evaluating the end-of-loop ex-
pression “expr” and subtracting one. This is done to accommodate the
case where the last word in the DO loop is a two-word instruction. Thus,
the end-of-loop expression “expr” in the source code must represent the
address of the instruction AFTER the last instruction in the loop.

The loop counter (LC) register is never tested by the DO FOREVER in-
struction and the only way of terminating the loop process is to use either
the ENDDO or BRKcc instructions. LC is decremented every time
PC=LA so that it can be used by the programmer to keep track of the
number of times the DO FOREVER loop has been executed. If the
programer wants to initialize LC to a particular value before the DO
FOREVER, care should be taken to save it before if the DO loop is
nested. If so, LC should also be restored immediately after exiting the
nested DO FOREVER loop.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None.

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

ABSOLUTE ADDRESS EXTENSION WORD

MOTOROLA INSTRUCTION SET A - 97

A-6.35 Start PC Relative Hardware Loop (DOR)

Description:

This instruction initiates the beginning of a PC relative hardware program loop. The
current loop address (LA) and loop counter (LC) values are pushed onto the system stack.
With proper system stack management, this allows unlimited nested hardware DO loops.
The PC and SR are pushed onto the system stack. The PC is added to the 24-bit address
displacement extension word and the resulting address is loaded into the loop address
register (LA). The effective address specifies the address of the loop count which is loaded
into the loop counter (LC). The DO loop is executed LC times. If LC initial value is zero and
the 16-bit compatibility mode bit (bit 13, SC, in the Chip Status Register) is cleared, the
DO loop is not executed. If LC initial value is zero but SC is set, the DO loop will be
executed 65,536 times. All address register indirect addressing modes (less Long
Displacement) may be used. Register Direct addressing mode may also be used. If
immediate short data is specified, the LC is loaded with the zero extended 12-bit
immediate data.

During hardware loop operation, each instruction is fetched each time through the
program loop. Therefore, instructions being executed in a hardware loop are interruptible
and may be nested. The value of the PC pushed onto the system stack is the location of

DOR DOR
Start PC relative Hardware Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DOR [Xor Y]:ea,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;[X or Y]:ea ➞ LC DOR [Xor Y]:aa,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;#xxx ➞ LC DOR #xxx,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL;S ➞ LC DOR S,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF

A - 98 INSTRUCTION SET MOTOROLA

the first instruction after the DOR instruction. This value is read from the top of the system
stack to return to the start of the program loop. When DOR instructions are nested, the
end of loop addresses must also be nested and are not allowed to be equal.

The assembler calculates the end of loop address LA (PC relative address extension word
xxxx) by evaluating the end of loop expression and subtracting one. Thus the end of loop
expression in the source code represents the “next address” after the end of the loop. If a
simple end of loop address label is used, it should be placed after the last instruction in
the loop.

Since the end of loop comparison is at fetch time and ahead of the end of loop execution,
instructions which change program flow or change the system stack may not be used near
the end of the loop without some restrictions. Proper hardware loop operation is
guaranteed if no instruction starting at address LA-2, LA-1 or LA specifies the program
controller registers SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or
specifies SSH as a source or destination register. Also, SSH cannot be specified as a
source register in the DOR instruction itself. The assembler will generate a warning if the
restricted instructions are found within their restricted boundaries.

Implementation Notes:

 DOR SP,xxxx The actual value that will be loaded in the LC is the value of the SP before
the DOR instruction incremented by one.

 DOR SSL,xxxx The LC will be loaded with its previous value that was saved in the stack
by the DOR instruction itself.

Condition Codes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ✕ ✕ ✕ ✕ ✕ ✕

CCR

● S Set if the instruction sends A/B accumulator contents to XDB or YDB.
● L Set if data limiting occurred
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 99

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

DOR [X or Y]:ea,label 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR [X or Y]:aa,label 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR #xxx, label 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 1 h h h h

PC RELATIVE DISPLACEMENT

23 16 15 8 7 0

DOR S, label 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 1 0 0 0 0

PC RELATIVE DISPLACEMENT

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{label} 24-bit Address Displacement in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registers except SSH] (see Table A-22

on page A-243)

A - 100 INSTRUCTION SET MOTOROLA

A-6.36 Start PC Relative Infinite Loop (DOR FOREVER)

Description: Begin a hardware DO loop that is to be repeated for ever and whose range
of execution is terminated by the destination operand (shown above as label). No
overhead other than the execution of this DOR FOREVER instruction is required to set up
this loop. DOR FOREVER loops can be nested. During the first instruction cycle, the
current contents of the Loop Address (LA) and the Loop Counter (LC) registers are
pushed onto the system stack. The loop counter (LC) register is pushed onto the stack but
is not updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter (PC)
register and the Status Register (SR) are pushed onto the system stack. Stacking the LA,
LC, PC, and SR registers permits nesting DOR FOREVER loops. The DOR FOREVER
instruction’s destination operand (shown as label) is then loaded into the Loop Address
(LA) register after having been added to the PC. This 24-bit operand is located in the in-
struction’s 24-bit relative address extension word as shown in the opcode section. The
value in the Program Counter (PC) register pushed onto the system stack is the address
of the first instruction following the DOR FOREVER instruction (i.e., the first actual instruc-
tion in the DOR FOREVER loop). This value is read (i.e., copied but not pulled) from the
top of the system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. This
results in the PC being repeatedly compared with LA to determine if the last instruction in
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is read (i.e copied but not pulled) into the PC to fetch the first instruction
in the loop again. The loop counter (LC) register is then decremented by one without being
tested. This register can be used by the programer to count the number of loops already
executed.

When executing a DOR FOREVER loop, the instructions are actually fetched each time
through the loop. Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER
loops can also be nested. When DOR FOREVER loops are nested, the end of loop

DOR FOREVER DOR FOREVER
Start PC Relative Infinite Loop

Operation: Assembler Syntax:

SP+1 ➞ SP;LA ➞ SSH;LC ➞ SSL DOR FOREVER,label
SP+1 ➞ SP;PC ➞ SSH;SR ➞ SSL;PC+xxxx ➞ LA
1 ➞ LF; 1 ➞FV

MOTOROLA INSTRUCTION SET A - 101

addresses must also be nested and are not allowed to be equal. The assembler generates
an error message when DOR FOREVER loops are improperly nested.

Note: The assembler calculates the end of loop address LA (PC relative
address extension word xxxx) by evaluating the end of loop expression
and subtracting one. Thus the end of loop expression in the source code
represents the “next address” after the end of the loop. If a simple end of
loop address label is used, it should be placed after the last instruction
in the loop.

The loop counter (LC) register is never tested by the DOR FOREVER in-
struction and the only way of terminating the loop process is to use either
the ENDDO or BRKcc instructions. LC is decremented every time
PC=LA so that it can be used by the programmer to keep track of the
number of times the DOR FOREVER loop has been executed. If the
programer wants to initialize LC to a particular value before the DOR
FOREVER, care should be taken to save it before if the DO loop is
nested. If so, LC should also be restored immediately after exiting the
nested DOR FOREVER loop.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None.

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

DOR FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

PC RELATIVE DISPLACEMENT

A - 102 INSTRUCTION SET MOTOROLA

A-6.37 End Current DO Loop (ENDDO)

Description: Terminate the current hardware DO loop before the current loop counter
(LC) equals one. If the value of the current DO loop counter (LC) is needed, it must be
read before the execution of the ENDDO instruction. Initially, the loop flag (LF) is restored
from the system stack and the remaining portion of the status register (SR) and the
program counter (PC) are purged from the system stack. The loop address (LA) and the
loop counter (LC) registers are then restored from the system stack.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields: None

ENDDO ENDDO
End Current DO Loop

Operation: Assembler Syntax:

SSL(LF) ➞ SR;SP – 1➞ SP ENDDO
SSH ➞ LA; SSL ➞ LC;SP –1 ➞ SP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

MOTOROLA INSTRUCTION SET A - 103

A-6.38 Logical Exclusive OR (EOR)

Description: Logically exclusive OR the source operand S with bits 47–24 of the
destination operand D and store the result in bits 47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

EOR EOR
Logical Exclusive OR

Operation: Assembler Syntax:

S ⊕ D[47:24]➞D[47:24] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[47:24]➞D[47:24] EOR #xx,D

#xxxxxx ⊕ D[47:24]➞D[47:24] EOR #xxxxxx,D

where ⊕ denotes the logical XOR operator

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero

● V Always cleared

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 104 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes

:

Instruction Fields

:

23 16 15 8 7 0

EOR S,D

DATA BUS MOVE FIELD 0 1 J J d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

EOR #xx,D

0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0

EOR #xxxxxx,D

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

IMMEDIATE DATA EXTENSION

{S} JJ

Source register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)

{D} d

Destination accumulator [A/B] (see Table A-10 on page A-239)

{#xx} iiiiii

6-bit Immediate Short Data

{#xxxxxx}

24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 105

A-6.39 Bit Field (EXTRACT)

Description:

 Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 17-12 in S1 register or in immediate control word #CO. The offset from
the least significant bit is specified by bits 5-0 in S1 register or in immediate control word
#CO. The extracted field is placed in the destination accumulator D, aligned to the right.
The construction of the control register can be done by using the MERGE instruction.

This is a 56 bit operation. Bits outside the field are filled with sign extension according to
the most significant bit of the extracted bit field.

Notes:

1) In 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction.

2) In 16 bit arithmetic mode, when the width value is zero, then the result will be undefined.

3) If offset + width exceeds the value of 56, the result will be undefined.

EXTRACT EXTRACT

Extract Bit Field

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACT S1,S2,D
Width = S1[17:12]

S2[(offset+width-1):offset]

➞

 D[(width-1):0]
S2[offset+width-1]

➞

 D[55:width] (sign extension)

Offset = #CO[5:0]
Width = #CO[17:12]

EXTRACT #CO,S2,D

S2[(offset+width-1):offset]

➞

 D[(width-1):0]
S2[offset+width-1]

➞

 D[55:width] (sign extension)

A - 106 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

●

V Always cleared

●

C Always cleared

✕

This bit is unchanged by the instruction

✔

This bit is changed according to the standard definition

23 16 15 8 7 0

EXTRACT S1,S2,D

0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0

EXTRACT #CO,S2,D

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

Example: EXTRACT B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11Width = 5

x x x x x x x x 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A1 A0

1 0 1 0 11 1

4
7 0

A1 A0

11 1 1 1 1 1 1 1

x x x x x x x x

5
5

5
5

5
1

1
1

MOTOROLA INSTRUCTION SET A - 107

Instruction Fields

:

{S2} s

Source accumulator [A,B] (see Table A-10 on page A-239)

{D} D

Destination accumulator [A,B] (see Table A-10 on page A-239)

{S1} SSS

Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)

{#CO}

Control word extension.

A - 108 INSTRUCTION SET MOTOROLA

A-6.40 Extract Unsigned Bit Field (EXTRACTU)

Description:

 Extract an unsigned bit-field from source accumulator S2. The bit-field width
is specified by bits 17-12 in S1 register or in immediate control word #CO. The offset from
the least significant bit is specified by bits 5-0 in S1 register or in immediate control word
#CO. The extracted field is placed in the destination accumulator D, aligned to the right.
The construction of the control register can be done by using the MERGE instruction.

This is a 56 bits operation. Bits outside the field are filled with zeros.

Notes:

1) in 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction.

2) If offset + width exceeds the value of 56, the result will be undefined.

EXTRACTU EXTRACTU

Extract Unsigned Bit Field

Operation: Assembler Syntax:

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[17:12]

S2[(offset+width-1):offset]

➞

 D[(width-1):0]
zero

➞

 D[55:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[17:12]

S2[(offset+width-1):offset]

➞

 D[(width-1):0]
zero

➞

 D[55:width]

MOTOROLA INSTRUCTION SET A - 109

Condition Codes

:

Instruction Formats and opcodes

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

●

V Always cleared

●

C Always cleared

✕

This bit is unchanged by the instruction

✔

This bit is changed according to the standard definition

23 16 15 8 7 0

EXTRACTU S1,S2,D

0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0

EXTRACTU #CO,S2,D

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

CONTROL WORD EXTENSION

Example :EXTRACTU B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11width = 7

x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A

A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 10 0

4
7 0

A

A1 A0

00 0 0 0 0 0 0 0

x x x x x x x x

5
5

5
5

A - 110 INSTRUCTION SET MOTOROLA

Instruction Fields

:

{S2} s

Source accumulator [A,B] (see Table A-10 on page A-239)

{D} D

Destination accumulator [A,B] (see Table A-10 on page A-239)

{S1} SSS

Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)

{#CO}

Control word extension.

MOTOROLA INSTRUCTION SET A - 111

A-6.41 Execute Conditionally without CCR Update (IFcc)

Description:

If the specified condition is true, execute and store result of the specified
Data ALU operation. If the specified condition is false, no destination is altered. The CCR
is never updated with the condition codes generated by the Data ALU operation.

The instructions that can conditionally be executed by using IFcc are the arithmetic and
logical instructions that are considered as “parallel” instructions. See Table A-3 and Table
A-4 for a list of those instructions.

The conditions that the term “

cc

” may specify are listed on Table A-42 on page A-250

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

:

IFcc IFcc

Execute Conditionally without CCR Update

Operation: Assembler Syntax:

If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

IFcc

0 0 1 0 0 0 0 0 0 0 1 0 C C C C INSTRUCTION OPCODE

{cc} CCCC

Condition code (see Table A-43 on page A-251)

A - 112 INSTRUCTION SET MOTOROLA

A-6.42 Execute Conditionally with CCR Update (IFcc.U)

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data ALU
operation. If the specified condition is false, no destination is altered and the CCR is not
affected.

The instructions that can conditionally be executed by using IFcc.U are the arithmetic and
logical instructions that are considered as “parallel” instructions. See Table A-3 and Table
A-4 for a list of those instructions.

The conditions that the term “

cc

” may specify are listed on Table A-42 on page A-250

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

:

IFcc.U IFcc.U

Execute Conditionally with CCR Update

Operation: Assembler Syntax:

If cc, then opcode operation Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

●

If the specified condition is true changed according to the instruction. Not
changed otherwise.

23 16 15 8 7 0

IFcc.U

0 0 1 0 0 0 0 0 0 0 1 1 C C C C INSTRUCTION OPCODE

{cc} CCCC

Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 113

A-6.43 Illegal Instruction Interrupt (ILLEGAL)

Description:

 The ILLEGAL instruction is executed as if it were a NOP instruction. Normal
instruction execution is suspended and illegal instruction exception processing is initiated.
The interrupt vector address is located at address P:$3E. The interrupt priority level (I1,
I0) is set to 3 in the status register if a long interrupt service routine is used. The purpose
of the ILLEGAL instruction is to force the DSP into an illegal instruction exception for test
purposes. Exiting an illegal instruction is a fatal error. A long exception routine should be
used to indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA–1 is being
interrupted, then LC will be decremented twice due to the same mechanism that causes
LC to be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP,
etc. at LA are restricted. Clearly restrictions cannot be imposed on illegal instructions.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt not
being initiated until after completion of the REP. After servicing the interrupt, program
control will return to the address of the second word following the ILLEGAL instruction. Of
course, the ILLEGAL interrupt service routine should abort further processing, and the
processor should be reinitialized.

Condition Codes

:

ILLEGAL ILLEGAL

Illegal Instruction Interrupt

Operation: Assembler Syntax:

Begin Illegal Instruction exception processing Opcode-Operands IFcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

A - 114 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes

:

Instruction Fields: None

23 16 15 8 7 0

ILLEGAL 0 1 0 1

MOTOROLA INSTRUCTION SET A - 115

A-6.44 Increment by One (INC)

Description: Increment by one the specified operand and store the result in the
destination accumulator. One is added from the LSB of D.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

INC INC
Increment by One

Operation: Assembler Syntax:

D +1➞ D INC D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

INC D 0 1 0 0 d

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 116 INSTRUCTION SET MOTOROLA

A-6.45 Insert Bit field (INSERT)

Description: Insert a bit-field into the destination accumulator D. The bit-field whose width
is specified by bits 17-12 in S1 register, begins at the least significant bit of the S2 register.
This bit-field is inserted in the destination accumulator D, with an offset according to bits
5-0 in S1 register. S1 operand can be an immediate control word #CO. Width specified by
S1 should not exceed value of 24. The construction of the control register can be done by
using the MERGE instruction.
This is a 56 bit operation. Any bits outside the field remain unchanged.

Notes:

1) In 16 bit arithmetic mode, the offset field is located in bits 13-8 of the control register
and the width field is located in bits 21-16 of the control register. These fields corresponds
to the definition of the fields in the MERGE instruction. Width specified by S1 should not
exceed value of 16.

2) In 16 bit arithmetic mode, the offset value, located in the offset field, should be the
needed offset pre-incremented by the user by a bias of 16.

2) If offset + width exceeds the value of 56, the result will be undefined.

INSERT INSERT
Insert Bit Field

Operation: Assembler Syntax:

Offset =S1[5:0]
Width =S1[17:12]

INSERT S1,S2,D

S2[(width-1):0] ➞ D[(offset+width-1):offset]

Offset = #CO[5:0]
Width = #CO[17:12]

INSERT #CO,S2,D

S2[(width-1):0] ➞ D[(offset+width-1):offset]

MOTOROLA INSTRUCTION SET A - 117

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✔ ✔ ✔ ✔ ● ●

CCR

● V Always cleared
● C Always cleared
✕ This bit is unchanged by the instruction
✔ This bit is changed according to the standard definition

23 16 15 8 7 0

INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0

INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

CONTROL WORD EXTENSION

Example: INSERT B1,X0,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

4
7

2
4

Offset =10width = 5

x x x x x x x x x x x x x x x x x x x 1 0 0 1 0

4
4
7

X0

2

x x x x x x x x x 1 0 0 1 0 x x x x x x x x x xx x

4
7 0

A

A1 A0

x x x x x x x x

A - 118 INSTRUCTION SET MOTOROLA

Instruction Fields:

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (see Table A-15 on page A-240)
{#CO} Control word extension.

MOTOROLA INSTRUCTION SET A - 119

A-6.46 Jump Conditionally (JCC)

Description: Jump to the location in program memory given by the instruction’s effective
address if the specified condition is true. If the specified condition is false, the program
counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory alterable addressing modes may be used for the effective
address. A Fast Short Jump addressing mode may also be used. The 12-bit data is zero
extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

Jcc Jcc
Jump Conditionally

Operation: Assembler Syntax:

If cc, then 0xxx ➞PC Jcc xxx
else PC+1 ➞PC

If cc, then ea ➞PC Jcc ea
else PC+1 ➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

A - 120 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)

MOTOROLA INSTRUCTION SET A - 121

A-6.47 Jump if Bit Clear (JCLR)

Description: Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not clear, the program counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of the nth bit. All address register indirect
addressing modes may be used to reference the source operand S. Absolute Short and
I/O Short addressing modes may also be used.

Condition Codes:

JCLR JCLR
Jump if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then xxxx ➞ PC JCLR #n,S,xxxx
else PC+ 1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 122 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 123

A-6.48 Jump (JMP)

Description: Jump to the location in program memory given by the instruction’s effective
address. All memory alterable addressing modes may be used for the effective address.
A Fast Short Jump addressing mode may also be used. The 12-bit data is zero extended
to form the effective address.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

JMP JMP
Jump

Operation: Assembler Syntax:

0xxx ➞ Pc JMP xxx

ea➞ Pc JMP ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)

A - 124 INSTRUCTION SET MOTOROLA

A-6.49 Jump to Subroutine Conditionally (JScc)

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address if the specified condition is true. If the specified condition is
true, the address of the instruction immediately following the JScc instruction (PC) and the
system status register (SR) are pushed onto the system stack. Program execution then
continues at the specified effective address in program memory. If the specified condition
is false, the program counter (PC) is incremented, and any extension word is ignored.
However, the address register specified in the effective address field is always updated
independently of the specified condition. All memory alterable addressing modes may be
used for the effective address. A fast short jump addressing mode may also be used. The
12-bit data is zero extended to form the effective address.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

Condition Codes:

JScc JScc
Jump to Subroutine Conditionally

Operation: Assembler Syntax:

If cc, then SP+1➞SP; PC ➞SSH;SR ➞SSL;0xxx ➞PC JScc xxx
else PC+1➞PC

If cc, then SP+1➞SP; PC ➞SSH;SR ➞SSL;ea ➞PC JScc ea
else PC+1➞PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 125

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{cc} CCCC Condition code (see Table A-43 on page A-251)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)

A - 126 INSTRUCTION SET MOTOROLA

A-6.50 Jump to Subroutine if Bit Clear (JSCLR)

Description: Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of the source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not clear, the program
counter (PC) is incremented and the extension word is ignored. However, the address
register specified in the effective address field is always updated independently of the
state of the nth bit. All address register indirect addressing modes may be used to
reference the source operand S. Absolute short and I/O short addressing modes may also
be used.

JSCLR JSCLR
Jump to Subroutine if Bit Clear

Operation: Assembler Syntax:

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:ea,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y],aa,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:pp,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,[X or Y]:qq,xxxx

else PC+1➞PC

If S{n}=0 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSCLR #n,S,xxxx

else PC+1➞PC

MOTOROLA INSTRUCTION SET A - 127

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 b b b b b

ABSOLUTE ADDRESS EXTENSION

A - 128 INSTRUCTION SET MOTOROLA

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 129

A-6.51 Jump if Bit Set (JSET)

Description: Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to
be tested is selected by an immediate bit number from 0–23. If the specified memory bit
is not set, the program counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of the nth bit. All address register indirect
addressing modes may be used to reference the source operand S. Absolute short and I/
O short addressing modes may also be used.

Condition Codes:

JSET JSET
Jump if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then xxxx ➞ PC JSET #n,S,xxxx
else PC+ 1 ➞ PC

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 130 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit Absolute Address in extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

MOTOROLA INSTRUCTION SET A - 131

A-6.52 Jump to Subroutine (JSR)

Description: Jump to the subroutine whose location in program memory is given by the
instruction’s effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system status register (SR) is pushed onto the system stack.
Program execution then continues at the specified effective address in program memory.
All memory alterable addressing modes may be used for the effective address. A fast
short jump addressing mode may also be used. The 12-bit data is zero extended to form
the effective address.

Condition Codes:

Instruction Formats and opcodes:

JSR JSR
Jump to Subroutine

Operation: Assembler Syntax:

SP+1➞SP; PC➞SSH; SR➞SSL; 0xxx➞PC JSR xxx

SP+1➞SP; PC➞SSH; SR➞SSL; ea➞PC JSR ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a

A - 132 INSTRUCTION SET MOTOROLA

Instruction Fields:

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table A-18 on page A-241)

MOTOROLA INSTRUCTION SET A - 133

A-6.53 Jump to Subroutine if Bit Set (JSSET)

Description: Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit of
the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system status register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not set, the program
counter (PC) is incremented, and the extension word is ignored. However, the address
register specified in the effective address field is always updated independently of the
state of the nth bit. All address register indirect addressing modes may be used to
reference the source operand S. Absolute short and I/O short addressing modes may also
be used.

JSSET JSSET
Jump to Subroutine if Bit Set

Operation: Assembler Syntax:

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:ea,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y],aa,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:pp,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,[X or Y]:qq,xxxx

else PC+1➞PC

If S{n}=1 then SP+1➞SP;PC ➞SSH;SR ➞SSL;
;xxxx ➞PC

JSSET #n,S,xxxx

else PC+1➞PC

A - 134 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

23 16 15 8 7 0

JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 b b b b b

ABSOLUTE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 135

Instruction Fields:

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{xxxx} 24-bit PC absolute Address extension word
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table A-22 on page A-

243)

A - 136 INSTRUCTION SET MOTOROLA

A-6.54 Load PC Relative Address (LRA)

Description: The PC is added to the specified displacement and the result is stored in
destination D. The displacement is a 2’s complement 24-bit integer that represents the
relative distance from the current PC to the destination PC. Long Displacement and
Address Register PC Relative addressing modes may be used. Note that if D is SSH, the
SP will be preincremented by one.

Condition Codes:

Instruction Formats and opcode:

LRA LRA
Load PC Relative Address

Operation: Assembler Syntax:

PC+Rn➞D LRA Rn,D

PC+xxxx➞D LRA xxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0

LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

LONG DISPLACEMENT

MOTOROLA INSTRUCTION SET A - 137

Instruction Fields:

{Rn} RRR Address register [R0-R7]
{D} ddddd Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-

R7,N0-N7] (see Table A-31 on page A-245)
{xxxx} 24-bit PC Long Displacement

A - 138 INSTRUCTION SET MOTOROLA

A-6.55 Logical Shift Left (LSL)

Assembler Syntax:

LSL D (parallel move)

 LSL #ii,D

LSL S,D

Description:

Single-bit shift:

Logically shift bits 47–24 of the destination operand D one bit to the left and store the
result in the destination accumulator. Prior to instruction execution, bit 47 of D is shifted
into the carry bit C, and a zero is shifted into bit 24 of the destination accumulator D.

Multi-bit shift:

The contents of bits 47-24 of the destination accumulator D are shifted left #ii bits. Bits
shifted out of position 47 are lost, but for the last bit which is latched in the carry bit. Zeros
are supplied to the vacated positions on the right. The result is placed into bits 47-24 of
the destination accumulator D. The number of bits to shift is determined by the 5-bit
immediate field in the instruction, or by the unsigned integer located in the control register
S. If a zero shift count is specified, the carry bit is cleared.

This is a 24 bit operation. The remaining bits of the destination accumulator are not
affected.

Note: The number of shifts should not exceed the value of 24.

LSL LSL
Logical Shift Left

47

Operation:

24C

0

MOTOROLA INSTRUCTION SET A - 139

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise.Cleared

for a shift count of zero.
✕ This bit is unchanged by the instruction

23 8 7 0

LSL D DATA BUS MOVE FIELD 0 0 1 1 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0

LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

Example: LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

A1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

4
4
7

2
Shift left 7

0
C

A - 140 INSTRUCTION SET MOTOROLA

Instruction Fields:

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiii 5bit unsigned integer [0-23] denoting the shift amount

MOTOROLA INSTRUCTION SET A - 141

A-6.56 Logical Shift Right (LSR)

Assembler Syntax:

LSR D (parallel move)

 LSR #ii,D

LSR S,D

Description:

Single-bit shift:

Logically shift bits 47–24 of the destination operand D one bit to the right and store the
result in the destination accumulator. Prior to instruction execution, bit 24 of D is shifted
into the carry bit C, and a zero is shifted into bit 47 of the destination accumulator D.

Multi-bit shift:

The contents of bits 47-24 of the destination accumulator D are shifted right #ii bits. Bits
shifted out of position 24 are lost, but for the last bit which is latched in the carry bit. Zeros
are supplied to the vacated positions on the left. The result is placed into bits 47-24 of the
destination accumulator D. The number of bits to shift is determined by the 5-bit immediate
field in the instruction, or by the unsigned integer located in the control register S. If a zero
shift count is specified, the carry bit is cleared.

This is a 24 bit operation. The remaining bits of the destination register are not affected.

Note: The number of shifts should not exceed the value of 24.

LSR LSR
Logical Shift Right

47 24

0

C

 Operation:

A - 142 INSTRUCTION SET MOTOROLA

Condition Codes:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47-24 of the result are zero
● V Always cleared
● C Set if the last bit shifted out of the operand is set. Cleared otherwise. Cleared

for a shift count of zero
✕ This bit is unchanged by the instruction

Example: LSR X0,B

B1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

B1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x x 0 0 0 1 1

0
2
3

SH field

X0

1

c

Shift right 3

MOTOROLA INSTRUCTION SET A - 143

Instruction Formats and opcodes:

Instruction Fields:

23 8 7 0

LSR D DATA BUS MOVE FIELD 0 0 1 0 D 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0

LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{#ii} iiiii 5 bit unsigned integer [0-23] denoting the shift amount

A - 144 INSTRUCTION SET MOTOROLA

A-6.57 Load Updated Address (LUA)

Description: Load the updated address into the destination address register D. The
source address register and the update mode used to compute the updated address are
specified by the effective address (ea). Note that the source address register specified
in the effective address is not updated. This is the only case where an address
register is not updated although stated otherwise in the effective address mode
bits. Only the following addressing modes may be used: Post+N, Post-N, Post+1, Post-1.

Condition Codes:

LUA LUA
Load Updated address

Operation: Assembler Syntax:

ea➞D (No update performed) LUA ea,D

Rn+aa➞D LUA (Rn+aa),D

ea➞D (No update performed) LEA ea,D

Rn+aa➞D LEA (Rn+aa),D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 145

Instruction Formats and opcode:

Note: LEA is a synonym for LUA. The simulator on-line disassembly will
translate the opcodes into LUA.

Instruction Fields:

Note: RRR refers to a source address register (R0-R7), while dddd/ddddd
refer to a destination address register R0-R7 or N0-N7.

23 16 15 8 7 0

LUA/
LEA

ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0

LUA/
LEA

(Rn+aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d

{ea} MMRRR Effective address (see Table A-20 on page A-242)
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7] (see Table A-
31 on page A-245)

{D} dddd Destination address register [R0-R7,N0-N7] (see Table A-25 on
page A-244)

{aa} aaaaaaa 7-bit sign extended short displacement address
{Rn} RRR Source address register [R0-R7]

A - 146 INSTRUCTION SET MOTOROLA

A-6.58 Signed Multiply-Accumulate (MAC)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract
the product to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MAC X1, Y0, A MAC X1, Y0, B

MAC X0, Y1, A MAC X0, Y1, B

MAC Y1, X1, A MAC Y1, X1, B

Condition Codes:

MAC MAC
Signed Multiply Accumulate

Operation: Assembler Syntax:

D±S1∗ S2➞D (parallel move) MAC (±)S1,S2,D (parallel move)

D±S1∗ S2➞D (parallel move) MAC (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)➞D (no parallel move) MAC (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 147

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MAC (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 0

MAC (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MAC (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)

A - 148 INSTRUCTION SET MOTOROLA

A-6.59 Signed MAC with Immediate Operand (MACI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S and add/
subtract the product to/from the specified 56-bit destination accumulator D. The “–” sign
option is used to negate the specified product prior to accumulation. The default sign
option is “+”.

condition Codes:

Instruction Formats and opcode:

Instruction Fields:

MACI MACI
Signed Multiply-Accumulate

with Immediate Operand

Operation: Assembler Syntax:

D±#xxxxxx∗ S➞D MACI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MACI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 149

A-6.60 Mixed Multiply-Accumulate (MAC su/uu)

Description: Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

MAC(su,uu) MAC(su,uu)
Mixed Multiply Accumulate

Operation: Assembler Syntax:

D±S1∗ S2➞D (S1 unsigned, S2 unsigned) MACuu (±)S1,S2,D (no parallel move)

D±S1∗ S2➞D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
 (see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{s} [ss,us] (see Table A-40 on page A-249)

A - 150 INSTRUCTION SET MOTOROLA

A-6.61 Signed MAC and Round (MACR)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and then round the result
using either convergent or two’s complement rounding. The rounded result is stored in the
destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MACR MACR
Signed Multiply Accumulate and Round

Operation: Assembler Syntax:

D±S1∗ S2+r➞D (parallel move) MACR (±)S1,S2,D (parallel move)

D±S1∗ S2+r➞D (parallel move) MACR (±)S2,S1,D (parallel move)

D±(S1∗ 2-n)+r➞D (no parallel move) MACR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 151

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MACR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 1 1

MACR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MACR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)

A - 152 INSTRUCTION SET MOTOROLA

A-6.62 Signed MAC and Round with Immediate Operand (MACRI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S, add/subtract
the product to/from the specified 56-bit destination accumulator D, and then round the
result using either convergent or two’s complement rounding. The rounded result is stored
in the destination accumulator D.

The “–” sign option negates the specified product prior to accumulation. The default sign
option is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MACRI MACRI
Signed Multiply-Accumulate and Round

with Immediate Operand

Operation: Assembler Syntax:

D±#xxxxxx∗ S➞D MACRI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 153

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

MACRI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word

A - 154 INSTRUCTION SET MOTOROLA

A-6.63 Transfer by Signed Value (MAX)

Description: Subtract the signed value of the source accumulator from the signed value
of the destination accumulator. If the difference is negative or zero
(i.e. A ≥ B) then transfer the source accumulator to destination accumulator, otherwise do
not change destination accumulator.

This is a 56 bit operation.

Note: The Carry condition code signifies that a transfer has been performed.

Condition Codes:

Instruction Formats and opcodes:

MAX MAX
Transfer by Signed Value

Operation: Assembler Syntax:

If B – A ≤ 0 then A ➞ B MAX A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

● C Cleared if the conditional transfer was performed. Set otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MAX A, B DATA BUS MOVE FIELD 0 0 0 1 1 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 155

A-6.64 Transfer by Magnitude (MAXM)

Description:

 Subtract the absolute value (magnitude) of the source accumulator from the
absolute value of the destination accumulator. If the difference is negative or zero
(i.e. |A|

≥

 |B|) then transfer the source accumulator to destination accumulator, otherwise
do not change destination accumulator.

This is a 56 bit operation.

Note: The Carry condition code signifies that a transfer has been performed.

Condition Codes

:

Instruction Formats and opcodes

:

MAXM MAXM

Transfer by Magnitude

Operation: Assembler Syntax:

If |B| – |A|

≤

 0 then A

➞

 B MAXM A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ●

CCR

●

C Cleared if the conditional transfer was performed. Set otherwise.

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

MAXM A, B

DATA BUS MOVE FIELD 0 0 0 1 0 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A - 156 INSTRUCTION SET MOTOROLA

A-6.65 Merge Two Half Words (MERGE)

Description:

 The contents of bits 11-0 of the source register are concatenated to the
contents of bits 35-24 of the destination accumulator. The result is stored in the destination
accumulator. This instruction is a 24-bit operation. The remaining bits of the destination
accumulator D are not affected.

Notes:
1) This instruction may be used in conjunction with EXTRACT or INSERT instructions to
concatenate width and offset fields into a control word.
2) In 16 bit arithmetic mode the contents of bits 15-8 of the source register are
concatenated to the contents of bits 39-32 of the destination accumulator. The result is
placed in bits 47-32 of the destination accumulator.

Condition Codes

:

MERGE MERGE

Merge Two Half Words

Operation: Assembler Syntax:

{S[11:0],D[35:24]}

➞

 D[47:24] MERGE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ● ● ● ✕

CCR

●

N Set if bit 47 of the result is set

●

Z Set if bits 47-24 of the result are zero

●

V Always cleared

MOTOROLA INSTRUCTION SET A - 157

Instruction Formats and opcodes

:

Instruction Fields

:

23 16 15 8 7 0

MERGE S,D

0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

{D} D

Destination accumulator [A,B] (see Table A-10 on page A-239)

{S} SSS

Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)

Example: MERGE X0,B

X0 x x x x x x x x x x x x 1 0 1 0 1 0 1 0 0 0 1 0

0
2
3

B1 x x x x x x x x x x x x 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

B1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

A - 158 INSTRUCTION SET MOTOROLA

A-6.66 Move Data (MOVE)

Description:

 Move the contents of the specified data source S to the specified destination
D. This instruction is equivalent to a data ALU NOP with a parallel data move.

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields:

See

Parallel Move Descriptions

 for data bus move field encoding.

Parallel Move Descriptions:

 Thirty of the sixty-two instructions allow an optional parallel
data bus movement over the X and/or Y data bus. This allows a data ALU operation to be
executed in parallel with up to two data bus moves during the instruction cycle. Ten types
of parallel moves are permitted, including register to register moves, register to memory
moves, and memory to register moves. However, not all addressing modes are allowed
for each type of memory reference. The following section contains detailed descriptions
about each type of parallel move operation.

MOVE MOVE

Move Data

Operation: Assembler Syntax:

S

➞

D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

MOVE S,D

DATA BUS MOVE FIELD 0 0 0 0 0 0 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 159

A-6.67 NO Parallel Data Move

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description:

 Many instructions in the instruction set allow parallel moves. The parallel
moves have been divided into 10 opcode categories. This category is a parallel move NOP
and does not involve data bus move activity.

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Format:

(defined by instruction)

No Parallel Data Move

Operation: Assembler Syntax:

(.) (.)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

(.)

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION OPCODE

A - 160 INSTRUCTION SET MOTOROLA

A-6.68 Immediate Short Data Move (I)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description:

 Move the 8-bit immediate data value (#xx) into the destination operand D.

If the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit
immediate short operand is interpreted as an

unsigned integer

 and is stored in the
specified destination register. That is, the 8-bit data is stored in the eight LS bits of the
destination operand, and the remaining bits of the destination operand D are zeroed.

If the destination register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand
is interpreted as a

signed fraction

 and is stored in the specified destination register. That
is, the 8-bit data is stored in the eight MS bits of the destination operand, and the
remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is,

duplicate destinations are
NOT allowed within the same instruction.

Condition Codes

:

I I

Immediate Short Data Move

Operation: Assembler Syntax:

(.), #xx

➞

D (.) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 161

Instruction Formats and opcodes

:

Instruction Fields

:

23 16 15 8 7 0

(.) #xx,D

0 0 1 d d d d d i i i i i i i i INSTRUCTION OPCODE

{#xx} iiiiiiii

8-bit Immediate Short Data

{D} ddddd

Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-
N7] (see Table A-31 on page A-245)

A - 162 INSTRUCTION SET MOTOROLA

A-6.69 Register to Register Data Move (R)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description:

 Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is,

 duplicate destinations are
NOT allowed within the same instruction

.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is,

 duplicate
sources are allowed within the same instruction

.

Note:

 The MOVE A,B operation will result in a 24-bit positive or negative satu-
ration constant being stored in the B1 portion of the B accumulator if the
signed integer portion of the A accumulator is in use.

R R

Register to Register Data Move

Operation: Assembler Syntax:

(.); S

➞

D (.) S,D

MOTOROLA INSTRUCTION SET A - 163

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

(.) S,D

0 0 1 0 0 0 e e e e e d d d d d INSTRUCTION OPCODE

{S} eeeee

Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
(see Table A-31 on page A-245)

{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-
N7] (see Table A-31 on page A-245)

A - 164 INSTRUCTION SET MOTOROLA

A-6.70 Address Register Update (U)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Update the specified address register according to the specified effective
addressing mode. All update addressing modes may be used.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

U U
Address Register Update

Operation: Assembler Syntax:

(.); ea➞Rn (.) ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R INSTRUCTION OPCODE

{ea} MMRRR Effective Address (see Table A-20 on page A-242)

MOTOROLA INSTRUCTION SET A - 165

A-6.71 X Memory Data Move (X:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the

X: X:
X Memory Data Move

Operation: Assembler Syntax:

(.); X:ea➞D (.) X:ea,D

(.); X:aa➞D (.) X:aa,D

(.); S➞X:ea (.) S,X:ea

(.); S➞X:aa (.) S,X:aa

X:(Rn+xxx)➞D MOVE X:(Rn+xxx),D

X:(Rn+xxxx)➞D MOVE X:(Rn+xxxx),D

D➞X:(Rn+xxx) MOVE D,X:(Rn+xxx)

D➞X:(Rn+xxxx) MOVE D,X:(Rn+xxxx)

A - 166 INSTRUCTION SET MOTOROLA

parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Condition Codes:

Note: The MOVE A,X:ea operation will result in a 24-bit positive or negative
saturation constant being stored in the specified 24-bit X memory
location if the signed integer portion of the A accumulator is in use.

Instruction Formats and opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)X:ea,D 23 16 15 8 7 0

(.)S,X:ea 0 1 d d 0 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.)#xxxxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)X:aa,D 23 16 15 8 7 0

(.)S,X:aa 0 1 d d 0 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
 (see Table A-31 on page A-245)

{aa} aaaaaa 6-bit Absolute Short Address

MOTOROLA INSTRUCTION SET A - 167

Instruction Formats and opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE X:(Rn+xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D

MOVE S,X:(Rn+xxxx) Rn RELATIVE DISPLACEMENT

MOVE X:(Rn+xxx),D 23 16 15 8 7 0

MOVE S,X:(Rn+xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D

W Read S / Write D bit (see Table A-33 on page A-246)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0-R7)
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]

(see Table A-34 on page A-246)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-22

on page A-243)

A - 168 INSTRUCTION SET MOTOROLA

A-6.72 X Memory and Register Data Move (X:R)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from/to X memory and move another
word operand from an accumulator (S2) to an input register (D2). All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The
register to register move (S2,D2) allows a data ALU accumulator to be moved to a data
ALU input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to X memory and one-
word operand from data ALU register X0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D1 in the
parallel data bus move operation. Thus, if the opcode-operand portion of the instruction
specifies the 56-bit A accumulator as its destination, the parallel data bus move portion of
the instruction may not specify A0, A1, A2, or A as its destination D1. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction may not specify B0, B1,

X:R X:R
X Memory and Register Data Move

Operation: Assembler Syntax:

Class I
(.); X:ea➞D1; S2➞D2 (.) X:ea,D1 S2,D2

(.); S1➞X:ea; S2➞D2 (.) S1,X:ea S2,D2

(.); #xxxxxx➞D1; S2➞D2 (.) #xxxxxx,D1 S2,D2

Class II
(.); A➞X:ea; X0➞A (.) A,X:ea X0,A

(.); B➞X:ea; X0➞B (.) B,X:ea X0,B

MOTOROLA INSTRUCTION SET A - 169

B2, or B as its destination D1. That is, duplicate destinations are NOT allowed within
the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Class I Instruction Formats and opcodes:

Instruction Fields:

Class II Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.) X:ea,D1 S2,D2 23 16 15 8 7 0

(.) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R INSTRUCTION OPCODE

(.) #xxxxxx,D1 S2,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S1 / Write D1 bit (see Table A-33 on page A-246)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (see Table A-35 on page A-247)
{S2} d S2 accumulator [A,B] (see Table A-10 on page A-239)
{D2} F D2 input register [Y0,Y1] (see Table A-35 on page A-247)

23 16 15 8 7 0

(.)A➞X:ea X0➞A 0 0 0 0 1 0 0 d 0 0 M M M R R R INSTRUCTION OPCODE

(.)B➞X:ea X0➞B OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-19 on page A-242)
d Move opcode (see Table A-37 on page A-247)

A - 170 INSTRUCTION SET MOTOROLA

A-6.73 Y Memory Data Move (Y:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. Absolute
short addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A0, A1, A2, or A as its
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B0, B1, B2, or B as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the

Y: Y:
Y Memory Data Move

Operation: Assembler Syntax:

(.); Y:ea➞D (.) Y:ea,D

(.); Y:aa➞D (.) Y:aa,D

(.); S➞Y:ea (.) S,Y:ea

(.); S➞Y:aa (.) S,Y:aa

Y:(Rn+xxx)➞D MOVE Y:(Rn+xxx),D

Y:(Rn+xxxx)➞D MOVE Y:(Rn+xxxx),D

D➞Y:(Rn+xxx) MOVE D,Y:(Rn+xxx)

D➞Y:(Rn+xxxx) MOVE D,Y:(Rn+xxxx)

MOTOROLA INSTRUCTION SET A - 171

parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate
sources are allowed within the same instruction.

Condition Codes:

Note: The MOVE A,Y:ea operation will result in a 24-bit positive or negative
saturation constant being stored in the specified 24-bit Y memory
location if the signed integer portion of the A accumulator is in use.

Instruction Formats and opcodes 1:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)Y:ea,D 23 16 15 8 7 0

(.)S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R INSTRUCTION OPCODE

(.)#xxxxxx,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)Y:aa,D 23 16 15 8 7 0

(.)S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S / Write D bit (see Table A-33 on page A-246)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,N0-N7]
 (see Table A-31 on page A-245)

{aa} aaaaaa Absolute Short Address

A - 172 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes 2:

Instruction Fields:

23 16 15 8 7 0

MOVE Y:(Rn+xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D

MOVE D,Y:(Rn+xxxx) Rn RELATIVE DISPLACEMENT

MOVE Y:(Rn+xxx),D 23 16 15 8 7 0

MOVE D,Y:(Rn+xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D

W Read S / Write D bit (see Table A-33 on page A-246)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0-R7)
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B]

(see Table A-34 on page A-246)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table A-22

on page A-243)

MOTOROLA INSTRUCTION SET A - 173

A-6.74 Register and Y Memory Data Move (R:Y)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Class I: Move a one-word operand from an accumulator (S1) to an input
register (D1) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 24-bit immediate data, may be used. The
register to register move (S1,D1) allows a data ALU accumulator to be moved to a data
ALU input register for use as a data ALU operand in the following instruction.

Class II: Move one-word operand from a data ALU accumulator to Y memory and one-
word operand from data ALU register Y0 to a data ALU accumulator. One effective
address is specified. All memory addressing modes, excluding long absolute addressing
and long immediate data, may be used. Class II move operations have been added to the
R:Y parallel move (and a similar feature has been added to the X:R parallel move) as an
added feature available in the first quarter of 1989.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-
operand portion of the instruction specifies a given destination accumulator, that same
accumulator or portion of that accumulator may not be specified as a destination D2 in the
parallel data bus move operation. Thus, if the opcode-operand portion of the instruction
specifies the 56-bit A accumulator as its destination, the parallel data bus move portion of
the instruction may not specify A0, A1, A2, or A as its destination D2. Similarly, if the
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its

R:Y R:Y
Register and Y Memory Data Move

Operation: Assembler Syntax:

Class I
(.); S1➞D1; Y:ea➞D2 (.) S1,D1 Y:ea,D2

(.); S1➞D1; S2➞Y:ea (.) S1,D1 S2,Y:ea

(.); S1➞D1; #xxxxxx➞D2 (.) S1,D1 #xxxxxx,D2

Class II
(.); Y0 ➞A; A➞Y:ea (.) Y0,A A,Y:ea

(.); Y0➞B; B➞Y:ea (.) Y0,B B,Y:ea

A - 174 INSTRUCTION SET MOTOROLA

destination, the parallel data bus move portion of the instruction may not specify B0, B1,
B2, or B as its destination D2. That is, duplicate destinations are NOT allowed within the
same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or
S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Class I Instruction Formats and opcodes:

Instruction Fields :

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)S1,D1 Y:ea,D2 23 16 15 8 7 0

(.)S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R INSTRUCTION OPCODE

(.)S1,D1 #xxxxxx,D2 OPTIONAL EFFECTIVE ADDRESS EXTENSION

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S2 / Write D2 bit (see Table A-33 on page A-246)

{S1} d S1 accumulator [A,B] (see Table A-10 on page A-239)
{D1} e D1 input register [X0,X1] (see Table A-36 on page A-247)
{S2,D2} ff S2/D2 register [Y0,Y1,A,B] (see Table A-36 on page A-247)

MOTOROLA INSTRUCTION SET A - 175

Class II Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

(.)Y0 ➞ A A ➞ Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R INSTRUCTION OPCODE

(.)Y0 ➞ B B ➞ Y:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

MMMRRR ea=6-bit Effective Address (see Table A-19 on page A-242)
d Move opcode (see Table A-37 on page A-247)

A - 176 INSTRUCTION SET MOTOROLA

A-6.75 Long Memory Data Move (L:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move one 48-bit long-word operand from/to X and Y memory. Two data ALU
registers are concatenated to form the 48-bit long-word operand. This allows efficient
moving of both double-precision (high:low) and complex (real:imaginary) data from/to one
effective address in L (X:Y) memory. The same effective address is used for both the X
and Y memory spaces; thus, only one effective address is required. Note that the A, B,
A10, and B10 operands reference a single 48-bit signed (double-precision) quantity while
the X, Y, AB, and BA operands reference two separate (i.e., real and imaginary) 24-bit
signed quantities. All memory alterable addressing modes may be used. Absolute short
addressing may also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-
operand portion of the instruction specifies the 56-bit A accumulator as its destination, the
parallel data bus move portion of the instruction may not specify A, A10, AB, or BA as
destination D. Similarly, if the opcode-operand portion of the instruction specifies the 56-
bit B accumulator as its destination, the parallel data bus move portion of the instruction
may not specify B, B10, AB, or BA as its destination D. That is, duplicate destinations are
NOT allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a data ALU operation. That is, duplicate

L: L:
Long Memory Data Move

Operation: Assembler Syntax:

(.); X:ea ➞ D1; Y:ea ➞ D2 (.) L:ea,D

(.); X:aa ➞ D1; Y:aa ➞ D2 (.) L:aa,D

(.); S1 ➞ X:ea; S2 ➞ Y:ea (.) S,L:ea

(.); S1 ➞ X:aa; S2 ➞ Y:aa (.) S,L:aa

MOTOROLA INSTRUCTION SET A - 177

sources are allowed within the same instruction.

Note: The operands A10, B10, X, Y, AB, and BA may be used only for a 48-bit
long memory move as previously described. These operands may not be
used in any other type of instruction or parallel move.

Condition Codes:

Note: The MOVE A,L:ea operation will result in a 48-bit positive or negative
saturation constant being stored in the specified 24-bit X and Y memory
locations if the signed integer portion of the A accumulator is in use. The
MOVE AB,L:ea operation will result in either one or two 24-bit positive
and/or negative saturation constant(s) being stored in the specified 24-
bit X and/or Y memory location(s) if the signed integer portion of the A
and/or B accumulator(s) is in use.

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

(.)L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R INSTRUCTION OPCODE

(.)S,L:ea OPTIONAL EFFECTIVE ADDRESS EXTENSION

(.)L:aa,D 23 16 15 8 7 0

(.)S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a INSTRUCTION OPCODE

{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{L} LLL Two data ALU registers (see Table A-23 on page A-243)
{aa} aaaaaa Absolute Short Address

A - 178 INSTRUCTION SET MOTOROLA

A-6.76 XY Memory Data Move (X: Y:)

where (.) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
(<eax> and <eay>) where one of the effective addresses uses the lower bank of address
registers (R0–R3) while the other effective address uses the upper bank of address
registers (R4–R7). All parallel addressing modes may be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator may not be
specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction may not specify A as its
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction may not specify B as its destination D1 or D2. That is, duplicate destinations
are NOT allowed within the same instruction. D1 and D2 may not specify the same
register.

If the instruction specifies an access to an internal X-I/O and internal Y-I/O modules
(reflected by the address of the X memory space and of the Y memory space), than only
the access to the internal X-I/O module will be executed. The access to the Y-I/O module
will be discarded.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register may be used as a source S1 and/or

X: Y: X: Y:
XY Memory Data Move

Operation: Assembler Syntax:

(.); X:<eax> ➞ D1; Y:<eay> ➞ D2 (.) X:<eax>,D1 Y:<eay>,D2

(.); X:<eax> ➞ D1; S2 ➞ Y:<eay> (.) X:<eax>,D1 S2,Y:<eay>

(.); S1 ➞ X:<eax>; Y:<eay> ➞ D2 (.) S1,X:<eax> Y:<eay>,D2

(.); S1 ➞ X:<eax>; S2 ➞ Y:<eay> (.) S1,X:<eax> S2,Y:<eay>

MOTOROLA INSTRUCTION SET A - 179

S2 in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a data ALU operation. That is,
duplicate sources are allowed within the same instruction. Note that S1 and S2 may
specify the same register.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields :

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

(.)X:<eax>,D1 Y:<eay>,D2
(.)X:<eax>,D1 S2,Y:<eay>
(.)S1,X:<eax> Y:<eay>,D2 23 16 15 8 7 0

(.)S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R INSTRUCTION OPCODE

{<eax>} MMRRR 5-bit X Effective Address (R0–R3 or R4–R7)
{<eay>} mmrr 4-bit Y Effective Address (R4–R7 or R0–R3)
{S1,D1} ee S1/D1 register [X0,X1,A,B]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff: see Table A-38 on page A-248
W X move Operation Control (See Table A-33 on page A-246)
w Y move Operation Control (See Table A-33 on page A-246)

A - 180 INSTRUCTION SET MOTOROLA

A-6.77 Move Control Register (MOVEC)

Description: Move the contents of the specified source control register S1 or S2 to the
specified destination or move the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 register
set and consist of the address ALU modifier registers and the program controller registers.
These registers may be moved to or from any other register or memory space. All memory
addressing modes, as well as an immediate short addressing mode, may be used.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEC MOVEC
Move Control Register

Operation: Assembler Syntax:

[X or Y]:ea➞D1 MOVE(C) [Xor Y]:ea,D1

[X or Y]:aa➞D1 MOVE(C) [Xor Y]:aa,D1

S1➞[X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1➞[X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1➞D2 MOVE(C) S1,D2

S2➞D1 MOVE(C) S2,D1

#xxxx➞D1 MOVE(C) #xxxx,D1

#xx➞D1 MOVE(C) #xx,D1

MOTOROLA INSTRUCTION SET A - 181

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D1 or D2=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D1 and D2≠SR operand :
● S Set if data growth been detected
● L Set if data limiting has occurred during the move

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d

MOVE(C) #xxxx,D1 OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0

MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0

MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d

A - 182 INSTRUCTION SET MOTOROLA

Instruction Fields:

{ea} MMMRRR Effective Address (see Table A-15 on page A-240)
W Read S / Write D bit (see Table A-33 on page A-246)

{X/Y} S Memory Space [X,Y] (see Table A-17 on page A-241)
{S1,D1} ddddd Program Controller register

 [M0-M7,EP,VBA,SZ,SR,OMR,SP,SSH,SSL,LA,LC] (see Table A-
41 on page A-249)

{aa} aaaaaa aa=6-bit Absolute Short Address
{S2,D2} eeeeee S2/D2 register [all on-chip registers] (see Table A-22 on page A-

243)
{#xx} iiiiiiii #xx=8-bit Immediate Short Data

MOTOROLA INSTRUCTION SET A - 183

A-6.78 Move Program Memory (MOVEM)

Description: Move the specified operand from/to the specified program (P) memory
location. This is a powerful move instruction in that the source and destination registers
S and D may be any register. All memory alterable addressing modes may be used as
well as the absolute short addressing mode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEM MOVEM
Move Program Memory

Operation: Assembler Syntax:

S➞P:ea MOVE(M) S,P:ea

S➞P:aa MOVE(M) S,P:aa

P:ea➞D MOVE(M) P:ea,D

P:aa➞D MOVE(M) P:aa,D

A - 184 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D≠SR operand :
● S Set if data growth been selected
● L Set if data limiting has occurred during the move

23 16 15 8 7 0

MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

MOVE(M) P:ea,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOVE(M) S,P:aa 23 16 15 8 7 0

MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d

{ea} MMMRRR Effective Address (see Table A-18 on page A-241)
W Read S / Write D bit (see Table A-33 on page A-246)

{ S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-22 on
page A-243)

{aa} aaaaaa Absolute Short Address

MOTOROLA INSTRUCTION SET A - 185

A-6.79 Move Peripheral Data (MOVEP)

Description: Move the specified operand from/to the specified X or Y I/O peripheral. The
I/O short addressing mode is used for the I/O peripheral address. All memory addressing
modes may be used for the X or Y memory effective address; all memory alterable
addressing modes may be used for the P memory effective address. ALL the I/O space
($FFFF80-$FFFFFF) can be accessed, except for the P: reference opcode.

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read. If the system stack
register SSH is specified as a destination operand, the system stack pointer (SP) is
preincremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

MOVEP MOVEP
Move Peripheral Data

Operation: Assembler Syntax:

[X or Y]:pp ➞ D MOVEP [X or Y]:pp,D

[X or Y]:qq ➞ D MOVEP [X or Y]:qq,D

[X or Y]:pp ➞ [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq ➞ [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp ➞ P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq ➞ P:ea MOVEP [X or Y]:qq,P:ea

S ➞ [X or Y]:pp MOVEP S,[X or Y]:pp

S ➞ [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea ➞ [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea ➞ [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea ➞ [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea ➞ [X or Y]:qq MOVEP P:ea,[X or Y]:qq

A - 186 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcodes:

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For D=SR operand :
● S Set according to bit 7 of the source operand
● L Set according to bit 6 of the source operand
● E Set according to bit 5 of the source operand
● U Set according to bit 4 of the source operand
● N Set according to bit 3 of the source operand
● Z Set according to bit 2 of the source operand
● V Set according to bit 1 of the source operand
● C Set according to bit 0 of the source operand
For D≠SR operand :
● S Set if data growth been selected
● L Set if data limiting has occurred during the move

X: or Y: Reference (high I/O address)
23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p

MOVEP [X or Y]:ea,[X or Y]:pp OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q

MOVEP [X or Y]:ea,X:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q

MOVEP [X or Y]:ea,Y:qq OPTIONAL EFFECTIVE ADDRESS EXTENSION

MOTOROLA INSTRUCTION SET A - 187

Instruction Fields:

P: Reference (high I/O address)
MOVEP P:ea,[X or Y]:pp 16 15 8 7 0

MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)
MOVEP P:ea,[X or Y]:qq 16 15 8 7 0

MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)
MOVEP S,[X or Y]:pp 23 16 15 8 7 0

MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)
MOVEP S,X:qq 23 16 15 8 7 0

MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)
MOVEP S,Y:qq 23 16 15 8 7 0

MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q

{ea} MMMRRR Effective Address (see Table A-16 on page A-241)
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{X/Y} S Memory space [X,Y] (see Table A-17 on page A-241)
{X/Y} s Peripheral space [X,Y] (see Table A-17 on page A-241)

W Read/write-peripheral (see Table A-33 on page A-246)
{S,D} dddddd Source/Destination register [all on-chip registers] (see Table A-22

on page A-243)

A - 188 INSTRUCTION SET MOTOROLA

A-6.80 Signed Multiply (MPY)

Description: Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n and store the
resulting product in the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Note: When the processor is in the Double Precision Multiply Mode, the
following instructions do not execute in the normal way and should only
be used as part of the double precision multiply algorithm:

MPY Y0, X0, A MPY Y0, X0, B

Condition Codes:

MPY MPY
Signed Multiply

Operation: Assembler Syntax:

±S1∗ S2➞D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1∗ S2➞D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1∗ 2-n)➞D (no parallel move) MPY (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 189

Instruction Formats and opcodes 1:

Instruction Fields:

Instruction Formats and opcode 2:

Instruction Fields:

23 16 15 8 7 0

MPY (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 0

MPY (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±+/-} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MPY (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 0

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)

A - 190 INSTRUCTION SET MOTOROLA

A-6.81 Mixed Multiply (MPY su/uu)

Description: Multiply the two 24-bit source operands S1 and S2 and store the resulting
product in the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcodes :

Instruction Fields:

MPY(su,uu) MPY(su,uu)
Mixed Multiply

Operation: Assembler Syntax:

±S1∗ S2➞D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1∗ S2➞D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MPYsu (±)S1,S2,D 23 16 15 8 7 0

MPYuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
(see Table A-30 on page A-245)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{s} [ss,us] (see Table A-40 on page A-249)

MOTOROLA INSTRUCTION SET A - 191

A-6.82 Signed Multiply with Immediate Operand (MPYI)

Description: Multiply the immediate 24-bit source operand #xxxxxx with the 24-bit
register source operand S and store the resulting product in the specified 56-bit
destination accumulator D. The “–” sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields:

MPYI MPYI
Signed Multiply with Immediate Operand

Operation: Assembler Syntax:

±#xxxxxx∗ S➞D MPYI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

MPYI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word

A - 192 INSTRUCTION SET MOTOROLA

A-6.83 Signed Multiply and Round (MPYR)

Description: Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using either convergent or two’s complement rounding, and store it in the specified 56-bit
destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign option
is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MPYR MPYR
Signed Multiply and Round

Operation: Assembler Syntax:

±S1∗ S2+r➞D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1∗ S2+r➞D (parallel move) MPYR (±)S2,S1,D (parallel move)

±(S1∗ 2-n)+r➞D (no parallel move) MPYR (±)S,#n,D (no parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 193

Instruction Formats and opcodes 1:

Instruction Fields 1:

Instruction Formats and opcode 2:

Instruction Fields 2:

23 16 15 8 7 0

MPYR (±)S1,S2,D DATA BUS MOVE FIELD 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
 (see Table A-26 on page A-244)

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)

23 16 15 8 7 0

MPYR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1

{S} QQ Source register [Y1,X0,Y0,X1]] (see Table A-27 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
{#n} sssss Immediate operand (see Table A-32 on page A-246)

A - 194 INSTRUCTION SET MOTOROLA

A-6.84 Signed Multiply and Round with Immediate Operand (MPYRI)

Description: Multiply the two signed 24-bit source operands #xxxxxx and S, round the
result using either convergent or two’s complement rounding, and store it in the specified
56-bit destination accumulator D.

The “–” sign option is used to negate the product prior to rounding. The default sign option
is “+”.

The contribution of the LS bits of the result is rounded into the upper portion of the
destination accumulator. Once the rounding has been completed, the LS bits of the
destination accumulator D are loaded with zeros to maintain an unbiased accumulator
value which may be reused by the next instruction. The upper portion of the accumulator
contains the rounded result which may be read out to the data buses. Refer to the RND
instruction for more complete information on the rounding process.

Condition Codes:

MPYRI MPYRI
Signed Multiply and Round

with Immediate Operand

Operation: Assembler Syntax:

±#xxxxxx∗ S+r ➞D MPYRI (±)#xxxxxx,S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 195

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

MPYRI (±)#xxxxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

IMMEDIATE DATA EXTENSION

{S} qq Source register [X0,Y0,X1,Y1] (see Table A-28 on page A-244)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{±} k Sign [+,-] (see Table A-29 on page A-244)
#xxxxxx 24-bit Immediate Long Data extension word

A - 196 INSTRUCTION SET MOTOROLA

A-6.85 Negate Accumulator (NEG)

Description: Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, twos-complement operation.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

NEG NEG
Negate Accumulator

Operation: Assembler Syntax:

0–D ➞ D (parallel move) NEG D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NEG D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 197

A-6.86 No Operation (NOP)

Description: Increment the program counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields : None

NOP NOP
No Operation

Operation: Assembler Syntax:

PC+1➞PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NOP 0

A - 198 INSTRUCTION SET MOTOROLA

A-6.87 Norm Accumulator Iteration (NORM)

where E denotes the logical complement of E, and
where • denotes the logical AND operator

Description: Perform one normalization iteration on the specified destination operand D,
update the specified address register Rn based upon the results of that iteration, and store
the result back in the destination accumulator. This is a 56-bit operation. If the accumulator
extension is not in use, the accumulator is unnormalized, and the accumulator is not zero,
the destination operand is arithmetically shifted one bit to the left, and the specified
address register is decremented by 1. If the accumulator extension register is in use, the
destination operand is arithmetically shifted one bit to the right, and the specified address
register is incremented by 1. If the accumulator is normalized or zero, a NOP is executed
and the specified address register is not affected. Since the operation of the NORM
instruction depends on the E, U, and Z condition code register bits, these bits must
correctly reflect the current state of the destination accumulator prior to executing the
NORM instruction.

Condition Codes:

NORM NORM
Norm Accumulator Iteration

Operation: Assembler Syntax:

If E • U • Z=1, then ASL D and Rn–1➞Rn
else if E=1, then ASR D and Rn+1➞R
else NOP

NORM Rn,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● Set if bit 55 is changed as a result of a left shift
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 199

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

NORM Rn,D 0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{Rn} RRR Address register [R0-R7]

A - 200 INSTRUCTION SET MOTOROLA

A-6.88 Fast Accumulator Normalization (NORMF)

Description: Arithmetically shift the destination accumulator either left or right as
specified by the source operand sign and value. If the source operand is negative then the
accumulator is left shifted, and if the source operand is positive then it is right shifted. The
source accumulator value should be between +56 to -55 (or +40 to -39 in sixteen bit
mode). This instruction can be used to normalize the specified accumulator D, by
arithmetically shifting it either left or right so as to bring the leading one or zero to bit
location 46. The number of needed shifts is specified by the source operand. This number
could be calculated by a previous CLB instruction. For normalization the source
accumulator value should be between +8 to -47 (or +8 to -31 in sixteen bit mode).

This is a 56 bit operation.

Condition Codes:

NORMF NORMF
Fast Accumulator Normalization

Operation: Assembler Syntax:

If S[23]=0 then ASR S,D
else ASL -S,D

NORMF S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● V Set if bit 55 is changed any time during the shift operation. Cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction.

MOTOROLA INSTRUCTION SET A - 201

Example:

CLB A,B ;Count leading bits.

NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands.

MOVE B1,N1 ;Update N1 with shift amount

MOVE (R1)+N1 ;Increment or decrement exponent

Explanation of example: Prior to execution, the 56-bit A accumulator contains the value
$20:000000:000000. The CLB instruction updates the B accumulator to the number of
needed shifts, 7 in this example. The NORMF instruction performs 7 shifts to the right on
A accumulator, and normalization of A is achieved. The exponent register is updated
according to the number of shifts.

Instruction Formats and opcode

Instruction Fields:

23 16 15 8 7 0

NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (see Table A-15 on page A-240)
{D} D Destination accumulator [A,B] (see Table A-10 on page A-239)

$20:000000:000000

B: $00:000007:000000

A:

Before execution

$20:000000:000000

After execution

A: $00:400000:000000

A:CLB A,B

NORMF B1,A

A - 202 INSTRUCTION SET MOTOROLA

A-6.89 Logical Complement (NOT)

where “—” denotes the logical NOT operator

Description: Take the ones complement of bits 47–24 of the destination operand D and
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

NOT NOT
Logical Compliment

Operation: Assembler Syntax:

D[47:24] ➞ D[47:24] (parallel move) NOT D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

NOT D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 203

A-6.90 Logical Inclusive OR (OR)

where + denotes the logical inclusive OR operator

Description: Logically inclusive OR the source operand S with bits 47–24 of the
destination operand D and store the result in bits 47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Condition Codes:

OR OR
Logical Inclusive OR

Operation: Assembler Syntax:

S+D[47:24] ➞ D[47:24] (parallel move) OR S,D (parallel move)

#xx+D[47:24] ➞ D[47:24] OR #xx,D

#xxxxxx+D[47:24] ➞ D[47:24] OR #xxxxxx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ✕

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 204 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

OR S,D DATA BUS MOVE FIELD 0 1 J J d 0 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0

OR #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

IMMEDIATE DATA EXTENSION

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table A-12 on page A-239)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 205

A-6.91 OR Immediate with Control Register (ORI)

where + denotes the logical inclusive OR operator

Description: Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the condition code register is specified as the
destination operand.

Condition Codes:

ORI ORI
OR Immediate with Control register

Operation: Assembler Syntax:

#xx+D ➞ D OR(I) #xx,D

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

For CCR Operand:
● S Set if bit 7 of the immediate operand is set
● L Set if bit 6 of the immediate operand is set
● E Set if bit 5 of the immediate operand is set
● U Set if bit 4 of the immediate operand is set
● N Set if bit 3 of the immediate operand is set
● Z Set if bit 2 of the immediate operand is set
● V Set if bit 1 of the immediate operand is set
● C Set if bit 0 of the immediate operand is set
For MR and OMR Operands: The condition codes are not affected using these
operands.

A - 206 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction fields:

23 16 15 8 7 0

OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table A-13 on
page A-239)

{#xx} iiiiiiii Immediate Short Data

MOTOROLA INSTRUCTION SET A - 207

A-6.92 Program-Cache Flush (PFLUSH)

Description: Flush the whole instruction cache, unlock all cache sectors, set the LRU
stack and tag registers to their default values.

The PFLUSH instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFLUSH PFLUSH
Program Cache Flush

Operation: Assembler Syntax:

Flush instruction cache PFLUSH

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFLUSH 0 1 1

A - 208 INSTRUCTION SET MOTOROLA

A-6.93 Program-Cache Flush Unlock Sectors(PFLUSHUN)

Description: Flush the instruction cache sectors which are unlocked, set the LRU stack
to its default value and set the unlocked tag registers to their default values.

The PFLUSHUN instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFLUSHUN PFLUSHUN
Program Cache Flush Unlocked Sectors

Operation: Assembler Syntax:

Flush Unlocked instruction cache sectors PFLUSHUN

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFLUSHUN 0 1

MOTOROLA INSTRUCTION SET A - 209

A-6.94 Program-Cache Global Unlock (PFREE)

Description: Unlock all the locked cache sectors in the instruction cache.

The PFREE instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

PFREE PFREE
Program Cache Global Unlock

Operation: Assembler Syntax:

Unlock all locked sectors PFREE

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

PFREE 0 1 0

A - 210 INSTRUCTION SET MOTOROLA

A-6.95 Lock Instruction Cache Relative Sector (PLOCKR)

Description:

Lock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, then load the 17 most significant
bits of the sum into the least recently used cache sector tag, and then lock that cache
sector. Update the LRU stack accordingly.

The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the address to be locked.

The PLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause an
illegal instruction trap.

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

: None

PLOCKR PLOCKR

Lock Instruction Cache Relative Sector

Operation: Assembler Syntax:

Lock sector by PC+xxxx PLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

PLOCKR xxxx

0 1 1 1 1

ADDRESS EXTENSION WORD

MOTOROLA INSTRUCTION SET A - 211

A-6.96 Unlock instruction Cache Sector (PUNLOCK)

Description:

Unlock the cache sector to which the specified effective address belongs. If
the specified effective address does not belong to any cache sector, and is therefore
definitely unlocked, nevertheless, load the least recently used cache sector tag with the17
most significant bits of the specified address. Update the LRU stack accordingly. All
memory alterable addressing modes may be used for the effective address, but not a short
absolute address.

The PUNLOCK instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

:

PUNLOCK PUNLOCK

Unlock Instruction Cache Sector

Operation: Assembler Syntax:

Unlock sector by effective address PUNLOCK ea

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

PUNLOCK ea

0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 1

ADDRESS EXTENSION WORD

{ea} MMMRRR

Effective Address (see Table A-18 on page A-241)

A - 212 INSTRUCTION SET MOTOROLA

A-6.97 Unlock instruction Cache Relative Sector (PUNLOCKR)

Description:

Unlock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, and is therefore definitely
unlocked, nevertheless, load the least recently used cache sector tag with the 17 most
significant bits of the sum. Update the LRU stack accordingly.

The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the address to be locked.

The PUNLOCKR instruction is enabled only in Cache Mode. In PRAM Mode it will cause
an illegal instruction trap.

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

: None

PUNLOCKR PUNLOCKR

Unlock Instruction Cache Relative Sector

Operation: Assembler Syntax:

Unlock sector by PC+xxxx PUNLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

PUNLOCKR xxxx

0 1 1 1 0

ADDRESS EXTENSION WORD

MOTOROLA INSTRUCTION SET A - 213

A-6.98 Repeat Next Instruction (REP)

Description:

 Repeat the

single-word instruction

 immediately following the REP
instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 24-bit loop counter (LC) register. The
single-word instruction is then executed the specified number of times, decrementing the
loop counter (LC) after each execution until LC=1. When the REP instruction is in effect,
the repeated instruction is fetched only one time, and it remains in the instruction register
for the duration of the loop count. Thus,

the REP instruction is not interruptible

(sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes may be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 24-bit value that is to be loaded into the loop counter (LC).

If the system stack register SSH is specified as a source operand, the system stack
pointer (SP) is postdecremented by 1 after SSH has been read.

REP REP

Repeat Next Instruction

Operation: Assembler Syntax:

LC

➞

 TEMP; [X or y]:ea

➞

 LC REP [X or Y]:ea
Repeat next instruction until LC=1
TEMP

➞

 LC

LC

➞

 TEMP; [X or Y]:aa

➞

 LC REP [X or Y]:aa
Repeat next instruction until LC=1
TEMP

➞

 LC

LC

➞

 TEMP;S

➞

 LC REP S
Repeat next instruction until LC=1
TEMP

➞

 LC

LC

➞

 TEMP;#xxx

➞

 LC REP #xxx
Repeat next instruction until LC=1
TEMP

➞

 LC

A - 214 INSTRUCTION SET MOTOROLA

Condition Codes

:

Instruction Formats and opcodes

:

Instruction Fields

:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔

This bit is changed according to the standard definition

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

REP [X or Y]:ea

0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP [X or Y]:aa

0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP #xxx

0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

REP S

0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0

{ea} MMMRRR

Effective Address (see Table A-19 on page A-242)

{X/Y} S

Memory Space [X,Y] (see Table A-17 on page A-241)

{aa} aaaaaa

Absolute Short Address

{#xxx} hhhhiiiiiiii

Immediate Short Data

{S} dddddd

Source register [all on-chip registers] (see Table A-22 on page A-
243)

MOTOROLA INSTRUCTION SET A - 215

A-6.99 Reset On-Chip Peripheral Devices (RESET)

Description:

 Reset the interrupt priority register and all on-chip peripherals. This is a

software reset

 which is

NOT

 equivalent to a hardware reset since only on-chip
peripherals and the interrupt structure are affected. The processor state is not affected,
and execution continues with the next instruction. All interrupt sources are disabled except
for the stack error, NMI, illegal instruction, Trap, Debug request and hardware reset
interrupts.

Condition Codes

:

Instruction Formats and opcode

:

Instruction

Fields:

None

RESET RESET

Reset On-Chip Peripherals Devices

Operation: Assembler Syntax:

Reset the interrupt priority register and all
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕

This bit is unchanged by the instruction

23 16 15 8 7 0

RESET

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

A - 216 INSTRUCTION SET MOTOROLA

A-6.100 Round Accumulator (RND)

Description:

 Round the 56-bit value in the specified destination operand D and store the
result in the destination accumulator (A or B). The contribution of the LS bits of the
operand is rounded into the upper portion of the operand by adding a rounding constant
to the LS bits of the operand. The upper portion of the destination accumulator contains
the rounded result. The boundary between the lower portion and the upper portion is
determined by the scaling mode bits S0 and S1 in the status register (SR).

Two types of rounding can be used: convergent rounding (also called round to nearest
(even)) or two’s complement rounding. The type of rounding is selected by the rounding
mode bit (RM) in the MR portion of the status register.

In both these rounding modes a rounding constant is first added to the unrounded result.
The value of the rounding constant added is determined by the scaling mode bits S0 and
S1 in the status register (SR). A “1” is positioned in the rounding constant aligned with the
most significant bit of the current LS portion, i.e. the rounding constant weight is actually
equal to half the weight of the upper’s portion least significant bit.

The following table shows the rounding position and rounding constant as determined by
the

scaling mode bits:

Secondly, if convergent rounding is used, the result of this addition is tested and if all the
bits of the result to the right of, and including, the rounding position are cleared, then the
bit to the left of the rounding position is cleared in the result. This ensures that the result
will not be biased.

RND RND

Round Accumulator

Operation: Assembler Syntax:

D+r

➞

 D (parallel move) RND D (parallel move)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0

MOTOROLA INSTRUCTION SET A - 217

Thirdly, in both rounding modes, the least significant bits of the result are cleared. The
number of least significant bits cleared is determined by the scaling mode bits in the status
register. All bits to the right of, and including, the rounding position are cleared in the
result.

In Sixteen Bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is
rounded and stored in the destination accumulator (A or B). This implies that the boundary
between the lower portion and upper portion is in a different position then in 24 bit mode.
The following table shows the rounding position and rounding constant in sixteen bit
arithmetic mode, as determined by the scaling mode bits:

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

RND D DATA BUS MOVE FIELD 0 0 0 1 d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 33 32 23 22 21 - 8

0 0 No Scaling 31 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 32 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 30 0. . . .0 0 0 1 0. . . .0

A - 218 INSTRUCTION SET MOTOROLA

A-6.101 Rotate Left (ROL)

Assembler Syntax: ROL D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the left and store
the result in the destination accumulator.The carry bit receives the previous value of bit 47
of the operand.The previous value of the carry bit is shifted into bit 24 of the operand.This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Condition Codes:

Instruction Formats and opcodes:

ROL ROL
Rotate Left

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
● C Set if bit 47 of the destination operand is set, cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

ROL D DATA BUS MOVE FIELD 0 0 1 1 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

47 24

C (parallel move)Operation:

MOTOROLA INSTRUCTION SET A - 219

Instruction Fields:

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 220 INSTRUCTION SET MOTOROLA

A-6.102 Rotate Right (ROR)

Assembler Syntax: ROR D (parallel move)

Description: Rotate bits 47–24 of the destination operand D one bit to the right and store
the result in the destination accumulator.The carry bit receives the previous value of bit 24
of the operand.The previous value of the carry bit is shifted into bit 47 of the operand. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected.

Condition Codes:

ROR ROR
Rotate Right

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ● ● ● ●

CCR

● N Set if bit 47 of the result is set
● Z Set if bits 47–24 of the result are zero
● V Always cleared
● C Set if bit 24 of the destination operand is set, cleared otherwise.
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

47 24

C (parallel move)Operation:

MOTOROLA INSTRUCTION SET A - 221

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

ROR D DATA BUS MOVE FIELD 0 0 1 0 d 1 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

A - 222 INSTRUCTION SET MOTOROLA

A-6.103 Return from Interrupt (RTI)

Description: Pull the program counter (PC) and the status register (SR) from the system
stack. The previous program counter and status register are lost.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

RTI RTI
Return from Interrupt

Operation: Assembler Syntax:

SSH ➞ PC; SSL ➞ SR; SP–1 ➞ SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

● ● ● ● ● ● ● ●

CCR

● All All the Status Register bits are set according to the value pulled from the stack

23 16 15 8 7 0

RTI 0 1 0 0

MOTOROLA INSTRUCTION SET A - 223

A-6.104 Return from Subroutine (RTS)

Description: Pull the program counter (PC) from the system stack. The previous program
counter is lost. The status register (SR) is not affected.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

RTS RTS
Return from Subroutine

Operation: Assembler Syntax:

SSH ➞ PC; SP–1 ➞ SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

RTS 0 1 1 0 0

A - 224 INSTRUCTION SET MOTOROLA

A-6.105 Subtract Long with Carry (SBC)

Description: Subtract the source operand S and the carry bit C of the condition code
register from the destination operand D and store the result in the destination
accumulator. Long words (48 bits) are subtracted from the (56-bit) destination
accumulator.

Note: The carry bit is set correctly for multiple-precision arithmetic using long-
word operands if the extension register of the destination accumulator
(A2 or B2) is the sign extension of bit 47 of the destination accumulator
(A or B).

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

SBC SBC
Subtract Long with Carry

Operation: Assembler Syntax:

D–S–C ➞ D (parallel move) SBC S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SBC S,D DATA BUS MOVE FIELD 0 0 1 J d 1 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} J Source register [X,Y] (see Table A-11 on page A-239)
{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 225

A-6.106 Stop Instruction Processing (STOP)

Description: Enter the STOP processing state. All activity in the processor is suspended
until the RESET,DE or IRQA pin is asserted or the Debug Request JTAG command is
detected. The clock oscillator is gated off internally. The STOP processing state is a low-
power standby state.

During the STOP state, the destination port is in an idle state with the control signals held
inactive, the data pins are high impedance, and the address pins are unchanged from the
previous instruction.

If the exit from the STOP state was caused by a low level on the RESET pin, then the
processor will enter the reset processing state.

If the exit from the STOP state was caused by a low level on the IRQA pin, then the
processor will service the highest priority pending interrupt and will not service the IRQA
interrupt unless it is highest priority. If no interrupt is pending, the processor will resume
program execution at the instruction following the STOP instruction that caused the entry
into the STOP state. Program execution (interrupt or normal flow) will resume after an
internal delay counter counts:

• If the Stop Delay (SD, OMR[6]) bit is cleared - 131,070 clock cycles

• If the Stop Delay (SD, OMR[6]) bit is set - 24 clock cycles

• If the STOP Processing State (PSTP, PCTL[17]) is set - 8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval. If the IRQA pin is
asserted when the STOP instruction is executed, the clock will not be gated off, and only
the internal delay counter will be started.

STOP STOP
Stop Instruction Processing

Operation: Assembler Syntax:

Enter the stop processing state and stop the
clock oscillator

STOP

A - 226 INSTRUCTION SET MOTOROLA

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

MOTOROLA INSTRUCTION SET A - 227

A-6.107 Subtract (SUB)

Description: Subtract the source operand from the destination operand D and store the
result in the destination operand D. The source can be a register (word - 24 bits, long word
- 48 bits or accumulator - 56 bits), short immediate (6 bits) or long immediate (24 bits).

When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is,
the 6 bits will be right aligned and the remaining bits will be zeroed to form a 24-bit source
operand.

Note: The carry bit is set correctly using word or long-word source operands if
the extension register of the destination accumulator (A2 or B2) is the
sign extension of bit 47 of the destination accumulator (A or B). The carry
bit is always set correctly using accumulator source operands.

Condition Codes:

SUB SUB
Subtract

Operation: Assembler Syntax:

D–S ➞ D (parallel move) SUB S, D (parallel move)

D–#xx ➞ D SUB #xx, D

D–#xxxxxx ➞ D SUB #xxxxxx ,D

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

A - 228 INSTRUCTION SET MOTOROLA

Instruction Formats and opcodes:

Instruction Fields:

23 16 15 8 7 0

SUB S,D DATA BUS MOVE FIELD 0 J J J d 1 0 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

SUB #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0

SUB #xxxxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

IMMEDIATE DATA EXTENSION

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table A-14 on page A-240)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

MOTOROLA INSTRUCTION SET A - 229

A-6.108 Shift Left and Subtract Accumulators (SUBL)

Description: Subtract the source operand S from two times the destination operand D
and store the result in the destination accumulator. The destination operand D is
arithmetically shifted one bit to the left, and a zero is shifted into the LS bit of D prior to the
subtraction operation. The carry bit is set correctly if the source operand does not overflow
as a result of the left shift operation. The overflow bit may be set as a result of either the
shifting or subtraction operation (or both). This instruction is useful for efficient divide and
decimation in time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

SUBL SUBL
Shift Left and Subtract Accumulators

Operation: Assembler Syntax:

2∗ D–S ➞ D (parallel move) SUBL S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✔

CCR

● V Set if overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SUBL S,D DATA BUS MOVE FIELD 0 0 0 1 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

A - 230 INSTRUCTION SET MOTOROLA

Instruction Fields:

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

MOTOROLA INSTRUCTION SET A - 231

A-6.109 Shift Right and Subtract Accumulators (SUBR)

Description: Subtract the source operand S from one-half the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the subtraction
operation. In contrast to the SUBL instruction, the carry bit is always set correctly, and the
overflow bit can only be set by the subtraction operation, and not by an overflow due to
the initial shifting operation. This instruction is useful for efficient divide and decimation in
time (DIT) FFT algorithms.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

SUBR SUBR
Shift Right and Subtract Accumulators

Operation: Assembler Syntax:

D/2 –S ➞ D (parallel move) SUBR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

SUBR S,D DATA BUS MOVE FIELD 0 0 0 0 d 1 1 0

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{D} d Destination accumulator [A,B] (see Table A-10 on page A-239)
{S} The source accumulator is B if the destination accumulator (selected by

the d bit in the opcode) is A, or A if the destination accumulator is B

A - 232 INSTRUCTION SET MOTOROLA

A-6.110 Transfer Conditionally (Tcc)

Description: Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source register
S2 and a second destination register D2 are also specified, transfer data from address
register S2 to address register D2 if the specified condition is true. If the specified
condition is false, a NOP is executed.

The conditions that the term “cc” can specify are listed on Table A-42 on page A-250.

When used after the CMP or CMPM instructions, the Tcc instruction can perform many
useful functions such as a “maximum value,” “minimum value,” “maximum absolute value,”
or “minimum absolute value” function. The desired value is stored in the destination
accumulator D1. If address register S2 is used as an address pointer into an array of data,
the address of the desired value is stored in the address register D2. The Tcc instruction
may be used after any instruction and allows efficient searching and sorting algorithms.

The Tcc instruction uses the internal data ALU paths and internal address ALU paths. The
Tcc instruction does not affect the condition code bits.

Condition Codes:

Tcc Tcc
Transfer Conditionally

Operation: Assembler Syntax:

If cc, then S1 ➞ D1 Tcc S1,D1

If cc, then S1 ➞ D1 and S2 ➞ D2 Tcc S1,D1 S2,D2

If cc, then S2 ➞ D2 Tcc S2,D2

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

MOTOROLA INSTRUCTION SET A - 233

Instruction Formats and opcode:

Instruction Fields:

23 16 15 8 7 0

Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0

Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0

Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T

{cc} CCCC Condition code (see Table A-43 on page A-251)
{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{D1} d Destination accumulator [A/B] (see Table A-10 on page A-239)
{S2} ttt Source address register [R0-R7]
{D2} TTT Destination Address register [R0-R7]

A - 234 INSTRUCTION SET MOTOROLA

A-6.111 Transfer Data ALU Register (TFR)

Description: Transfer data from the specified source data ALU register S to the specified
destination data ALU accumulator D. TFR uses the internal data ALU data paths; thus,
data does not pass through the data shifter/limiters. This allows the full 56-bit contents of
one of the accumulators to be transferred into the other accumulator without data shifting
and/or limiting. Moreover, since TFR uses the internal data ALU data paths, parallel
moves are possible.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

TFR TFR
Transfer Data ALU Register

Operation: Assembler Syntax:

S➞D (parallel move) TFR S,D (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TFR S,D DATA BUS MOVE FIELD 0 J J J d 0 0 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table A-24 on page A-243)
{D} d Destination accumulator [A/B] (see Table A-10 on page A-239)

MOTOROLA INSTRUCTION SET A - 235

A-6.112 Software Interrupt (TRAP)

Description: Suspend normal instruction execution and begin TRAP exception
processing. The interrupt priority level (I1,I0) is set to 3 in the status register (SR) if a long
interrupt service routine is used.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

TRAP TRAP
Software Interrupt

Operation: Assembler Syntax:

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TRAP 0 1 1 0

A - 236 INSTRUCTION SET MOTOROLA

A-6.113 Conditional Software Interrupt (TRAPcc)

Description:

If the specified condition is true, normal instruction execution is suspended and software
exception processing is initiated. The interrupt priority level (I1,I0) is set to 3 in the status
register if a long interrupt service routine is used. If the specified condition is false,
instruction execution continues with the next instruction.

The conditions that the term “cc” may specify are listed on Table A-42 on page A-250.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields:

TRAPcc TRAPcc
Conditional Software Interrupt

Operation: Assembler Syntax:

If cc then Begin software exception processing TRAPcc

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C

{cc} CCCC Condition code (see Table A-43 on page A-251)

MOTOROLA INSTRUCTION SET A - 237

A-6.114 Test Accumulator (TST)

Description: Compare the specified source accumulator S with zero and set the condition
codes accordingly. No result is stored although the condition codes are updated.

Condition Codes:

Instruction Formats and opcodes:

Instruction Fields:

TST TST
Test Accumulator

Operation: Assembler Syntax:

S–0 (parallel move) TST S (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

✔ ✔ ✔ ✔ ✔ ✔ ● ✕

CCR

● V Always cleared
✔ This bit is changed according to the standard definition
✕ This bit is unchanged by the instruction

23 16 15 8 7 0

TST S DATA BUS MOVE FIELD 0 0 0 0 d 0 1 1

OPTIONAL EFFECTIVE ADDRESS EXTENSION

{S} d Source accumulator [A,B] (see Table A-10 on page A-239)

A - 238 INSTRUCTION SET MOTOROLA

A-6.115 Wait for interrupt (WAIT)

Description: Enter the low-power standby WAIT processing state. The internal clocks to
the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs or an enabled DMA channel receives a
request. The clock oscillator and the internal I/O peripheral clocks remain active. If WAIT
is executed when an interrupt is pending, the interrupt will be processed; the effect will be
the same as if the processor never entered the WAIT state. If WAIT is executed when the
DMA is active, the effect will be the same as if the processor never entered the WAIT state.
When an unmasked interrupt or external (hardware) processor RESET occurs, the
processor leaves the WAIT state and begins exception processing of the unmasked
interrupt or RESET condition. The processor will exit from the WAIT state also when a
Debug Request (DE) pin is asserted or when a Debug Request JTAG command is
detected.

Condition Codes:

Instruction Formats and opcode:

Instruction Fields: None

WAIT WAIT
Wait for Interrupt or DMA request

Operation: Assembler Syntax:

Disable clocks to the processor core and
enter the WAIT processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

CCR

✕ This bit is unchanged by the instruction

23 16 15 8 7 0

WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

MOTOROLA INSTRUCTION SET A - 239

A-7 INSTRUCTION PARTIAL ENCODING

This section gives the encodings for (1) various groupings of registers used in the instruc-
tion encodings, (2) condition code combinations, (3) addressing, and (4) addressing
modes. The symbols used in decoding the various fields of an instruction are identical to
those used in the Opcode section of the individual instruction descriptions.

A-7.1 Partial Encodings for Use in Instruction Encoding

Table A-10. Destination Accumulator Encoding

Table A-11. Data ALU Operands Encoding

Table A-12. Data ALU Source Operands Encoding

Table A-13. Program Control Unit Register Encoding

D/ d/S/D

A 0

B 1

S J
X 0
Y 1

S JJ
X0 00
Y0 01
X1 10
Y1 11

Register EE
MR 00

CCR 01
COM 10
EOM 11

A - 240 INSTRUCTION SET MOTOROLA

Table A-14. Data ALU Operands Encoding

* The source accumulator is B if the destination accumulator (selected by the d bit in the
opcode) is A, or A if the destination accumulator is B.

Table A-15. Data ALU operands encoding

* The selected accumulator is B if the source two accumulator (selected by the d bit in the
opcode) is A, or A if the source two accumulator is B.

S J J J
B/A* 001

X 010
Y 011
X0 100
Y0 101
X1 110
Y1 111

SSS/sss S,D qqq S,D ggg S,D

000 reserved 000 reserved 000 B/A*

001 reserved 001 reserved 001 reserved

010 A1 010 A0 010 reserved

011 B1 011 B0 011 reserved

100 X0 100 X0 100 X0

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1

MOTOROLA INSTRUCTION SET A - 241

Table A-16. Effective Addressing Mode Encoding #1

“rrr” refers to an address register R0-R7

Table A-17. Memory/Peripheral Space

Table A-18. Effective Addressing Mode Encoding #2

“rrr” refers to an address register R0-R7

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Absolute address 1 1 0 0 0 0
Immediate data 1 1 0 1 0 0

Space S
X Memory 0
Y Memory 1

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Absolute address 1 10 0 0 0

A - 242 INSTRUCTION SET MOTOROLA

Table A-19. Effective Addressing Mode Encoding #3

“rrr” refers to an address register R0-R7

Table A-20. Effective Addressing Mode Encoding #4

“rrr” refers to an address register R0-R7

Table A-21. Triple-Bit Register Encoding

Effective
Addressing Mode

MMMRRR

(Rn)-Nn 0 0 0 r r r
(Rn)+Nn 0 0 1 r r r

(Rn)- 0 1 0 r r r
(Rn)+ 0 1 1 r r r
(Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r
-(Rn) 1 1 1 r r r

Effective
Addressing Mode

MMRRR

(Rn)-Nn 0 0 r r r
(Rn)+Nn 0 1 r r r

(Rn)- 1 0 r r r
(Rn)+ 1 1 r r r

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 - A0 R0 N0 M0 - VBA SZ

001 - B0 R1 N1 M1 - SC SR

010 - A2 R2 N2 M2 EP - OMR

011 - B2 R3 N3 M3 - - SP

100 X0 A1 R4 N4 M4 - - SSH

101 X1 B1 R5 N5 M5 - - SSL

110 Y0 A R6 N6 M6 - - LA

111 Y1 B R7 N7 M7 - - LC

MOTOROLA INSTRUCTION SET A - 243

Table A-22. Six-Bit Encoding For all On-Chip Registers

See Table A-21 for the specific encodings.

Table A-23. Long Move Register Encoding

Table A-24. Data ALU Source Registers Encoding

* The source accumulator is B if the destination accumulator (selected by the d bit in the
opcode) is A, or A if the destination accumulator is B.

Destination Register
D D D D D D /

d d d d d d
4 registers in Data ALU 0001DD

8 accumulators in Data ALU 001DDD
8 address registers in AGU 010TTT

8 address offset registers in AGU 011NNN
8 address modifier registers in AGU 100FFF

1address register in AGU 101EEE
2 program controller register 110VVV
8 program controller registers 111GGG

S S1 S2
S

S/L
D D1 D2

D
Sign Ext

D
Zero

LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0
B10 B1 B0 no B10 B1 B0 no no 0 0 1
X X1 X0 no X X1 X0 no no 0 1 0
Y Y1 Y0 no Y Y1 Y0 no no 0 1 1
A A1 A0 yes A A1 A0 A2 no 1 0 0
B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0
BA B A yes BA B A B2,A2 B0,A0 1 1 1

S J J J
B/A* 000
X0 100
Y0 101
X1 110
Y1 111

A - 244 INSTRUCTION SET MOTOROLA

Table A-25. AGU Address and Offset Registers Encoding

Table A-26. Data ALU Multiply Operands Encoding #1

Note: Only the indicated S1*S2 combinations are valid.X1*X1 and Y1*Y1 are not valid.

Table A-27. Data ALU Multiply Operands Encoding #2

Table A-28. Data ALU Multiply Operands Encoding #3

Table A-29. Data ALU Multiply Sign Encoding

Dest. Addr. Reg. D dddd
R0-R7 onnn
N0-N7 1nnn

S1*S2 Q Q Q S1*S2 Q Q Q
X0,X0 0 0 0 X0,Y1 1 0 0
Y0,Y0 0 0 1 Y0,X0 1 0 1
X1,X0 0 1 0 X1,Y0 1 1 0
Y1,Y0 0 1 1 Y1,X1 1 1 1

S Q Q
Y1 00
X0 01
Y0 10
X1 11

S qq
X0 00
Y0 01
X1 10
Y1 11

Sig
n

k

+ 0
- 1

MOTOROLA INSTRUCTION SET A - 245

Table A-30. Data ALU Multiply Operands Encoding #3

Table A-31. 5-Bit Register Encoding #1

“rrr”=Rn number, “nnn”=Nn number

S1*S2 Q Q Q Q S1*S2 Q Q Q Q
X0,X0 0 0 0 0 X0,Y1 01 0 0
Y0,Y0 0 0 0 1 Y0,X0 01 0 1
X1,X0 0 0 1 0 X1,Y0 01 1 0
Y1,Y0 0 0 1 1 Y1,X1 01 1 1
X1,X1 1 0 0 0 Y1,X0 1 1 0 0
Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1
X0,X1 1 0 1 0 Y0,X1 1 1 1 0
Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1

D/S
ddddd /
eeeee

D/S
ddddd /
eeeee

X0 00100 B2 01011
X1 00101 A1 01100
Y0 00110 B1 01101
Y1 00111 A 01110
A0 01000 B 01111
B0 01001 R0-R7 10 r r r
A2 01010 N0-N7 11 n n n

A - 246 INSTRUCTION SET MOTOROLA

Table A-32. Immediate Data ALU Operand Encoding

Table A-33. Write Control Encoding

Table A-34. ALU Registers Encoding

See Table A-21 for the specific encodings.

n sssss constant
1 00001 010000000000000000000000
2 00010 001000000000000000000000
3 00011 000100000000000000000000
4 00100 000010000000000000000000
5 00101 000001000000000000000000
6 00110 000000100000000000000000
7 00111 000000010000000000000000
8 01000 000000001000000000000000
9 01001 000000000100000000000000
10 01010 000000000010000000000000
11 01011 000000000001000000000000
12 01100 000000000000100000000000
13 01101 000000000000010000000000
14 01110 000000000000001000000000
15 01111 000000000000000100000000
16 10000 000000000000000010000000
17 10001 000000000000000001000000
18 10010 000000000000000000100000
19 10011 000000000000000000010000
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010
23 10111 000000000000000000000001

Operation W
Read Register or Peripheral 0
Write Register or Peripheral 1

Destination Register D D D D
4 registers in Data ALU 01DD

8 accumulators in Data ALU 1DDD

MOTOROLA INSTRUCTION SET A - 247

Table A-35. X:R Operand Registers Encoding

Table A-36. R:Y Operand Registers Encoding

Table A-37. Single-Bit Special Register Encoding Tables

S1,
D1

f f D2 F

X0 00 Y0 0
X1 01 Y1 1
A 10
B 11

D1 e
S2,
D2

f f

X0 0 Y0 00
X1 1 Y1 01

A 10
B 11

d X:R Class II Opcode R:Y Class II Opcode
0 A ➞ X:<ea> , X0 ➞ A Y0 ➞ A , A ➞ Y:<ea>
1 B ➞ X:<ea> , X0 ➞ B Y0 ➞ B , B ➞ Y:<ea>

A - 248 INSTRUCTION SET MOTOROLA

Table A-38. X:Y: Move Operands Encoding Tables

where “sss” refers to an address register R0-R7

where “tt” refers to an address register R4-R7 or R0-R3 which is in the opposite address
register bank from the one used in the X effective address

Table A-39. Signed/Unsigned partial encoding #1

X Effective
Addressing

Mode
MMRRR

(Rn)+Nn 01sss
(Rn)- 10sss
(Rn)+ 11sss
(Rn) 00sss

Y Effective
Addressing

Mode
mmrr

(Rn)+Nn 01tt
(Rn)- 10tt
(Rn)+ 11tt
(Rn) 00tt

S1,D1 e e S2,D2 f f
X0 00 Y0 00
X1 01 Y1 01
A 10 A 10
B 11 B 11

ss/su/uu ss
ss 00
su 10
uu 11

reserved 01

MOTOROLA INSTRUCTION SET A - 249

Table A-40. Signed/Unsigned partial encoding #2

Table A-41. 5-Bit Register Encoding

where “nnn”=Mn number (M0-M7)

su/uu s
su 0
uu 1

S1,D1 ddddd
M0-M7 00nnn

EP 01010
VBA 10000
SC 10001
SZ 11000
SR 11001

OMR 11010
SP 11011

SSH 11100
SSL 11101
LA 11110
LC 11111

A - 250 INSTRUCTION SET MOTOROLA

Table A-42. Condition Codes Computation Equations

where

U denotes the logical complement of U,

+ denotes the logical OR operator,

• denotes the logical AND operator, and

⊕ denotes the logical Exclusive OR operator

“cc” Mnemonic Condition

CC(HS) carry clear (higher or same) C=0

CS(LO) carry set (lower) C=1

EC extension clear E=0

EQ equal Z=1

ES extension set E=1

GE greater than or equal N ⊕ V=0

GT greater than Z+(N ⊕ V)=0

LC limit clear L=0

LE less than or equal Z+(N ⊕ V)=1

LS limit set L=1

LT less than N ⊕ V=1

MI minus N=1

NE not equal Z=0

NR normalized Z+(U•E)=1

PL plus N=0

NN not normalized Z+(U•E)=0

MOTOROLA INSTRUCTION SET A - 251

Table A-43. Condition Codes Encoding

The condition code computation equations are listed on Table A-42

A-7.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions which allow parallel moves is divided into
the multiply and nonmultiply instruction encodings shown in the following subsection.

A-7.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the nonmultiply instruction’s operation code.

The 8-bit operation code=1QQQ dkkk where

QQQ=selects the inputs to the multiplier (see Table A-26)
kkk = three unencoded bits k2, k1, k0
d = destination accumulator
d = 0 ➞ A
d = 1 ➞ B

Table A-44. Operation Code K0-2 Decode

Mnemonic CCCC Mnemonic CCCC

CC(HS) 0000 CS(LO) 1000

GE 0001 LT 1001

NE 0010 EQ 1010

PL 0011 MI 1011

NN 0100 NR 1100

EC 0101 ES 1101

LC 0110 LS 1110

GT 0111 LE 1111

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

A - 252 INSTRUCTION SET MOTOROLA

A-7.2.2 NonMultiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the destina-
tion accumulator register.

The 8-bit operation code = 0JJJ Dkkk where JJJ=1/2 instruction number
kkk=1/2 instruction number
D=0 ➞ A
D=1 ➞ B

Table A-45. Nonmultiply Instruction Encoding

Note: * = Reserved

1 = Special Case #1

Table A-46. Special Case #1

JJJ
D = 0
Src

Oper

D = 1
Src

Oper

kkk

000 001 010 011 100 101 110 111

000 B A MOVE
1

TFR ADDR TST * CMP SUBR CMPM

001 B A ADD RND ADDL CLR SUB * SUBL NOT

010 B A — — ASR LSR — — ABS ROR

011 B A — — ASL LSL — — NEG ROL

010 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

011 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —

100 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

101 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

110 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

111 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

OPERCODE Operation

00000000 MOVE

00001000 reserved

