MDINK32/DINK32 User’s
Guide

Interactive Debugger for PowerPC Microprocessors

Motorola
RISC Applications

Release Date: August 30, 2000
Updated: August 31, 2000

Version 12.0
Revision 1.0

Altivec Enabled

MOTOROLA MDINK32/DINK32 Version 12.1
User’s Guide

© Copyright Motorola, Inc. 1993-2000
ALL RIGHTS RESERVED

You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so
long as this entire notice is retained without alteration in any modified and/or redistributed ver-
sions, and that such modified versions are clearly identified as such. No licenses are granted by
implication or otherwise under any patents or trademarks of Motorola, Inc.

The SOFTWARE is provided on an “AS IS” basis and without warranty. To the maximum extent
permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER
EXPRESSED OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY AGAINST
INFRINGEMENT WITH REGARD TO THE SOFTWARE (INCLUDING ANY MODIFIED
VERSIONS THEREOF) AND ANY ACCOMPANYING WRITTEN MATERIALS.

To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE
OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the mainte-
nance and support of the SOFTWARE.

-2 Dink32 R12 User’s Manual @ MOTOROLA

Chapter 1 DINK32 User’s Guide Index

Chapter 1, “DINK32 User’s Guide Index"

Chapter 2, “Introduction”

Chapter 3, “MDINK32/DINK32 Features"

Chapter 4, “MDINK32/DINK32 Commands"

Chapter 5, “DINK32 Command Form Summary"
Chapter 6, “Utilities"

Chapter 7, “User Program Execution”

Chapter 8, “Errors and Exceptions"

Chapter 9, “Restrictions”

Chapter 10, “Known Bugs"

Appendix A, “Adding Commands and Arguments"
Appendix B, “Adding ERROR Groups to MDINK/DINK32"
Appendix C, “History of MDINK32/DINK32 changes"”
Appendix D, “S-Record Format Description”
Appendix E, “Example Code"

Appendix F, “Updating DINK32 from the Web"
Appendix G, “Dynamic functions such as printf and variables such as memSpeed"
Appendix H, “MPC8240 (Kahlua) Drivers"

Appendix I, “MPC8240 DMA Memory Controller."
Appendix J, “MPC8240 12C Driver Library."
Appendix K, “MPC8240 120 Doorbell Driver"

Appendix L, “MPC8240 EPIC Interrupt Driver"

Appendix M, “Converting Dink32 to Little Endian”

@ MOTOROLA Chapter 1. DINK32 User’s Guide Index 1-3

Chapter 2
Introduction

DINK isan acronym for Demonstrative Interactive Nano Kernel.

DINK32 is a flexible software tool enabling evaluation and debugging of the PowerPC
32-bit microprocessors. The introduction of the PowerPC microprocessor architecture
provided an opportunity to create an interactive debugger independent from previous debug
monitors. Since the family of PowerPC microprocessors spans a wide market range,
DINK 32 hasto be extensible and portable, aswell as being specific enough to be useful for
awide variety of applications. It is designed to be both a hardware and software debugging
tool. DINK32 waswrittenin ANSI C and built with modular routines around a central core.
Only a few necessary functions were written in PowerPC assembly. This document
describes the DINK32 software, the DINK32 command set, utilities, user program
execution, errors and exceptions, and restrictions.

MDINK32 (Minimal DINK32) is a limited version of DINK32. It's major purpose is to
download versions of DINK32 to the board. Currently, MDINK32 is only available on
Excimer and Maximer boards. MDINK32 is supplied with the board. It is burned into sector
A15, which is protected. The user can obtain new executable versions of DINK32 from the
web site and download them onto the Excimer and Maximer board via MDINK32. New
versions of MDINK32 are only available by returning the board to Motorola for an
MDINKS32 upgrade or building it from the source code.

2-4 Dink32 R12 User’s Manual @ MOTOROLA

Chapter 3 MDINK32/DINK32 Features

The MDINK32/DINK 32 software package provides:

Supports the MPC601, MPC603, MPC603e, MPC604, MPC604e, MPC740,
MPC750, and the MPC7400.

Modification and display of general purpose, floating point, altivec, and special
purpose registers.

Assembly and disassembly of PowerPC instructions for modification and display of
code.

Modification, display, and movement of system memory.

A simplified breakpoint command, allowing setting, displaying, and removing
breakpoints.

Single-step trace and continued execution from a specified address.
Automatic decompression of compressed s-record files while downloading
Extensive on-line help.

Ability to execute user-assembled and/or downloaded software in a controlled
environment.

Logging function for generating a transcript of a debugging session.
Register set includes all of the PowerPC implementation specific registers.
Modification of memory at byte, half-word, word and double-word lengths.

Extensive support for the MPC 60x, MPC 740, MPC750, MPC7400 simplified or
extended mnemonics during assembly and disassembly of PowerPC instructions.

Ability to input immediate values to the assembler as binary, decimal, or
hexadecimal.

Command line download functionality that allows the user to select the download
port and then send the data.

An assembler and disassembler that understands branch labels and the ability to see
and clear the branch table that DINK32 is using while assembling and disassembling
PowerPC instructions.

Ability to read and write MPC106 configuration registers. (Not supported on
Excimer and Maximer).

Support for PCI with new “pci-” commands. (Not supported in minimal builds, i.e.
Excimer and Maximer).

Support for Excimer and Maximer flash, fl —dsi and —se, and automatically detect
flash on Revision 2 versus 3 of the board. fl -dsi has been expanded to display the
memory range for each sector.

M) mororoLa Chapter 3. MDINK32/DINK32 Features 35

MDINK32 Overview

« Support for Excimer and Maximer flash, fl -sp and -su.

» Support for Max chip and altivec registers and instructions.
» Support for Kalua chip.

« Support for MPC107 Memory bridge.

» Support for dynamically assigned dink function addresses and variables for
downloaded programs, see Appendix G, “Dynamic functions such as printf and
variables such as memSpeed".

» Support for Yellowknife and Sandpoint flash ROMs, fu command.

3.1 MDINK32 Overview

The following sections describe the MDINK32 methodology and limited command set., the
minimum required hardware configuration, and the memory model. MDINK32 is only
available with the Excimer and Maximer platform. The current release of MDINK32 is
Version 10.7.

3.2 New features for MDINK32 V12.1

No new functionality.

Thereis a problem with this release, it may not jump correctly to ffcO0000 and fails to start dink32.

3.3 MDINK32 Design Methodology

The MDINK32 program’s only purpose is to download DINK32 programs. MDINK32 is
loaded at Oxfff00000 and begins execution at 0xfff00100. It’'s limited command set is
designed to allow easy loading of DINK32 or other programs into FLASH or ROM
memory and starting those programs.

See F.3, “Settings for terminal emulators" for instructions in connecting to a terminal
emulator.

See Appendix F, “Updating DINK32 from the Web" for information on obtaining new
versions of DINK32.

3.4 Hardware Configuration Requirements

This MDINK32 software package can be executed on the same microprocessor boards that
support DINK32, which include the following devices and minimum memory
configuration:

 PowerPC™ 601, 603(e), 604(e), 740/750, MPC7400 microprocessors

3-6 Dink32 R12 User’s Manual @ MOTOROLA

MDINK32 Software Build Process

* National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Reference
Design).or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

512 K-byte EPROM or Flash
512 K-byte RAM

3.5 MDINK32 Software Build Process

MDINK32 can be built from the dink source base. Information for building MDINK32 is
given in the DINK32 build section. There is only one version of mdink32 for all Excimer
and Maximer boards. Flash memory is automatically detected.

3.6 MDINK32 Memory Model
See Figure 3-3., “MDINK32/DINK32 Memory Model - Excimer and Maximer".

The following sections describe the DINK32 design methodology, the minimum required
hardware configuration, and the memory model. The current release of DINK32 is Version
12.0.

3.7 New features for DINK32 V12.1

1. Support for Yellowknife and Sandpoint flash ROM devices.

Reorganized all demos into one demos directory..

All User SPRs are now initialized during booting.

Application programs can now always safely return to DINK at completion.
dev epic has been enhanced.

o0k W

Two dink variables, memSpeed and processor_type have been added to the
dink_transfer_table for dynamic access.

7. dl now supports the binary download facility.
8. Support for the MPC755 I/D bats 4.7
9. New commands, id and mc.

3.8 DINK32 Design Methodology

The modular design of the DINK32 program, its extensive commenting, and its design
methodology enable efficient user modification of the code. Thus, DINK32 provides a
flexible and powerful framework for users who desire additional functionality.

See F.3, “Settings for terminal emulators" for instructions in connecting to a terminal
emulator.

M) mororoLa Chapter 3. MDINK32/DINK32 Features 3-7

DINK Software Build Process

Hardware Configuration Requirements

This DINK 32 software package can be executed on microprocessor boards that include the
following devices and minimum memory configuration:
 PowerPC™ 601, 603(e), 604(e), 740/750, 7400 microprocessors

* National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Reference
Design). or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

512 K-byte EPROM or Flash
o 32 M-byte RAM

3.9 DINK Software Build Process

There are two types of platforms.

1. YellowKnife and Sandpoint. DINK32 is loaded at 0xfff00000. The config.h file
must set th&ESET _BASE macro to RESET_BASE_OTHERS as shown in
Table 3-1., “RESET_BASE value"

Table 3-1. RESET_BASE value

Macro Name Value
RESET_BASE_OTHERS OXFFFO (default)
RESET_BASE_EXCIMER OxFFCO

2. Excimer and Maximer. The config.h file must setRESET _BASE macro to
RESET_BASE_EXCIMER as shown in Table 3-1., “RESET_BASE value"

DINK32 is a sophisticated debug ROM program. Most hardware specific features such as
the specific PowerPC processor, the memory map, the target platforms, etc. are
automatically detected at run time. This flexibility allows a single version of DINK32 to
run on different platforms with different processors; for example the same version of
DINK32 will boot the Yellowknife X2 platform with memory map A, the Yellowknife X4
platform with memory Map B, the Sandpoint, as well as the Excimer and Maximer
platforms with all the supported PowerPC processors.

The ROM device on the Yellowknife and Sandpoint system is the Plastic Leaded Chip
Carrier (PLCC) device. Upgrading the firmware on such system could be as easy as
removing and replacing the old ROM with the new one. The ROM devices on the Excimer
and Maximer platform however are the thin small surface mount packages (TSSOP). It is
not easy to remove such devices on the target hardware for upgrading. To solve this
problem, Motorola provides a smaller version of DINK32 called MDINK. The main
purpose of mdink is to download DINK32 or other boot program to ROM, thus it provides
a robust way for upgrading the firmware.

3-8 Dink32 R12 User’s Manual @ MOTOROLA

DINK Software Build Process

There are two different versions of DINK:

1. DINK32 provides the capability to download and debug application programs,
2. MDINK32 provides the capability to download and upgrade firmware.

Only DINK32 is available in executable form. It is delivered in the following eight file
formats as shown in Table 3-2., “DINK32 File Formats"

Table 3-2. DINK32 File Formats

Board Srecord | SRecord (-Q) elf elf/dwarf (-Q)

Yellowknife and Sandpoint | dinkyk.src | dinkyk_g.src | dinkyk | dinkyk g

Excimer dinkex.src | dinkex_g.src | dinkex | dinkex_g

The source files can be used to build DINK32 or MDINK32.
The source files are *.c, *.s, and *.h.
Other files are makefile and READ_ME

Motorola uses the Metaware tool set to build MDINK32 and DINK32 in a UNIX
environment. The syntax of the makefile, therefore, complies with the make program
available on UNIX machines. The command to build DINK32 on a UNIX command line
is "make dink", and the command to build MDINK32 is "make mdink".

MDINKS32 is a subset of DINK32. Both versions share many source files. Of all the files
that contribute to the making of MDINK32, the files that MDINK32 does not share with
DINK32 is mpar_tb.c and mhelp.c. DINK32's version of mpar_tb.c is par_tb.c and mhelp.c
Is help.c.

Both can also be build on UNIX with the GNU gcc tool set using makefile_gcc, and on a
PC/NT with the Metaware tool set using makefile_pc.

The source files and the makefile of DINK32 and MDINK32 reside in the same directory
structure. However, the object files (*.0), the ELF file and S-record file of each version
reside on a different directory. When the "make dink" command is executed, the "dink_dir"
directory is created, and the output files produced by "make" are put in "dink_dir".

Likewise, when the "make mdink" command is executed, the "mdink_dir" directory is

created, and the output files are put in "mdink_dir" (see Figure 3-1).

In addition, the makefile, makefile_pc, is used to build on the PC (windowns) platform, and
the makefile_gcc is used to build on UNIX with a GNU gcc compiler.

@ MOTOROLA Chapter 3. MDINK32/DINK32 Features 3-9

DINK32 Memory Model

.../ Dl NK32
dink_dir *.h *.c *.s mdi nk_di r drivers
epicdmai2oi2c
board.h *.o0 dink32.src di nk32 board.h *. 0 ndink32.src ndi nk32

Figure 3-1. DINK32/MDINK32 Directory Organization

When compiling a version of DINK32 to upgrade an Excimer and Maximer board it is
important to realize that this module, while relocatable, has a dependency that must be
accounted for during compilation. Since, MDINK 32 and DINK 32 both copy themselvesto

RAM (and then execute from RAM) it is important to know which address range to copy

from FLASH to RAM. If you are building an image which will belocated at the reset vector
(OxFFF00100) then the #define RESET_BA SE (which islocated in the config.h file) must

be set to OXFFFO. If, however, you are upgrading a version of DINK32 on an Excimer or
Maximer board RESET_BASE should be changed to OXFFCO before building your new
image. This S-record would then be loaded at address OXFFC00000. This is the original
configuration that came with the Excimer and Maximer board. The command to download
anew version of DINK32 on an Excimer and Maximer board would be"dl -fl -o ffcO0000"

if there is nothing at location 0xffcO0000. If replacing an older version then “fw -e” would
be used to erase the version (and everything else that was not sector protected) in Flash. See
Table 3-1., “RESET_BASE value".

3.10 DINK32 Memory Model

The memory model for DINK32 is shown in Figure 3-2., “DINK32 Memory Model -

3-10 Dink32 R12 User’s Manual @ MOTOROLA

DINK32 Memory Model

Yellowknife and Sandpoint” or Figure 3-3., “MDINK32/DINK32 Memory Model -
Excimer and Maximer". The exception vectors and exception code are located within
address offsets 0x0000 - 0x2100. The DINK32 code through 0x80000 is copied from the
EPROM to RAM so that the data structures can be modified at run time. For example, the
data structures for the chip registers need to be modified when the “register modify”
command is executed.

The EPROM must be located at address OxFFFO0000 because this is the beginning of the
exception address space at system reset. The RAM must be located at address 0x00000000
since that is the low-memory exception address space, where the DINK32 code will be
copied. Available user memory space begins at address 0x90000 and ends at the RAM’s
upper boundary; address space below 0x90000 is reserved for DINK32.

DINK32 sets the stack pointer, rl, to 0x80000 for the C portion of the DINK32 code.
DINK32 sets the user’s stack pointer, r1, to Ox8fff0. As long as the user, once started with
a go or trace command, does not use more than OxfffO bytes for it's stack there is no conflict
with the stack used by DINK32.

Please reference Figure 3-2 and Figure 3-3 on the following page.

M) mororoLa Chapter 3. MDINK32/DINK32 Features 3-11

DINK32 Memory Model

512 K-byte EPROM

User Memory

DINK3Z stack

.data

text

Exception table

OXFFFFFFFF - End of ROM space
OxFFF8FFFF - End of DINK 32 Code
OxFFF00100 - Reset Vector

Top of User Memory (depending on the amount of
RAM ingtalled); 1M = OxO00FFFFF, Typical sizeis
32M = 0x00200000

0x00090000 - Start of User Memory
Ox0008FFFF - Top of Stack for user

0x00080000 - Top of Stack for DINK 32

0x00070000 - Bottom of stack
OX0006FFFF - Top of .data section

0x00040000 - Bottom of .data section
0x000303FF - Top of RODATA

0x0002FDO0O0 - Bottom of RODATA
Ox0002FFFF - Top of .text section

0x00003000 - Bottom of .text section
Ox00002FFF - Top of Exception table

0x00000000 - Bottom of Exception Table

Note: The .text and .data sections are approximates depending
on each build version. Actual locations can be ascertained from
the xref.txt filein the dink_dir directory.

Figure 3-2. DINK32 Memory Model - Yellowknife and Sandpoint

3-12

Dink32 R12 User’s Manual

DINK32 Memory Model

System ROM

4 Meg FlashROM OXFFFFFFFF - End of ROM space
OxFFF60000 - End of MDINK 32 Code

MDINK32 OxFFF00100 - Reset Vector (MDINK32)

User Flash Space OXFFEFFFFF - Top of User Flash Space
OxFFC90000 - Bottom of User Flash Space

DINK32 OxFFC8FFFF - End of DINK32 Code
OxFFCO00100 - Start of DINK 32 Code
OxFFC00000 - Beginning of Flash space

System RAM

Top of User Memory - OXO0OOFFFFF (1 Meg)

User Memory 0x00090000 - Start of User Memory

DINK32Z stack OxO008FFFF - Top of Stack for user
0x00080000 - Top of Stack for DINK 32
0x00070000 - Bottom of stack

.data OXO0006FFFF - Top of .data section
0x00040000 - Bottom of .data section
0x00030000 - Top of RODATA
0x0002FDO0O0 - Bottom of RODATA

fext OX0002FFFF - Top of .text section
0x00003000 - Bottom of .text section
O0x00002FFF - Top of Exception table

Exception table 0x00000000 - Bottom of Exception Table

Note: The .text and .data sections are approximates depending
on each build version.

Figure 3-3. MDINK32/DINK32 Memory Model - Excimer and Maximer

M) mororoLa Chapter 3. MDINK32/DINK32 Features 3-13

Commands

Chapter 4 MDINK32/DINK32
Commands

This chapter describes the DINK 32 user commands. The full command mnemonicislisted
in the upper left-hand corner and the short command (abbreviation) islisted next in smaller
type. All commands listed (except fw -€) are available to DINK32, those commands
available to MDINK 32 are marked as MDINK 32 Compatible.

Commands appear in boldface throughout this chapter.

Note: All addresses entered must be in hexadecimal but not preceded by0Ox”.
Leading zeros will be added as needed.

Definitions

“MDINK32 Compatible”

This command is also available in MDINK32. Where commands are different between
MDINK32 and DINK32, the DINK32 format will be shown first.

leusﬂ

Usually implies that the command form includes “+”. This allows the command to continue
to the next stopping place appropriate for its functionality.

Hrangeﬂ

Indicates a two-address form, and usually signifies an inclusive area of code or memory that
will be operated on by the command.

“entire family”

Refers to a family of registers. The general purpose registers are a family of thirty two
32-bit registers, numbered 0 to 31. The floating point registers are a family of thirty-two
64-bit registers, numbered 0 to 31. The altivec registers are a family of thirty-two 128-bit
registers, numbered 0 to 31.The special purpose registers are not classified as a family due
to their architectural design.

”

HX

{3Vl

Typing “X” will exit a command if DINK32 is in an interactive mode when a particular
command form is used.

4.1 Commands

4-14 Dink32 R12 User’s Manual @ MOTOROLA

Commands

411 .(period) .

repeat last command

MDINK32 Compatible

Typing aperiod will repeat the last command entered.

Example:

DI NK32_750 >> trace
A Run Mode or Trace

Current instruction

DI NK32_750 >> trace
A Run Mode or Trace
Current instruction

DI NK32_750 >>
A Run Mode or
Current

Trace
instruction

DI NK32_750 >>

2100

exception has occurred.
Pointer: 0x00002104 stw r13, Oxfff8(ro0l)
+

exception has occurred.

Poi nter: 0x00002108 add r03, r00, ro01
exception has occurred.
Poi nter: 0x0000210c mfspr r04, s0274

Chapter 4. MDINK32/DINK32 Commands 4-15

Commands

412 about about

(M)DINK32 version information MDINK32 Compatible

The version information for the current implementation of the DINK32 monitor will be
displayed on the terminal.

DINK32 Example:

DI NK32_MPC603ev >>about

A Reset Exception '0x100' initiated this restart

Caches Enabled: [L1-1Cache L1-DCache]

DDD [l N N K K 333 222

D D I NN N K K 3 3 2 2

D D | N N N KK 33 22

D D I N NN K K 3 3 22

DDD [l N N K K 333 22222 for MPC603ev

Met aware Buil d

Version 12, Revision O
Witten by : Motorola’s RISC Applications, Austin, TX
Rel eased : November 30, 1999:
System : Welcome to Excimer. A M nimum System Power PC Design
Processor : MPC603ev V12.1 @ 133 MHz, Menmory @ 66 MHz
Copyright Motorola, Inc. 1993, 1994, 1995, 1996, 1997, 1998, 1999
Changes for each release, Errata for dink, Future Enhancements

and bug fixes are documented in the file history.c

DI NK32_MPC603ev >>

MDINK32 Example:
MDI NK32 603e >>about

Dat a Cache has been enabl ed. .
Instructi on Cache has been enabl ed. .

M M DDD I N N K K 333 222
M MM D D I NN N K K 3 3 2 2
MMM D D | N N N KK 33 22
M M D D I N NN K K 3 3 22

4-16 Dink32 R12 User’s Manual @ MOTOROLA

Commands

M M DDD 111 N N K K 333 22222 for the MPC603

Version 10, Revision 7
Witten by : Motorola s RISC Applications, Austin, TX
Rel eased : March 1, 1999
Wel come to Excimer. A M nimum System Power PC Desi gn!

Copyright Motorola, Inc. 1993, 1994, 1995, 1996, 1997, 1998

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-17

Commands

41.3 assemble as

DINK32 mini-assembler

e assembleaddress
* assemble start+
e assemble start- end

The mini-assembler for the DINK32 system will display the contents of memory at the
given location and enter interactive mode. The user will be queried for a valid mnemonics
and operands which will be assembled into a valid opcode and stored at that memory
location. A location can be left unmodified by typing <return> to pass over it.

The “plus” form of the command will allow the user to start assembling code at a given start
location and will be terminated at the end of memory. The “range” version will start at the
first address location and automatically terminate at the given end address.

At any point “x” can be entered as a mnemonic and assemble will terminate and return the
user to the DINK32 prompt.

Branch labels are recognized by the assembler as a word followed by a colon (:) at the
address currently being displayed by the assembler. The assembler tracks the current
branch labels and automatically calculates the address to be entered into future instructions.
Thesymtab,st instruction is available for manipulating the branch table in DINK32. Branch
labels within PowerPC assembly instructions will not be recognized by the assembler if the
branch label has not yet been entered into the table. The user may display the branch table
list with the st instruction.

The DINK32 assembler ignores any comments preceded by a ‘# and any “.org” and “.dc”
commands. The assembler does not interpret these lines as anything. It only ignores them.
The simplified mnemonics that DINK32 Version 10.5 understands is quite extensive. In
general, immediate values, including condition register bit offsets, are assumed to be
hexadecimal unless preceded by Ob (binary) or 0d (decimal). Floating point and general
purpose registers are recognized just like previous versions of DINK32 where the register
number may be preceded by an “r’ (general purpose) or an “f’ (floating point) but is not
necessary. Simplified branch mnemonics involving the condition registers may have the
condition register number preceded by “cr” but isn't necessary. The assembler always
expects a “cr’ field for compare and branch instructions where, according to the
architecture, crO is implied if a “cr” field is not given. DINK32 does not implement the
implied crO functionality of the simplified mnemonics.

Examples:

4-18 Dink32 R12 User’s Manual @ MOTOROLA

Commands

DI NK32_603e >>as 60100+

0x00060100 Ox85ffffc4 |wzu rl5, Oxffcd4(r31) rlm
roo,r02,r05,0,0

0x00060104 Ooxo0o0ffffa0 WORD Ox00ffffao I fd f0O, OxOec5(r1)
0x00060108 Oxff0040ef fsel. f24, f00, f08, fO03 rliwnm
ro,r13,r23,0x1, Oxa

0x0006010c Oxfe4004ff fnmadd. f18, fo00, f19, fO0O0

0x00060110 OxO00ffff01 WORD Ox00ffffo1l | oop: #branch | abe
0x00060110 Ox00ffff0l BRANCH LABEL | oop

0x00060110 OxO00ffff01 WORD Ox00ffffo1l ori r26,r2,0xfff
0x00060114 Ox00ffff0O00 WORD Ox00ffffoO I fd f00, 0x0503(r0)
0x00060118 Oxef0040fd fnmsubs. f24, fo00, f03, fO08 cmpw
cr3,r26,r0

0x0006011c 0Ox7f0000ff WORD Ox7f 0000f f bne cr3,1 o00p
0x00060120 0x22ffbf80 subfic r23, r31, 0Oxbfa80 X

VERI FYI NG BRANCH LABELS.

DONE VERI FYI NG BRANCH LABELS
DI NK32 603e >>st
Current list of DINK branch | abels:

KEYBOARD: 0x0
get _char: Oxleb5e4
write char: 0x5f ac
TBasel nit: 0x39c4
TBaseReadLower : 0x39e8
TBaseReadUpper: 0x3a04
Cachel nhi bit: 0x3a20
I nvEnL1Dcache: 0x3a40
Di sL1Dcache: 0x3a88
I nvEnL1ll cache: Ox3aac
Di sL1l cache: 0x3b00
Bur st Mode: Ox3bfc
Raml nCBKk: 0x3c3c
Raml nWThr u: 0x3c7c
di nk_1l oop: 0x5660
di nk_printf: 0x6368
Current list of USER branch | abels:
| oop: 0x60110
DI NK32 603e >>assemble 60300-60310
O0x00060300 0x82ffff00 | wz r23, Oxffoo(r31) fadd 1 2 3
0x00060304 OxO00ffff0O0 WORD Ox0o0ffffoO stw 1l 2
0x00060308 Oxef0080ff fnmadds. f24, fo00, f03, f16 sc
0x0006030c OxffOoO0O0Off fnmadd. f24, fo00, f03, fO0O bdnz
0x60010
0x00060310 0Ox04ffff00 WORD 0x04ffffo00 #Comment
0x00060310 0Ox04ffff00 WORD 0x04ffffo00 nop

DI NK32_603e >>

DI NK32_MAX >>as 70010

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-19

Commands

0x00070010 Oxff8000ff fnmadd.

DI NK32_MAX

>>as 70014+

0x00070014 OxffOO000ff fnmadd.

0x00070018

0x00f bff 00 WORD

v3,v19,v3,v3l

0x0007001c

Ox00ffff00 WORD

v30,v1l6,v17,7

0x00070020
DI NK32_MAX
0x00070010
0x00070014
0x00070018
0x0007001c
0x00070020

4-20

OxffOO0O0Of f

>>ds 70010+
0x10600604 mfvscr
0x10006644 mtvscr

f nmadd.

f28, f00, f03, fOO

f24, f00, f03, f0O
0x00f bff 0O

0Ox00ffffo0O
f24, f00, f03, fO0O

V3
V12

0x10731f e0 vmhaddshs V3, V19, V3, V31l

0x13d089ec vsl doi
oxffO0000ff fnmadd.

V30, V16, V17, Ox7
f24, f00, f03, fO0O

Dink32 R12 User’s Manual

mfvscr v3

mvscr v12
vmhaddshs

vsl doi

Commands

4.1.4 bkpt op

set, delete, list breakpoints
bkpt

e bkpt address
* bkpt -d index

The bkpt commandallows the user to set a breakpoint at a given address, delete a
breakpoint at a given index in the breakpoint list, and list the current breakpoints by index
and address.

Breakpoints allow the user to run an application program and stop execution when code at
the specified address is encountered. This command will set or delete only one breakpoint
at a time, and must be repeated for each breakpoint.

Setting a breakpoint will not remove a breakpoint from an address if a breakpoint already
exists there. Deleting a breakpoint from an invalid index has no effect. Breakpoints can be
set or deleted one at a time and all are displayed during a breakpoint list. A maximum of 20
breakpoints can be set in the system.

Examples:

DI NK32_750 >> bkpt 60100
Br eakpoi nt set at 0x00060100

DI NK32 750 >> bkpt
Current breakpoint list:
1. 0x00060100

DI NK32_750 >> bkpt -d 1
Br eakpoi nt del et ed

DI NK32 750 >> bkpt
Current Breakpoint List:

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-21

Commands

415 defalias da

define dias

The runalias, ra, command is the companion to this command. While these commands, da
and ra, are still available, the env command is more flexible.

» defalias

This command will allow the user to define an aliasto alist of commands (separated by a
semicolon). Once the alias has been defined, runalias can be used instead of retyping the
list of commands. Only one alias may be set at atime, and using defaliasa second time will
overwrite the previously aliased command list. Below is an example of using an aias to
single step and display registers.

Example:

DI NK32_750 >> trace 2100

A Run Mode or Trace exception has occurred.

Current Instruction Pointer: 0x00002104 Iwz r03, 0x0000(r02)

DI NK32 750 >> defalias
Current alias definition:

New alias : tr +; rd r
Alias defined as : tr +; rd r
DI NK32 will now single step and display the register set each time

runalias is entered.

DI NK32 750 >> runali as

A Run Mode or Trace exception has occurred.
Current Instruction Pointer: 0x00002108 add r03, r00, ro01
gpr 00: 0x00000000 gpr01: 0x00060000

gpr02: 0x00000000 gpr03: 0x0002bcOO

gpr04: 0x00000000 gpr05: 0x00000000

gpr 06: 0x00000000 gpr07: 0x00000000

gpr08: 0x00000000 gpr09: 0x00000000

gpr10: 0x00000000 gprl1: 0x00000000

gpr12: 0x00000000 gpr13: 0x00000000

gpr14: 0x00000000 gprl1l5: 0x00000000

gpr16: 0x00000000 gprl1l7: 0x00000000

gpr18: 0x00000000 gpr19: 0x00000000

gpr 20: 0x00000000 gpr21: 0x00000000

gpr22: 0x00000000 gpr23: 0x00000000

gpr24: 0x00000000 gpr25: 0x00000000

gpr26: 0x00000000 gpr27: 0x00000000

gpr28: 0x00000000 gpr29: 0x00000000

gpr 30: 0x00000000 gpr31: 0x00000000

4-22 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.6 devdisp dd

DINK32 Peripheral device display
dd,devdisp

dd [device [-b]-h|-w] addrl-addr2]

The devdisp command displays the contents of device registers in a manner similar to that
of the memory display command.

Example:

device Is the name of the device. If not entered display all known devices
-b, -h, -w Set size of device accesses. If not specified, the default size is bytes
for devices.
addrl Is the starting address to display.
addr2 Is the optional ending address.
The dd command with no parameters will display a list of all the known devices.
DI NK32_ARTHUR >> dd

Devi ce Start End Sizes

me m 00000000 FFFFFFFF [BHW

nvram 00000000 O00000FFF [B]

i 2¢c 00000000 0000007F [B]

rtc 00000000 0000000D [B]

rtcram 0000000E 000000FF [B]

apc 00000040 00000048 [B]

DI NK32 ARTHUR >> dd nvram 40
0x0040 14 3E 27 9C EE FA E9 CO 04 6B 2A 87 08 9C 66 T7E

0x0050 . ..

dd>x

DI NK32_ARTHUR >>

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-23

Commands

4.1.7 devmod dm
DINK32 Peripheral device modify

devmod,dm

dm [device [-b]-h|-w] addrl-addr2]

The device modify command allows interactive modification of device data in registers
and/or indirect memory. The dd command operates similar to the mm command, with
some additional flexibility.

device Is the name of the device. If not entered display all known devices
-b, -h, -w Set size of device accesses. If not specified, the default size is bytes
for devices.

addrl Is the starting address to display.

addr2 Is the optional ending address or if not specified then display/modify

until user types x or ESC.

While examining data, the contents may be modified by entering a hexadecimal value. The
value entered is truncated to the specified size and is then written to the device or memory.

When prompted for location, any of the following may be entered:

<enter> go to the next location using the current selected direction (defaults
to forward)

v set the direction to forward.

A set the direction to reverse.

= set the direction to 0. dm will keep examining and modifying the
same location until 'v' or "M is entered.

hex a value to write.
4 help

DINK32_ARTHUR >> dm nvram 40
0x0040 : 14 ? <enter> -- skip
0x0041 : 3E ? 47 -- new val ue
0x0042 : 27 2 7 -- go back
0x0041 : 47 2 48 -- right value
0x0040 : 14 ? v -- go forward
0x0041 : 48 ? =<enter>
0x0041 : 48 ? <enter>
0x0041 : 48 ? <enter>
0x0041 : 4A ? <enter> -- erratic bit?

4-24

Dink32 R12 User’s Manual @ MOTOROLA

4.1.8 devtest dev

DINK32 Peripheral devicetest <Kahluaonly>

dev,devtest

dev epic

dev [+] [-r] i2c <addr> <-n> [<timeout>]

dev [+] -w i2c <addr> <-n> <str> [<timeout>]

dev [+] DMA [<type>] <src> <dest> [<chn>] [<n>]
dev i20 <mode> [<bit>]

Perform a given 1/O test on Kahlua.

DI NK32_ KAHLUA>> devtest -r i2c

0x40:

FE FE FE FE 47 4A 4E 4F FE FE FE

....GIMN....GIMN

@ MOTOROLA Chapter 4. MDINK32/DINK32 Commands

FE 47

Commands

AA 4E 4F

4-25

Commands

41.9 disassem ds

DINK 32 mini-disassembler

e disassem address
* disassem start+
e disassem start- end

The mini-disassembler for the DINK32 system displays the contents of memory at the
given address. The contents are shown in hexadecimal opcode format as well as in
PowerPC assembly instruction format.

If the “plus” form is used, the command goes into interactive mode and will continue
reading and disassembling until the end of memory is reached or until the user types “x”.

If the “range” form is used, the command will continue reading and disassembling for each
inclusive address in the range specified.

Note that the above parameter forms can be combined by separating the forms with a
comma or white space. This will display multiple disassembled portions of the memory
space with one command.

Branch labels entered during an assemble session are displayed during disassembly. In
order for branch labels to be calculated correctly, branch labels must be entered before
instructions refer to that label.

Examples:

DI NK32_750
0x00060100

DI NK32_750
0x00060118
0x0006011c
0x00060120

DI NK32_750
0x00060100
0x00060104
0x00060108
0x0006010¢c
0x00060110
0x00060114
0x00060118
0x0006011c
0x00060120
0x00060124
X to quit,

4-26

>> ds 60100

0x58402800 rIm rO00, r02, 0x05, 0x00,

>> ds 60118-60120
0xc8000503 | fd f00, 0x0503(ro00)

0x243f002c dozi r01, r31, 0x002c
0x00000000 WORD 0x00000000

>> ds 60100+

0x58402800
O0xc8010ech
O0x5da0Ob854
0x00000000
0x00000000
Ox605affff
0xc8000503
0x243f002c
0x00000000
0x00000000

rlm r00, r02, 0x05, 0x00,
Ifd f00, OxOec5(r01)

rl wmro00, r13, r23, 0x01,
WORD 0x00000000

WORD 0x00000000

ori r26, r02, Oxffff

Ifd f00, 0x0503(r00)
dozi r01, r31, 0x002c
WORD 0x00000000

WORD 0x00000000

anything else to continue >

Dink32 R12 User’s Manual

0x00

0x00

Ox0a

Commands

4.1.10 download a

download data from the host MDINK32 Compatible
RAM download Syntax:

» download -k (keyboard port - duart channel A)

» download -h (host port - duart channel B)

« download {-k|-h} [-q] [-fX] [-V] [-0 offset]
FLASH download Syntax:

» download -fl [-e] -0 address (download directly to flash memory)

The download command captures data from S-record files taken from either the keyboard
or host serial ports. The S-record files can optionally be compressed on the host, and are
automatically decompressed while received. The received S-record file is placed in the
memory locations specified by the input file (for RAM download) or as specified (for flash
downloads).

There are two separate forms for RAM and FLASH downloads. Information on S-Records
can be found in the DINK32 User's Guide in Appendix D.

RAM download options:

« The "-k" option copies the data stream from the keyboard serial port into memory,
while "-h" option copies data from the host serial port. One of these two options must
be supplied.

 The "-q" option is quiet mode, no indication of download progress is supplied.

« The "-fx" option enables XON/XOFF (software) flow control for downloading at
higher speeds.

* The "-v" option verifies a previous download, printing an error message for each
difference found.

« The "-o0 offset" option adds a hexadecimal offset to the address of the S-Record lines
to relocate code.

* The '-b' option uses 8-bit binary data in lieu of S-records.
FLASH download options:

* The “fl” option indicates a load to FLASH memory.
» The “-e” option indicates to erase all of flash memory before the load.
* The -0 address specifies the offset address, default is Oxfff00000.
Default download baud rate is 9600. Maximum baud rate on Excimer and Maximer is

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-27

Commands

57600 and Yellowknife and Sandpoint is 38400.
See Section 4.1.36, “setbaud sb".

Examples:

DI NK32_750 >> dI -k

Set I nput Port: set to Keyboard Port
Downl oad Conpl et e.

Use the followi ng example when upgradi ng DINK on Exci mer
with a s-record fromthe Power PC website:

MDI NK32_603e >> dl -fl -o ffc00000

Of f set: Oxffc00000
Witing new data to fl ash.
Li ne: 50

NOTE: The compl ete sequence for upgrading DINK on Exci mer woul d be:

MDI NK32 603e >> fw -e

Reboot the Exci mer board

MDI NK32 603e >> sb -k 57600

MDI NK32 603e >> dl -fl -o ffc00000

MDI NK32_603e >>

4-28 Dink32 R12 User’s Manual

Commands

4.1.11 envVv env
Syntax: env [-c][-d][-s][var[=valu€]]
Description: This command displays or sets environment variables stored in the NVRAM

(if available). If no argument is given, the current settings are displayed. Note: quotes ()
are usually required.

The ENV command mani pulates environment variables, which are of the form VAR=DEF
or VAR="def def def". Quotes are needed if non-al phanumeric characters are included.

* For YK/SP, NVRAM is used and preserved, and 4K is available.

» For Excimer and Maximer, the uppermost 1K of SRAM is used. Currently, Excimer
and Maximer don't save/restore SRAM->Flash. Since Excimer and Maximer don't
wipe the SRAM it can be somewhat useful since it will be preserved between resets.

Using ENV, the system can be configured on startup. The following variables are checked:

e |0 --setsl/O type and modes

— 10=COM1 Use standard COM port

— 10="COM1:[9600]|19200|..." Use standard COM port and optionally set serial
port.

— 10="PMC:[9600|19200|..." Use serial port on PMC8240/etc.

— 10=XIO Use VGA card in first slot with a VGA-class code.

— 10=XIO:USE=nn Use VGA card on slot #nn even if it doesn't appear to

be a video card (old cards w/out CLASS codes).

« MEMOPT -- if defined, the equivalent of "meminfo -c -c" is run,which tunes
memory using SDRAM I2C info and bus speed.

 ALIAS -- stores last defined alias (da/ra).

« MDMODE --if setto 1, use the dm/dd commands in place of the mm/md
commands. If setto 3, do that and also enable denser output for ‘md'.

« RDMODE --ifsetto'q’, 'quieten’ the register display for SPR's. If setto 'e’, 'explain’
the fields of SPRs.

« TAUCAL -- saves/restores the TAU calibration field (32-bit ULONG).
o« L2CACHE -- sets L2 cache parameters. Options are:

— L2CACHE={256K]|512K|1M|2M} ', {/1|/1.5]/2|/2.5|/3|/3.5} ', [late] ', [do] ',
{0.5ns]1.0ns|1.5ns|2.0ns} ', [wt] '," [diff]

« BOOT -- forces DINK32 to jump to the specified address after initialization and
instead of jumping to the command processor.

— example: env BOOT="ffe00000”
If any key is pressed on startup (recommendation is Backspace), the ENV is ignored.

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-29

Commands

ENV allows for multiple command aliases

Example:

ENV R="rd"
ENV X="tr; rd msr; md 90000-90100"

You can enter 'r' to do rd’ (or 'r r3' to do 'rd r3’) or X’ to do all the above def’'s. Aliases
cannot be nested. Note that the ENV does not distinguish between ENV vars and ALIAS
vars -- they’re lumped together.

ENV alows changing the prompt dynamically. If the string PROMPT is defined in the
ENV, it is expanded and displayed using the following rules:

. $d -- dink name, either DINK or MDINK
. $P -- formal processor name, e.g. "MPC7400"
. $p -- informal processor name, e.g. "MAX"
. $T -- current time, "12:34:56PM"
. $t -- TAU temperature, e.g. "26" if 26 deg. C or "26u" if not calibrated yet.
. $! -- history index
. $_ -- CRLF
. All other characters are copied as-is.
Flags:

e -c Clear/Initialize the NVRAM.

« -d Delete named variable.

« -s Saves environment to permanent storage, used for excimer and maximer only.
Most of the SPR’s can suppress the verbose mode, see Section 4.1.32, “regdisp rd".

Example:

This example sets the non verbose mode for certain commands.

DI NK32_ARTHUR >>env -c
DI NK32 ARTHUR >>env rdmode=e

After the non verbose mode is set, the following command gives non verbose results.
Contrast this with the verbose display in Section 4.1.32, “regdisp rd".

DI NK32_ARTHUR >>rd msr

MSR : 0x00003930
POW0 EE=0 PR=0 FP=1 ME=1 FEO=1 SE=0
BE=0 FE1=1 [IP=0 IR=1 DR=1 RI=0 LE=0
TLB/ GPR=0 VMX=0 PM=0

4-30 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.12 flash +
flash memory commands; mdink32 limited compatibility
flash

This command will perform avariety of flash memory operations.
Syntax: fl -flags -0 value -s sector number
Description: This command performs actions to the flash memory

« -dsi display sector information (dink32/mdink32)
« -e erase all of flash (dink32/mdink32)

* -cp copy MDINK from RAM to Flash (dink32 only)
Required Flags: -0 <value> copy address in flash
Optional Flags: -e erase flash first

e -sp protect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

e -su unprotect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

 -se erase indicated sector (mdink32/dink32)
Required Flags: -n <value> sector number 0-18

For Version 12.1: -cp is not implemented.

Sector Protect/Unprotect commands require a 12V power supply. See AMD Bulletin, NVD
Flash, Sector Protection, available on the www.amd.com web site.

Example:

DI NK32 603e >>fl -se -n 6
Erasing sector 6

DI NK32_603e >>fl -dsi

Di splay Sector Information 0.7 Excimer Rev 2 and prior
Descri ption val ue

Manufacturer ID is 0Ox1l, Device IDis 0x225b
Sector SAO UNPROTECTED

Sector SAl UNPROTECTED

Sect or SA2 UNPROTECTED

Sect or SA3 UNPROTECTED

Sector SA4 UNPROTECTED

Sector SA5 UNPROTECTED

Sect or SA6 UNPROTECTED

Sect or SA7 UNPROTECTED

Sector SA8 UNPROTECTED

Sector SA9 UNPROTECTED

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-31

Commands

Sect or
Sector
Sect or
Sector
Sector
Sect or
Sect or
Sect or
Sect or

4-32

SA10
SAl1
SA12
SA13
SAl14
SA15
SA16
SA17
SA18

UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED
UNPROTECTED

Dink32 R12 User’s Manual

Commands

4.1.13 fupdate

FLASH update to arbitrary memory addresses.
fupdate, fu {-l]-h} [-eno] src_addr dest_addr length

Description: fupdate updates various flash devices for Sandpoint and Yellowknife
PCl-based boot FLASH devices, and local-bus ROMs on PMC cards. PPMC ROM
Initialization
Options:

« -l :program alocal bus flash (on PPMC cards only). NOTE: The PROGMODE

switch must be enabled.

« -h :program a host flash on the PCI bus (YK/SP systems).

« -e :erase flash, do not program

« -n :do not check manufacturer ID's

« -0 :overwrite flash without erasing

e src_addr : address of data to copy to flash

« dest_addr: address of data to store flash data; typically FFFO0000 for PCI ROM and
FFO00000 for PMC ROM (when in PROGMODE).

« length :length of data to copy (in hex!)
Typical local flash commands:

« fu -1 12000000 ff0O0O0000 100000
« fu-h 1000000 fff0O0000 80000
Examples
1. Update DINK:

dl -k -0 100000 -- download DINK to 100000

fu -h 100000 fff00000 80000 -- reprogram DI NK with new DI NK.
2. Program DINK and a linux loader in the 1MB PPMC flash:

fu -1 100000 ff700000 80000 -- erase & program DI NK at
reset vector
dl -k -0 100000 -- downl oad linux |l oader to 100000
fu -1 -o 100000 ff600000 80000 -- program linux |oader
at | ower addresses
env BOOT="ffe00000" -- setup autoboot

Note: Once the environment is set to boot from ffe00000, it is

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-33

Commands

necessary to hold the backspace key at reset time to regain the
DINK32 command processor. Once DINK32 is in control the
environment for BOOT can be del eted with this command: env
-d BOOT, see4.1.11, “env env"

Use the following example to store a program in the PCl-based ROM of a Sandpoint or
Yellowknife (for example, a DINK upgrade).

DI NK32_ 750 >> dl -k -o 100000
Downl oad from Keyboard Port
Of fset Srecords by 0x00100000

Downl oad Conmpl et e.

DI NK32 750 >> fu -h 100000 fff00000 80000
YK/ SP PCI Flash Programmer

Are you sure? Y

Check flash type: AMD Am29F040

Erasing flash . OK

Program fl ash . OK

Verifying flash : OK

DI NK32_750 >>

Use the following example to copy DINK32 into a local-bus Flash on a PPMCcard:

DI NK32 750 >> fu -1 100000 ff600000 80000
PPMC Local Flash Programmer\

Are you sure? Y

Check flash type: AMD Am29LV800BB

Erasing fl ash . OK

Program fl ash . OK

Verifying flash : OK

DI NK32_750 >>

4-34 Dink32 R12 User’s Manual @ MOTOROLA

Commands

41.14 fW fw-e

Specific FLASH download MDINK32 Only
fw —e [-0 <flash address>]

This command copies the contents of the entire 512K of RAM to FLASH starting at flash

address OXFFFO0000. The parameter - e is required. The optional parameter —o <flash
address> can be used to specify a specific address to copy from ram to rom address. (l.e.
replacing flash address 0xfff00000 with the flash address of the user’s choosing.

Examples:

MDI NK32 603e >>fw -e

Chip erase set.

Erasing entire flash memory. ..

Entering verify erase loop ...

Fl ash erased!!!

Done erasing flash memory.

Copying 512K ram to flash address fff00000..

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-35

Commands

4.1.15 JO go

execute user code MDINK32 Compatible
go address
go +

This command allows the user to execute user code starting at the given address. The “plus”
form will allow execution at the address in the SRRO (Machine Status Save / Restore)
register - bits 0-29. This is useful for continuing where a breakpoint or a user break
(<ctrl>-c) had previously stopped execution.

A program exception occurs when a breakpoint or illegal opcode is encountered. The
breakpoint address will be displayed and the instruction at that address will be
disassembled. Note: If a breakpoint is encountered, the user must clear the breakpoint in
order for execution to continue.

When the user program begins execution, the stack pointer, rl, is set to 0x8fff0. Hence the
user stack begins at Ox8fffO.

Examples:

DI NK32 750 >> ds 181dc-181f8

0x000181dc 0x3c600000 addis r03, r00, 0x0000
0x000181e0 0x60631234 ori r03, r03, 0x1234
0x000181e4 0x3c800000 addis r04, r00, 0x0000
0x000181e8 0x60845678 ori r04, r04, 0x5678
0x00018l1lec 0x7c632214 add r03, r03, ro04
0x000181f0 0x38841234 addi r04, r04, 0x1234
0x000181f4 0x7c032000 cmp O, 0O, r03, ro4
0x000181f8 0x4182ffe4 bc 0x0c, 0x02, Oxffe4d

DI NK32_750 >> bkpt 181f4
breakpoint set at 0x000181f4

DI NK32_750 >> go 181dc

A Program exception has occurred.

Br eakpoi nt Encountered:

Current Instruction Pointer: 0x000181f4 cmp O, O, r03, ro04

DI NK32_750 >> go +

A Run Mode or Trace exception has occurred.

A Program exception has occurred.

Br eakpoi nt Encountered:

Current Instruction Pointer: 0x000181f4 cmp O, O, r03, ro04

4-36 Dink32 R12 User’s Manual @ MOTOROLA

4.1.16 help ne
help on DINK32 commands

help <command>

Commands

MDINK32 Compatible

This provides information on the commands implemented by DINK32. Since MDINK 32
only has a subset of commands, the help command displays different information.

Examples:

DI NK32_KAHLUA >>hel p

Sandpoi nt/ MPC8240 DI NK COMMAND LI ST

Command

About . ..
Benchmar k
Define Alias
Devi ce Modify
Di sassenmbl e
Envi ronment

Fl ash update
Hel p

I nfo

Memory Compar e
Memory Modify
Memory | nfo
Memory Search
Menu

PClI Sl ot Display
PCI Config Regs
Regi st er Modify

Reset

Set Baud Rate
Show SPRs

Tau

Trace

For additional

Mnemoni ¢

about, ab
benchmark, bm
defalias, da
devmod, dm

di sassem, ds

env
fu

hel p, he
info, in

memcomp, mc
memod, mm
mem nfo, m
memsrch, ms
menu, me
pcidisp, pd
pci conf, pcf
regmod, rm
reset, rst
set baud, sb
Spr_name, sX
tau

trace, tr

DI NK32_MPC603ev >>hel p

Exci mer

Exci mer DI NK COMMAND LI ST

Command

About . ..
Benchmar k
Define Alias
Downl oad

Go

Hi story

Log session
Memory Di spl ay

@MOTDHOLA

Mnemoni ¢

about, ab
benchmark, bm
defalias, da
downl oad, dI

go
hi story, hi st
| og

memdi sp, md

Command

Assembl e

Br eakpoi nt ops
Devi ce Displ ay
Devi ce Tests
Downl oad

Fl ash commands
Go

Hi story

Log session
Memory Di spl ay
Memory Fill
Memory Move
Memory Test

PCI Bus Probe
PCI Reg Modify

Regi st er Di spl ay
Real - Time Cl ock

Run Ali as
Set | nput
Symbol table

Transparent Mode
command)

(repeat | ast

DI NK COMMAND LI ST

Command

Assenmbl e

Br eakpoi nt ops
Di sassenbl e

Fl ash commands
Hel p

I nfo

Memory Compar e
Memory Modi fy

Chapter 4. MDINK32/DINK32 Commands

Mnemoni ¢

assenmbl e, as
bkpt, bp

devdi sp, dd
devtest, dev
downl oad, dI

flash, fl

go

hi story, hist
| og

memdi sp, md
memfill, mf

memove, nv
memt est, mt
pci probe, ppr
pci mod, pm
regdisp, rd
time, rtc
runalias, ra
setinput, si
symt ab, st
transpar, tm

details about a command, please type "help <mnemoni c>"

Mnemoni ¢

assembl e, as
bkpt, bp

di sassem, ds
flash, fl
hel p, he
info, in
memcomp, mc
memod, mm

4-37

Commands

Memory Fill memfill, mf Memory I nfo mem nfo, m
Memory Move memove, nv Memory Search memsrch, ms
Memory Test memt est, nmt Menu menu, me
Regi st er Display regdisp, rd Regi st er Modi fy regmod, rm
Reset reset, rst Run Ali as runalias, ra
Set Baud Rate set baud, sb Set | nput setinput, s
Show SPRs spr_name, SXx Symbol table synt ab, st
Tau tau Transparent Mode transpar, tm
Trace trace, tr . (repeat | ast command)

For additional details about a command, please type "help <mnemoni c>"
DI NK32_MPC603ev >>

MDI NK

M NI MUM DI NK COMMAND LI ST
Command Mnemoni ¢
About . .. about, ab
Downl oad downl oad, dlI
Hel p hel p, he
Go go
Menu menu, me

DI NK32_750 >> help go

Individual Commands

DI NK32_MPC603ev >>hel p go
GO

Mnemoni c: go
Syntax: go [<address>| +]
Description: This command allows the user to execute user code
starting at
the specified address. Execution will <continue until a

breakpoi nt or

an exception occurs.

If the "+" formis used, then execution will start at the address

defined by the contents of bits 0-29 of SRRO.

The user should term nate their code with an illegal opcode or
with a

breakpoi nt. The value of dink _loop() is initially placed in
the User

Programm ng Model Iink register. If you term nate your code

with a blr to that location you will re-enter DI NK. In the
process,

however, you will performthe prolog of the dink_|oop function
whi ch

will save registers (ex. Ir) off onto the currently defined

stack (ie.
the value in rl). This may be an unexpected side-effect.

Note: If a breakpoint is encountered, the user nmust clear the
breakpoint in order for execution to continue.

4-38 Dink32 R12 User’s Manual @ MOTOROLA

Commands

DI NK32_MPC603ev >>

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-39

Commands

4.1.17 ldentify id

Mnemonic: identify, id
Syntax: id
Description: This command shows information about the PPMC card.

The 'id’ command stores board ID in the 12C EEPROM. Of particular interest is the
L2CACHE field, which is copied on reset. Thisallows cache settings to be associated with
aPPMC card instead of the Sandpoint motherboard.

4-40 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.18 10Q 1og

Toggleslogging

Only available on yellowknife and sandpoint.
* log

This command provides the capability to log a debug session. The command toggles the
logging function. When logging is enabled, all characters sent to the terminal will be
echoed to the host port, the second com port, com2 (duart channel B) in the system. On
Yellowknife, this will be the alternate com port to the terminal port. See Section 4.1.36,
“setbaud sb".

Example:

DI NK32_750 >> | og

You are enabling | ogging! After this message all input and output to
your termnal will be mrrored out to the host port. Now would be a

time to open an editor on the host and get into insert mode

DI NK32_750 >> | og
Loggi ng di sabl ed!

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-41

Commands

4.1.19 memcompare mc

Compare memory

¢ Syntax:mc <address> <address> <address>
Description: This command compares two blocks of memory.

Example:

mc 100000 100100c 200000
compares 100000 to 200000, 100004 to 200004, etc.

4-42 Dink32 R12 User’s Manual

Commands

4.1.20 memdisp md
display memory

 memdisp address
* memdisp start +
 memdisp start - end

This command displays data stored in the specified memory locations. The display will
always be aligned on a 16-byte boundary in which the address given will be included. In
order to keep from saturating the screen, a maximum of four lines of data are displayed on
the screen, followed by a prompt. To continue viewing data, the user enters <return> at the
prompt. Multiple parameters may be entered.

If the \"+\" form is used, the command will continue to display blocks of memory if the user
enters <return> at the prompts, until the end of memory is reached or until the user enters
an \"x\". If the two-address version is used, the command will display the contents of
memory between and including each address specified in the range. If more than four lines
of data are requested, the user can then enter an \"x\" at the prompt to quit before the end
of the display range.

The start address is normalized to the previous quad-word boundary. Likewise, the ending
address is normalized to the next quad-word boundary. For example, if the start address was
0x00000104 then the first memory address to be displayed would be 0x00000100. If the
end address was 0x00000104 then the last memory location to be displayed would be
0x0000010cC.

Exampl es:

DI NK32_750
0x00060100
0x00060200

>> memdi sp 60100, 60200
00000041 00000042 00000043
00000000 00000000 0OOOOOOOO

00000044
00000000

DI NK32_750 >> memdi sp 60100- 60130

0x00060100
0x00060110
0x00060120
0x00060130

DI NK32_750
0x00060260
0x00060270
0x00060280

00000041 00000042
00000045 00000046
00000000 0OOOOOOO
00000000 0OOOOOOO

>> memdi sp 60260+
00000000 00000000
00000000 00000000
00000000 00000000

00000043
00000047
00000000
00000000

00000000
00000000
00000000

00000044
00000048
00000000
00000000

00000000
00000000
24002400

Chapter 4. MDINK32/DINK32 Commands

Commands

4121 memfill

memory fill

memfill start end data

mf

The range of memory spanning from the starting address to the ending address isfilled in

with the given 32-bit data pattern. Thefill isinclusive of the end point.

Examples:

DI NK32_750
DI NK32_750
DI NK32_750
0x00060120
0x00060130
0x00060140
0x00060150
0x00060160

DI NK32_750
DI NK32_750
0x00060120
0x00060130
0x00060140
0x00060150
0x00060160

4-44

>> menfill
>> menfill

>> memdi sp 60120-60160

89898989
89898989
00000000
00000000
89898989

>> menfill

89898989
89898989
00000000
00000000
89898989

89898989
89898989
00000000
00000000
89898989

>> memdi sp 60120-60160

89898989
89898989
00000000
00000000
89898989

89898989
89898989
44444444
00000000
89898989

89898989
89898989
00000000
00000000
89898989

60100 60200 89898989
60140 6015c 00000000

89898989
89898989
00000000
00000000
89898989

60144 60144 44444444

89898989
89898989
00000000
00000000
89898989

Dink32 R12 User’s Manual

Commands

4122 meminfo mi

mi [-s|[-c][-c]

mi displaysinformation about the memory settings. If no option is selected, the current
memory controller settings are decoded.

Options (for SODIMM/DIMM-based systems only):

e -S -- show 12C ROM info.

e -c --compare I2C info to memory controller settings for errors. If -c is entered
a second time, the settings will be corrected. Setting the MEMOPT ENV variable is
equivalent to enteringi -c -c at startup.

Example:

DI NK32_ARTHUR >>mi
Memory settings:

ROM Speed: 30 ns (2 clocks)

SDRAM Bank O0: Di sabl ed

SDRAM Bank 1: Di sabl ed

SDRAM Bank 2: Enabl ed
Range: [00000000 -> O0O0Offfff] 1 MBytes
Speed: 0/1/1/1

SDRAM Bank 3: Enabl ed
Range: [08000000 -> 080fffff] 1 MBytes
Speed: 0/1/1/1

SDRAM Bank 4: Enabl ed
Range: [08400000 -> 094fffff] 17 MBytes
Speed: 0/1/1/1

SDRAM Bank 5: Enabl ed
Range: [00000000 -> 0O0Offfff] 1 MBytes
Speed: 0/1/1/1

SDRAM Bank 6: Enabl ed
Range: [00000000 -> O0O0Offfff] 1 MBytes
Speed: 0/1/1/1

SDRAM Bank 7: Di sabl ed

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-45

Commands

4123 memod mm

memory modify

e memod address
e memod start+
e memod start- end

Memory modify is an interactive command. It will display the contents of the given
memory address and allow the user to change the value stored there. Memory is considered
to be a contiguous set of 32-bit integers.

The “plus” form causes the command to start at a given address and continue until the end
of memory or until the user types “x” to exit the memory modify loop.

The “range” form allows modifications for the inclusive range from start to end. When the
end address is reached the memory modify loop is automatically exited. The user can type
“X" at any time to exit the memory modify loop.

» -b for byte

* - h for halfword

» -w for word (default))

Examples:

DI NK32 750 >> memod 60100

0x00060100 0x89898989 : ? 44444444
DI NK32_ 750 >> memod -b 60100
0x00060100 0x44444444 . ? 66

DI NK32_ 750 >> memod -h 60100
0x00060100 0x66444444 : ? 3333

DI NK32_ 750 >> memod -w 60100
0x00060100 0x33334444 . ? 22222222
DI NK32_750 >> memod 60110-60118
0x00060110 0x89898989 : ? 11111111
0x00060114 0x89898989 : ? 22222222
0x00060118 0x89898989 : ? 33333333
DI NK32_ 750 >> memod 60200+
0x00060200 0x89898989 : ? 12341234
0x00060204 0x00000000 : ? 12341234
0x00060208 0x00000000 : ? x

4-46 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.24 Mmemove mv

memory move

e memove <start addr> <end addrs> <dest addr>

This command copies data from a block of memory, bounded inclusively by the first two
addresses, to a block of memory starting at the third address. The result of this command
will be two identical blocks of memory. If the third address falls between the first two
addresses, an error message is returned and memory will not be modified.

Examples:

DI NK32_750 >> memfill 60100 60110 ffffffff

DI NK32_750 >> memdi sp 60100- 60150

0x00060100 ffffffff fEffffff fFFfefff fEFFffff
0x00060110 ffffffff 00000000 00000000 00000000
0x00060120 00000000 00000000 00000000 00000000
0x00060130 00000000 00000000 00000000 00000000
0x00060140 00000000 00000000 00000000 00000000
0x00060150 00000000 00000000 00000000 00000000

DI NK32_750 >> memove 60100 60110 60140

DI NK32_750 >> memdi sp 60100- 60150

0x00060100 ffffffff fffffff fEEfffff fREfefff
0x00060110 ffffffff 00000000 00000000 00000000
0x00060120 00000000 00000000 00000000 00000000
0x00060130 00000000 00000000 00000000 00000000
0x00060140 ffffffff fFffffff fEEfffff fRefefff
0x00060150 ffffffff 00000000 00000000 00000000

Chapter 4. MDINK32/DINK32 Commands 4-47

Commands

4125 memsrch ms

memory search

ms <address> <address> <data>

This command searches for a 32-bit data pattern in the inclusive block specified by the
range of the two addresses. If the second address is less than the first address, an error
message is returned and no search is performed. If the pattern is found, the addresses of

matching data are printed to the screen. The command,

nms 50100 50200 fff01234

searches for the data pattern "fff01234" in memory locations 0x50100 to 0x50200

inclusive, and prints the matching addresses.

Example:

DI NK32 603e >>md 60100-60120

0x00060100 10ff7f00 OOffffOO ff2023ff ffO402ff
H.oo.o..

0x00060110 ooffffo0 OQOffff00 ff5008ff
......... P......

0x00060120 00efef00 O0Offff0O0 ffOL100ff
.............. 0.

DI NK32_603e >>ms 60100 60120 ff5008ff
0x00060118

4-48 Dink32 R12 User’s Manual

ff1002ff

ff0030ff

Commands

4.1.26 memtest mt

memory test

mt [-d dev][-b|-h]-w][-I loop][-t][-h][-a][-q] addr1-addr2

The memtest command performs various memory tests on local memory or device
registers. The basic format is:

mt [-d deV][-b|-h|-w][-I loop][-t][-h][-a][-q] addr1-addr2

-d device Test the indicated device instead of memory. Use the "dm"
command to get a list of devices. NOTE: testing non-volatile 12C EEPROM devices
can destroy valuable information as well as reduce the life expectancy of those
devices.

-b, -h, -w Test memory or device using byte, half-word or word accesses.
Memory can be tested in any size, while devices may be limited to bytes. If not
specified, the default size is word for memory and bytes for devices.

-l loop-cnt Specifies the number of times the memory test should perform all
tests. If not specified, each test is performed once, while if '0’ is specified, the test is
run forever.

-X If specified, the testing halts immediately when any error is found.
This is useful for extended passes to trap on any error.

-q Perform only a quick test.
-a Perform all defined memory tests (can be slow).
-n list Perform only specified memory tests. Tests are selected by adding

one or more of the following letters to "list":

— -0 : walking O's test (non-destructive, slow)

— -1 : walking 1's test (non-destructive, slow)

— -A : address=data test (destructive)

— -Q : quick pattern test (non-destructive)

— -R : random pattern test (non-destructive)

— -S : write sensitivity test (destructive, slow)

-t Show elapsed time (only on systems with a real-time clock).

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-49

Commands

* addrl-addr2 Specifies the starting and ending address, respectively. The
addresses must be aligned to the size of the access (as specified by the-b/-h/-w
option) Note: be careful not to test memory regions used by DINK. 0x90000 is a safe
starting point for DINK 11.0.2 or earlier.

Examples:

DI NK32_ ARTHUR >>nmt -q 90000-1fffffc
This quickly tests the default
32MB SDRAM DI MM
on Yel |l owkni fe/ Sandpoi nt systems.

DI NK32_ARTHUR >>mt -q 90000-1fffffc

PASS 1:
QUi CK TSt . . e PASS
Compl eted tests: No errors.
DI NK32 ARTHUR >> mt -b -a -1 0 -x 90000-1ffffff
Use all defined test to test 32MB of memory, wusing only byte
accesses. Repeat the test forever unless an error occurs.
DI NK32_ARTHUR >>mt -b -a -1 0 -x 90000-1fffff
PASS 1:
QUi CK TSt . . e PASS
Random Pattern Test. e e e e PASS
Wal King 17 s TesSt e e e e PASS
Wal King 07 s TesSt e e e PASS
Address March Test e PASS
Wite Sensitivity Test. e e PASS

DI NK32 ARTHUR >>mt -n S -t 90000-1fffff
Test 32MB using only the write sensitivity test, and report the
el apsed time.

DI NK32_ ARTHUR >>mt -t -n S 90000- A0O0O0O
PASS 1:
Wite Sensitivity Test. e PASS
Compl eted tests: No errors.
El apsed time: 0:00:16
DI NK32_ARTHUR >>

4-50 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.27 Menu me

show list of DINK32 commands MDINK32 Compatible
menu (same as “help”)

This command will list all of the commands that are available in the current implementation
of DINK32.

Examples:

DI NK32_ARTHUR >>menu

Exci mer DI NK COMMAND LI ST

Command Mnemoni ¢ Command Mnemoni c
About . .. about, ab Assembl e assembl e, as
Benchmar k benchmark, bm Br eakpoi nt ops bkpt, bp
Define Alias defalias, da Di sassenmbl e di sassem, ds
Downl oad downl oad, dlI FIl ash commands flash, fl
Go go Hel p hel p, he
Hi story hi story, hist I nfo info, in
Log session | og Memory Di spl ay memdi sp, md
Memory Modify memod, mm Memory Fill menmfill, nf
Memory | nfo mem nfo, m Memory Move memove, nv
Memory Search memsrch, ms Memory Test ment est, nt
Menu menu, me Regi ster Display regdisp, rd
Regi st er Modi fy regmod, rm Reset reset, rst
Run Ali as runalias, ra Set Baud Rate set baud, sb
Set | nput setinput, si Show SPRs spr_name, SXx
Symbol table symt ab, st Tau tau
Transparent Mode transpar, tm Trace trace, tr

(repeat | ast command)

For additional details about a command, please type "help <mnemoni c>"

MDI NK32_ARTHUR >>menu
M NI MUM DI NK COMMAND LI ST

Command Mnemoni c
About . .. about, ab
Downl oad downl oad, dI
Flash ramto rom fw -e

Fl ash displ ay fl -dsi

Hel p hel p, he

Go go

Menu menu, me

For additional details about a command, please type "help <mnemoni c>"

Chapter 4. MDINK32/DINK32 Commands 4-51

Commands

4.1.28 pciconf pe

pci probe command (on systems with a PCI bus)
pciconf <devNum>

This command displays 26 common PCI configuration registers, and 16 additional device
specific registers of a PCl device. The devNum depends on which PCI slot the device is
attached to, and it can be found by executing the ppr (PCI Device Probe) command.

Example:

DI NK32_750 >> ppr

devNo PClI ADR. DEVI CE I D VENDOR | D
11 0x80005800 0x0565 Ox10ad

DI NK32_750 >> pcf 11

ADDR. VALUE DESCRI PTI ON

0x00 Ox10ad Vendor ID

0x02 0x0565 Device ID

0x04 0x0007 PCI command

0x06 0x0200 PCI st atus

0x08 0x04 Revi sion I D

0x09 0x00 St andard Programmi ng |Interface
Ox0a 0x01 Subcl ass code

0x0b 0x06 Cl ass code

0x0c 0x00 Cache line size

0x0d 0x00 Latency ti mer

0x0e 0x80 Header type

OxOf 0x00 Bl ST contr ol

0x10 0x00000000 Base Address Register O
0x14 0x00000000 Base Address Register 1
0x18 0x00000000 Base Address Register 2
Ox1c 0x00000000 Base Address Register 3
0x20 0x00000000 Base Address Register 4
0x24 0x00000000 Base Address Register 5
0x28 0x00000000 Cardbus CI S Pointer
0x2c 0x0000 Subsystem Vendor 1D
0x2e 0x0000 Subsystem I D

0x30 0x00000000 Expansi on ROM Base Address
0x3c 0x00 Interrupt line

0x3d 0x00 Interrupt pin

Ox3e 0x00 M N_GNT

Type <return> to continue or "x" to quit >>

4-52

Dink32 R12 User’s Manual

Commands

4.1.29 pcidisp pd

pci display (on systemswith a PCI bus)
pcidisp <devNum> <regNum>

This command reads a configuration register (regNum) of a PCl device (devNum). The
devNum depends on the PCI slot the device)is attached, and it can be found by executing
the ppr (PCI Device Probe) command..

Example:

DI NK32_750 >> pcidisp 11 10

O0x10 0x12345678 Base Address Register O

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-53

Commands

4.1.30 pcimod pm

pci modify (on systems with a PCl bus)
pcimod <devNum> <regNum>

This command is used to modify the content of a configuration register (regNum) of a PCl
device (devNum). The DevNum depends on the PCI dlot the device is attached to, and it
can be found by executing the ppr (PCl Device Probe) command. This command first
displays the current value of the desired register, then asks the user to enter the new value.

This command does not return an error if the register requested is aread-only register.
Example:

DI NK32 750 >> pcimod 11 10

Ox10 0x00000000 Base Address Register 0

New Val ue? 12345678

DI NK32_ 750 >> pcidisp 11 10
O0x10 0x12345678 Base Address Register 0

4-54 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.31 pciprobe ppr

pci probe command (on systems with a PCI bus; non-excimer build)
pciprobe

This command scans all legal PCI device numbers (from 10 to 31) and detects whether any
deviceisattached to them. If aPCI deviceisfound, the following informationis displayed:

Device number, PCl address, Device Id and Vendor 1d.

Example:

DI NK32_ 750 >> pciprobe

Dev # PClI ADDR DEVICE I D VENDOR | D CLASS

11 0x80005800 0x0565 Ox10ad Bridge Interface
12 0x80006000 (cannot probe self)

15 0x80007800 0x2000 0x1022 Net work | nterface

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-55

Commands

4.1.32 regdisp rd

display registers
Syntax:
rd[-v][-€][r|rx|rx+|rx-ry|f[fx[fx+[fx-fy|sx|spr_name]northbridgelnbjmpcl06|mpcl07|mpc82
40]

* regdisp r - entire general register family

* regdisp rx - one general purpose register

o regdisp rx+ - fromrx to r31

o regdisp rx-ry - fromrxto ry

* regdisp f - entire floating point family

» regdisp fx - one floating point register

* regdisp fx+ - from fx to f31

* regdisp fx-fy - from fx to fy

* regdisp SPR by name- view spr by name, such as hidO, contents.

* regdisp sx - one special purpose register

* regdisp vx - one altivec vector register

» regdisp v+ - all altivec vector registers

* regdisp -v - verbose display, only valid gnv -c, env rdnode=e is set.

This will display the contents of the specified registers. This command offers the user
several options for viewing the registers. The whole family of general purpose registers or
floating point registers can be viewed by typimgddisp r” or “regdisp f” respectively. A

single register can be viewed by specifying rx, fx, or sx, where the first character denotes
the register family and the second character denotes the register number. Special purpose
registers may be selected by their standard abbreviations as well as their register number.

The “plus” form displays the contents of the register family starting with the given register
up to and including the last register in that family. The “range” form displays the contents
of the registers from rx to ry or from fx to fy.

Note that the “entire family”, “plus”, and “range” forms are not available in the special
purpose register family. This is due to the architectural design feature in which the special
purpose registers all have unique register numbers and are not numbered sequentially.

The above parameter forms can be combined by separating them with a comma or white
space. This will display multiple registers in different register families with one command.

Note that the register display is aligned on an even-numbered register boundary, so if an
even numbered register needs to be displayed, the odd-numbered register following it is

4-56 Dink32 R12 User’s Manual @ MOTOROLA

Commands

also displayed.

Most of the SPRs can suppress the verbose mode. Thisis still the default for compatibility
purposes. |f suppressed you can get verbose mode by with the following commands,

rd -vandyoucandord - e togetthefieldsexplained (where possible). Not all SPRs
are quietened, just the most interesting ones. The 601 registers are not suppressed. To
enable quiet mode use these commands. env -c, env rdnode=e, see Section 4.1.11,
‘env env".

Verbosity is suppressed for:

« XER SDR1 CR IABR PMC4LR SRRO FPSCR MMCRO SIA

« CTR SRR1 MSR PMC1 THRM2DSISR SPRGx SRx PMC2 THRMS3
- DAR EAR HID1 MMCR1 THRM1DEC PVR PMC3 ICTC

« L2CR USIA HASH1 HID1 DBATxU

« UPMC2 UMMCR1 HASH2 SDA DBATXL

« UPMC3 UMMCRO IMISS DABR TBU

+ UPMC4 DMISS ICMP IBATxU TBL

« UPMC1 DCMP RPA IBATXL MSSCRO

« MSSCR1 UBAMR PIR UMMCR2

* VRSAVE VSCR MMCR2 BAMR

Field descriptions are interpreted for:

» DBATxU DBATXL SRx PVRIBATxU IBATxL HID1 L2CR

« CR FPSCR MSR IABRTHRM1 THRM2 THRM3 L2CR DABR MPC10x:
PICR1/A8 and PICR2/AC

Examples:

DI NK32_750 >> regdisp rl-r2,f4-f6, hid0

gpr 00: 0x00000000 gpr0O1: 0x00060000

gpr02: 0x00000000 gpr03: 0x000068ac

fpr04: 0x0000000000000000 fpr05: 0x0000000000000000
fpr06: 0x0000000000000000 fpr0O7: 0x0000000000000000

DI NK32_750> regdi sp hidO
Har dware | mpl ementati on Dependent O

hi dO : 0x80010080
10000000000000010000000010000000

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-57

Commands

e === master checkstop enable
F e === m crocode selftest <checkstop
I atch

e === checkstop following a machine
check

o === multi-side hit in the tlb
P === nmulti-side hit in cache directory
Fo === sequencer hang

F === di spatch ti me-out

F e === bus address parity error

F === bus data parity error

F === cache parity error

Fo === invalid mcrocode instruction

F === pio bus protocol error

e === reserved

+++++++++++++++. . === checkstop enables

+. === error in main cache (in array init)

+ === reserved

DI NK32_750 >> regdisp rl1 f2 r3 f4 r8 s5

gpr 00: 0x00000000 gpr0O1: 0x00060000

fpr02: 0x0000000000000000 fpr03: 0x0200feed010cab00

gpr02: 0x00000000 gpr03: 0x000068ac

fpr04: 0x0000000000000000 fpr05: 0x0000000000000000

gpr08: 0x00000000 gpr09: 0x00000000

DI NK32_750 >> regdisp r23+

gpr22: 0Ox2cab4dad gpr23: 0x00000000

gpr24: 0x00000000 gpr25: 0x00000000

gpr26: 0x00000000 gpr27: 0x00700007

gpr28: 0x00000000 gpr29: 0x00000000

gpr30: 0x00face00 gpr31: 0x00000000

DI NK32_MAX >>rd v2

vr 2: 0x00000000 00000000 00000000 OOabcdef

DI NK32_MAX >>rm v2

vr 2: 0x00000000 00000000 00000000 OOabcdef ? 12345678
DI NK32_MAX >>rd v2

vr 2 0x00000000 00000000 00000000 12345678

DI NK32_MAX >>rd v

vr 0 Oxffffffff FIFFfffff fIFFffff fEFFFfff

vr 1: Oxffffffff fIFFffff fIfFfffff fEFFfFfff

vr 2: 0x00000000 00000000 00123456 78abcdef

vr 29: Oxffffffff fIFFffff fIfFfffff fEFFFfff

vr 30: Oxffffffff FIFPFfffff fIfFfffff fEFFfFfff

vr 31: 0x00000000 12345678 abcdef 00 87654321

This example contrasts the verbose mode versus the non verbose mode of display. See the
command env.

4-58 Dink32 R12 User’s Manual @ MOTOROLA

DI NK32_ARTHUR >>rd msr

Commands

MSR : 0x00003930
POW0 EE=0 PR=0 FP=1 ME=1 FEO=1 SE=0
BE=0 FE1=1 [IP=0 IR=1 DR=1 RI=0 LE=0
TLB/ GPR=0 VMX=0 PM=0
DI NK32_ARTHUR >>rd -v msr
Machi ne State Register
MSR : 0x00003930
00000000000000000011100100110000
R e === reserved
Fe === activates power management
t === tl b gpr overlay enable
e === reserved
o === external interrupt enable
o === privilege |leve
o === fl oating-point avail able
oo === machi ne check enable
o === fl oating point exception point O
oo === single-step trace enable
oo === reserved
oo === floating point exception point 1
oo === reserved
+oo === exception prefix
S === instruction address translation
+. . === data address translation
+. === reserved
+.. === performance monitor marked mode
+. === RESET or MC exception recoverable

DI NK32_ARTHUR >>

Chapter 4. MDINK32/DINK32 Commands

little endian mode enabl e

4-59

Commands

4.1.33 regmod rm
modify registers

ntax:
2/1[-\??[@] [r]rX|rx+|rx-ry[f[fx|fx+[fx-fy|sx|spr_name]northbridgelnbjmpcl06|mpcl07|mpc82
40]

* regmod r - entire general register family

* regmod rx - one general purpose register

e regmod rx+ - from rx to r31

* regmod rx-ry - from rx to ry

* regmod f - entire floating point family

* regmod fx - one floating point register

* regmod fx+ - from fx to f31

* regmod fx-fy - from fx to fy

* regmod SPR by name- view spr by name, such as hidO, contents.

e regmod sx - one special purpose register

* regmod vx - one altivec vector register

* regmod v+ - all altivec vector registers

* regmod -v - verbose display, only valid gnv -c, env rdnode=e is set.

This command modifies the contents of the specified registers. r, f will access the entire
general purpose or floating point family; rx, fx, sx, or spr_name will access the specified
register. Multiple parameters may be entered. The user can enter <return> to leave data
unmodified, or an \"x\" to quit. If the \"+\" form is used, the command will display one
register at a time and prompt the user for a new value. It will continue to do this for the
entire family starting with the specified register. If the two-address version is used, the
command will display one register at a time and prompt the user for a new value. It will do
this for all the registers specified in the range.

Note that special purpose, and mpc106 registers can only be accessed individually and not
as a family or with the \"+\" or range forms. mpc106 supports -b, -h, -w options for byte,
halfword, and word access.

Most of the SPR’s can suppress the verbose mode, see Section 4.1.32, “regdisp rd".

Examples:

DI NK32_603e >>rmr6
gpr06 = 0x00000000 : ? 12345678

4-60 Dink32 R12 User’s Manual @ MOTOROLA

Commands

DI NK32_603e >>rd r6
gpr06: 0x12345678 gpr07: 0x00000000

DI NK32 603e >>rm mpcl06 70
ADDR. VALUE DESCRI PTI ON

O0x70 0x0000 Power management config. 1
new value ? 1234

DI NK32_603e >>rd mpcl06 70
ADDR. VALUE DESCRI PTI ON

0x70 0x1234 Power management config. 1

DI NK32 603e >> rm f4-f7, s8

"di splays the contents of floating point register 4 and prompts the
user for new data, then increments through registers 5-7. Then the
contents of s8 are displayed and can be modified.”

DINK32_603e >> rm mpcl06 -h Oxaa

" sets the contents of the mpcl06 register in halfword starting at
offset Oxaa.”

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-61

Commands

4.1.34 ItC rtc
modify/display real time clock <yellowknife and sandpoint only>
rtc [-s][-w]

The rtc command allows setting or displaying the real-time clock available on the
Yellowknife or Sandpoint systems.
e -S Sets the clock; you are prompted for the date and time.

* -w Watches the clock. The date and time are repeated until a key is pressed
on the keyboard.

If no option is given, the current date and time are displayed.

Example:

DI NK32_KAHLUA >>rtc
2000/ 00/ 14 03:38:14
DI NK32_KAHLUA >>rtc -s

Year 99
Month : 06
Day 21
Hour 11

M nute : 48

Second : 00

Set to: 1999/06/21 11:48:00
1999/ 06/ 21 11:48:00

DI NK32 KAHLUA >>

4-62 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4135 runalias ra

run alias
runalias

This instruction will read in the string which the user has defined as an alias. Then, the
commandsin thisstring will be executed sequentially. Also see the da and env commands.

Example:

DI NK32 750 >> runali as

The runalias command can al so be embedded within a command |ine. For
example, if the alias string has previously been defined as

tr +; rd r

Typing the command:

DI NK32_750 >> |l og; trace 2100; runalias; |og
is identical to typing

DI NK32_750 >> log; trace 2100; tr +; rd r; |og
See defalias for a complete example.

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-63

Commands

4.1.36 setbaud sb

displays or changes the speed of the serial port <mdink32 compatible>

e setbaud [-h|-k]
e setbaud[-h|—k] rate

This command sets the baud rate for the host serial port (-h) or the keyboard serial port (-k)
by specifying the appropriate flag followed by a valid rate
(2400,4800,9600,19200,38400,57600). If only a flag is specified, the current baud rate for
that serial port is returned.

« Example: $b - h" would return the current baud rate for the host serial port.

« Example: $b -k 9600" would set the host serial port baud rate to 9600.

4.1.36.1 Host versus Keyboard.
Used by | og, sb,dl, andtr commands. See Section 4.1.10, “download dI",
Section 4.1.18, “log log", and Section 4.1.39, “transpar tm".

« The keyboard serial port (-k) indicates serial port com1, which is used for normal
communication between the terminal emulator and the evaluation boards @ hus
-k anddl -k indicate to use the current serial port. Thusdor, - k, use the
terminal emulatort r ansfer send text file, feature onthe terminal
emulator connected to coml1.

» The host serial port (-h) indicates serial port com2, which is not normally used. One
can connect another terminal emulator to this serial port and with the dl -h command,
download a file. This port is only available with the Sandpoint and Yellowknife
platforms.

NOTES:

« The maximum baud rate on the Yellowknife and Sandpoint platform is 38400.
« The Excimer and Maximer platform will not return the current baud rate correctly.
* The default baud rate on all platforms is 9600.

Examples:
MDI NK32_603e >>setbaud -k 57600
Baud rate changing to 57600...B@

<NOTE: user must then change the baud rate on the terminal to
correspond to 57600>

4-64 Dink32 R12 User’s Manual @ MOTOROLA

Commands

MDI NK32_603e >>

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-65

Commands

4.1.37 symtab s

displays DINK 32 symbol table information

e symtab -c
e symtab -d

This command shows selected DINK symbols and user defined symbols and their
associated addresses. User symbols can be defined by the as command. The -c option is to
clear all user symbols. The -d option is to delete a single user symbol. The user cannot
delete or clear DINK's symbols. The symbols in the table can be used as the address
(@symbol) of the branch instruction while executing the as command.

Examples:

DI NK32 603e >>as 60000+

O0x00060000 OxffO00O0ef fsel. f24, foo0, f00, fO3 br1l: xor
rl,r2,r3

0x00060000 Oxff0000ef BRANCH LABEL br1:

O0x00060000 OxffO0O0O0ef fsel. f24, f00, f00, f0O3 xor r3,r4,r5
0x00060004 Oxffc037fc fnmsub f30, foo, f31, fO06 br2: xor
rl,r5,r6

0x00060004 Oxffc037fc BRANCH LABEL br2:

0x00060004 Oxffc037fc fnnmsub f30, fo00, f31, fO06 X

VERI FYI NG BRANCH LABELS.

DONE VERI FYI NG BRANCH LABELS!
DI NK32_603e >>ds 60000
0x00060000 0x7c832a78 BRANCH LABEL br1:

0x00060000 0x7c832a78 xor r03, r04, ro05

DI NK32 _603e >>as 60100

0x00060100 0Ox85ffffcd | wzu ri5, Oxffcd4(r31) br 3: xor
r5 r6,r7

0x00060100 0x85ffffc4 BRANCH LABEL br 3:

0x00060100 0Ox85ffffcd |wzu rl5, Oxffc4d4(r31) X

VERI FYI NG BRANCH LABELS.

DONE VERI FYI NG BRANCH LABELS!
DI NK32 603e >>st
Current list of DINK branch | abels:

KEYBOARD: 0x0
get _char: Oxlebe4
write_ char: 0x5f ac
TBasel ni t: 0x39c4
TBaseReadLower : 0x39e8
TBaseReadUpper: 0x3a04
Cachel nhi bit: 0x3a20
I nvEnL1Dcache: 0x3a40
Di sL1Dcache: 0x3a88

4-66 Dink32 R12 User’s Manual @ MOTOROLA

I nvEnL1ll cache:
Di sL1l cache
Bur st Mode:
Ram nCBKk:

Ram nWThr u:

di nk_Il oop:

di nk_printf:

Ox3aac
0x3b00
O0x3bfc
0x3c3c
O0x3c7c
0x5660
0x6368

Current |list of USER branch | abel s:

br1:
br 2:
br 3:

0x60000
0x60004
0x60100

DI NK32_603e >>st -d br2

DI NK32_603e >>st

Current list of DINK branch | abels:
KEYBOARD: 0x0

get _char: Oxleb5e4
write_ char: 0x5f ac
TBasel nit: 0x39c4
TBaseReadLower : 0x39e8
TBaseReadUpper: 0x3a04
Cachel nhi bit: 0x3a20

I nvEnL1Dcache: 0x3a40
Di sL1Dcache: 0x3a88

I nvEnL1ll cache: Ox3aac
DisL1lcache: 0x3b00
Bur st Mode: O0x3bfc

Ram nCBKk: 0x3c3c

Raml nWThr u: 0x3c7c

di nk_I| oop: 0x5660

di nk_printf: 0x6368

Current list of USER branch | abel s:

br1: 0x60000
br 3: 0x60100
DI NK32_603e >>st -c
DI NK32_603e >>st
Current list of DINK branch | abels:
KEYBOARD: 0x0
get _char: Oxleb5e4
write_char: 0x5f ac
TBasel ni t: 0x39c4
TBaseReadLower : 0x39e8
TBaseReadUpper: 0x3a04
Cachel nhi bit: 0x3a20
I nvEnL1Dcache: 0x3a40
Di sL1Dcache: 0x3a88
I nvEnL1ll cache: Ox3aac
Di sL1l cache: 0x3b0O0
Bur st Mode: 0x3bfc
Raml nCBk: 0x3c3c
Raml nWThr u: 0x3c7c
di nk_1| oop: 0x5660
di nk_printf: 0x6368

@MOTDHOLA

Chapter 4. MDINK32/DINK32 Commands

Commands

4-67

Commands

Current

list

of

DI NK32_603e >>

4-68

USER branch | abel s:

Dink32 R12 User’s Manual

Commands

4.1.38 tau tau

TAU Thermal Assist Unit CONTROL
tau [-c cal][-w][-fh]

Description: This command displays or calibrates the TAU (Thermal Assist Unit). If no
option is entered, the current temperature is displayed (with or without calibration). TAU
calibration values are always saved in the environment variable TAUCAL (if ENV storage
isavailable).

Flags:
 -c Calibrate the TAU to the actual temperature (in *C).
« -w Watch the TAU (until a key is pressed)
o -fh Show results in Fahrenheit.

TAU calibration values are always saved in the environment variable TAUCAL, if ENV
storage is available.

Example:

DI NK32_ARTHUR >>t au

Tjc = 58 ~C (uncalibrated)
DI NK32_ARTHUR >>tau -c 18
Tjc = 18 ~C

DI NK32_ARTHUR >>t au

Tjc = 18 ~C

DI NK32 ARTHUR >>tau -fh
Tjc = 32 "F

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-69

Commands

4.1.39 transpar tm

(transparent mode for comz; non-excimer build)

e transpar

This command will put DINK32 into a transparent mode, giving the user direct access to
the host. In other words, as the user types data into the keyboard, that data is sent directly
to the host serial port. In addition, data that comes in from the host serial port will be
forwarded to the keyboard serial port. The user can exit from transparent mode by typing
<ctrl>-a.

See Section 4.1.10, “download dI", and Section 4.1.39, “transpar tm"

Example:
DI NK32_750 >> tm

<cntr-a>

4-70 Dink32 R12 User’s Manual @ MOTOROLA

Commands

4.1.40 frace

single step trace

e traceaddress
e trace +

This allows the user to single-step through a user program. The microprocessor will execute
a single instruction, and then return control back to the firmware. If a specific address is
given, then a single instruction is executed from that address. However, if the “plus” form
Is used, then the address of the instruction to execute is derived from bits 0-29 of the SRRO
(Machine Status Save / Restore) register. After the instruction has been executed, control
Is returned to the firmware (DINK32) and the user can examine the programming model or
continue to trace through instructions.

Example:

D NK32_750 >> ds 2100
0x00002100 0x7c0802a6 nfspr r00, s0008

D NK32_750 >> trace 2100
A Run Mbxde or Trace exception has occurred.
Qurrent instruction Pointer: 0x00002104 stw r13, Oxfff8(r01)

D NK32_750 >> trace +
A Run Mbxde or Trace exception has occurred.
Qurrent instruction Pointer: 0x00002108 add r03, r00, rO01

DI NK32_750 >> .

A Run Mbde or Trace exception has occurred.
Qurrent instruction Pointer: 0x0000210c nfspr r04, s0274

M) mororoLa Chapter 4. MDINK32/DINK32 Commands 4-71

Commands

Chapter 5 DINK32 Command Form
Summary

1. .(period) . - repeat last command

2. about about - displays version information

3. assemble as - address- assemble at one address

4. bkpt bp - set, delete, list breakpoints

5. defalias da- command list - define aias for listed commands

6. devdisp dd list - display contents of device registers

7. devmod dm list - modify device datain device registers.

8. devtest dev list - perform an /O test on Kahlua

9. disassem ds- address - disassemble at one address

10.download dl - download S-Record file to board RAM or flash
11. env env - Environment controls

12.flash fl - flash commands

13.fupdate fu - copy PCI boot rom to local PPMC

14.fw fw -e - erase al of Flash memory and load RAM to ROM (mdink32)
15.go go - address - execute from given address

16.help he - command - show more information on command
17.1og log - record debug session to host

18.memdisp md - address - display memory at one address

19. memfill mf - start, end, data - fill memory block with data pattern
20. meminfo mi - displays information about the memory settings

21. memod mm address - modify memory at one address
22.memove mv - start, end, dest - move memory block to destination
23.memsrch ms- start, end, data - search memory block for data

24. memtest mt - perform various memory tests on local memory or device registers.
25.menu me - show list of available commands

26.pciconf pcf - display all config registers of a PCl device
27.pcidisp pd - display contents of a PCI config register

28.pcimod pm - modifies PCI device config register data
29.pciprobe ppr - scansfor PCI devices

30.regdisp rd - display entire general register family

5-72 Dink32 R12 User’s Manual @ MOTOROLA

Commands

31l.regmod rm - modify entire genera register family

32.rtc rtc - set and/or display thereal time clock
33.runalias ra - execute the commandsin the alias
34.setbaud sb - display or change the serial port baud rate
35.symtab st - displays DINK32 symbol table

36.tau tau display temperature from the Thermal Assist Unix
37.transpar tm - transparent mode Yellowknife only
38.trace tr -address trace from given address

@ MOTOROLA Chapter 5. DINK32 Command Form Summary 5-73

S-Record Compression/Decompression

Chapter 6 Utilities

6.1 S-Record Compression/Decompression

6.1.1 Overview

To assist in the compression of S-Record files, a conversion utility is included with the
source code for DINK32. The dcomp utility is written in portable ANSI-compliant C,
which is easily compiled under UNIX or a PC. The dcomp utility performs both
compression and decompression of S-records. It is provided so that the user may compress
their S-record before downloading them to the board. They will automatically detected as
compressed S-records by DINK and decompressed before being written to the proper
memory locations.

6.1.2 Building

6.1.2.1 Files

The dcomp package consists of two cfiles, dc_tb.c, dc_unix.c and three header files, dink.h,
errors.h, and sublib.h. However, these header files call other header files, so dcomp must
be built in the dink32 source directory.

6.1.2.2 Modification of header file

The dink.h file uses the #define macro ON_BQOARD, which is set by config.h. Since dcomp

must be built with ON_BOARD undefined, it is necessary to modify the config.h file.
Ensure that you return config.h to it's released form before trying to build dink32 or
mdink32. At about line 84 of the config.h file, you will find the linkdefi ne
ON_BQARD. Comment out this line. After the change this code will be:

/[* For trying to build a version that runs under Unix,
comment out the #define for ON_BOARD. */
[* #define ON_BOARD */

6.1.2.3 Build command

Use any available ¢ compiler, such as UNIX cc, or gcc, or Metaware, or PC compiler, cl
(Microsoft c compiler). This description uses the gen€@idor the compiler invocation.

CC dc_unix.c dc_tb.c -o dcomp

This command will build the executaldeonp. Dcomp will run on the machine on which
it is built. It does not run on the Excimer and Maximer or Yellowknife and Sandpoint board.

6-74 Dink32 R12 User’s Manual @ MOTOROLA

bat_decoder

6.1.3 Command syntax

Usage:
dcomp -options <input_file >output _file.
Opti ons:
-c Compress an SRecord file.
-e Expand a previously compressed file into an SRecord file.
Exampl es:

dcomp -c <a.out.nx >a.out.cmp
dcomp -e <a.out.cmp >a.out.mx

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

exampl e:

Unix $ dcomp -c <dink32.src >c_dink32.src

This command will compress the file dink32.src and create the
compressed file c_dink32.src.

Unix $ dconmp -e <c_dink32.src >e_dink32.src

This command will decompress (expand) the file c_dink32.src and

create the decompressed (i.e. expanded) file e_dink32.src.

e_dink32.src is equivalent to the original dink32.src file.

UNI X $ s -1 c_dink32.src e_dink32.src dink32.src
STW-rF----- 1 maurie 361189 Jan 22 09:43 c_dink32.src
-rwW-r----- 1 maurie 597181 Jan 22 09:41 dink32.src
-rwW-r----- 1 maurie 597181 Jan 22 10:41 e_dink32.src

6.2 bat_decoder

6.2.1 Overview

The bat_decoder program will decode BATU and BATL hex values supplied in hex. The
value of the bats will be displayed and described. The file bat_decoder.c, bat.in, and
makefile are found in the dink32/demos/utilities bat_12_decoder.

6.2.2 Building

6.2.2.1 Using unix commands

To compile and link the program use this command. This description uses the generic CC
for the compiler invocation.:

CC bat_decoder.c -0 bat_decoder.elf

M) mororoLa Chapter 6. Utilities 6-75

bat_decoder

6.2.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has seven targets.

« start - default - displays instructions

o all - makes bat_decoder and I2_decoder

* bat_decoder - makes the bat_decoder.elf executable
» cleanbat - clean just the bat_decoder files

e |2 _decoder - makes the 12_decoder.elf executable

» cleanl2- clean just the I2_decoder files

* clean - cleans all the files

6.2.3 Command syntax

Usage:

bat_decoder.elf < inputfile > outputfile
Exampl es:

bat decoder.elf < bat.in > bat.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

exampl e:

Input description:

<an integer> How many bat pairs per line are supplied?
<some_description>: <batlower_value> <batupper_value>
where:

<some_description> has no spaces or tabs (use underscore to connect names), must be
19 characters or less. The character array has only 20 characters. For bigger descriptions
this line can be changed.

<batlower_value> is a hex value
<batupper_value> is a hex value

As an example, if you wanted to decode two pairs of bats:

2

6-76 Dink32 R12 User’s Manual @ MOTOROLA

bat_decoder

i bat 0: 10000001 10000fff
dbat 0: 1000001a 10000fff

If you want a description line you can use batlower=batupper=0 asin:

3

This is_a test 0 0

i bat0: 10000001 10000fff
dbat 0: 1000001a 10000fff

The output is:

Bat Decoder - enter the bat values and display the meaning
| BAT and DBAT have same meani ng
For mat : description: upperbat_value | owerbat val ue
How many bat entry pairs, one pair per line

Pl ease enter the Lower and Upper bat value in hex
This is_a test: Decoding the bat
Both bats are zero, Disabled

Pl ease enter the Lower and Upper bat value in hex
i bat 0: Decodi ng the bat
For batu = 0x10000fff

BEPI Logical address is = 0x10000000
BL Block Length is = 0Ox3ff 128 MB
Range is = 0x10000000 - Ox17ffffff
VS is = 0x1 Supervisor mode access
VP is = 0x1 User mode access
For batl = 0x10000001
BRPN Physical address is = 0x10000000
W MG = 0x0
W of f Not Wite Through i.e. Wite back
I off Not Cache Inhibited, i.e. use cache
M of f Not Memory Coherent, i.e. non-coherent
G of f Not Guarded, i.e. unguarded
PP Bl ock Access Protection Control = 0x1
Read Only

Pl ease enter the Lower and Upper bat value in hex
dbat 0: Decodi ng the bat
For batu = 0x10000fff

BEPI Logical address is = 0x10000000
BL Block Length is = 0Ox3ff 128 MB
Range is = 0x10000000 - Ox217ffffff
VS is = 0x1 Supervisor mode access VP is = 0x1 User mode access
For batl = 0x1000001a

BRPN Physical address is = 0x10000000
W MG = 0x3

W off Not Wite Through i.e. Wite back

I of f Not Cache Inhibited, i.e. use cache

M on Memory Coherent
G on Guarded

PP Bl ock Access Protection Control = 0x2
Read and Wite

M) mororoLa Chapter 6. Utilities 6-77

I12_decoder

6.3 |12_decoder

6.3.1 Overview

The|2_decoder program will decode the L2CR register for L2 Cache supplied in hex. The
value of the L2CR will be displayed and described. The file |2_decoder.c, 12.in, and
makefile are found in the dink32/demog/utilities/bat_|2 decoder directory. Currently, this
program is designed only for the MPC750, the MPC7400 has some differences in the
meaning of the bit patterns.

6.3.2 Building

6.3.2.1 Using unix commands

To compile and link the program use this command. This description uses the generic CC
for the compiler invocation.:

CC |2_decoder.c -0 12_decoder.elf

6.3.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has seven targets.
» start - default - displays instructions
o all - makes bat_decoder and I2_decoder
* bat_decoder - makes the bat_decoder.elf executable
« cleanbat - clean just the bat_decoder files
e |2 _decoder - makes the 12_decoder.elf executable
» cleanl2- clean just the 12_decoder files
* clean - cleans all the files

6.3.3 Command syntax

Usage:

I2_decoder.elf < inputfile > outputfile
Exampl es:

| 2 decoder.elf < 12.in > 12.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

6-78 Dink32 R12 User’s Manual @ MOTOROLA

config_decoder

exampl e:

Input description:
<asinglechar> Full Display or Set values only?

« forF - Full Display means display all values even if they are zero

« any othe character including space - Set Values means display setable values only if
they are set, this makes a smaller more compact listing.

<a hex value> The full hex value of the L2CR register.

Note that less than 8 hex characters are right justified.

As an example, if you wanted to decode this L2CR register value:

[2.in

n
ad000000

The output 12.out is:

L2 Cache Regi ster Decoder - MPC750 Only
Enter the L2CR values and display the meaning
Full Display (f) or Display only Set Values (any key)?
For mat : description: hex value (without |eading 0x)
s.a. abcdefabPl ease enter the L2CR value in hex
OxDecodi ng the L2CR = 0xad000000
L2E is 1, L2 cache Enabl ed
L2PE is 0, Parity Di sabl ed
L2S1Z is 2, L2 Size 512 KByte
L2CLK is 6, L2 Clock ratio and DLL Divide by 3.0
L2RAM is 2, L2 RAM type Flowthrough Reg-Reg burst SRAM
L20H is 0, L2 Output Hold 0.5 nS

6.4 config_decoder

6.4.1 Overview

The config_decoder program will decode the configuration registers for the MPC106,
MPC107, MPC8240 in host and agent modes.. The value of the each configuration register
desired will be displayed and described. The files *.c, *.h, mpcl06.in, mpcl07.in,
mpc8240a.in, mpc8240h.in, and makefile are found in the
dink32/demos/utilities/config_decoder directory. The files mpcl06.out, mpcl07.out,
mpc8240a.out, mpc8240h.out are example output files. See the file, readme, in the
directory for detailed information on building and using this program.

M) mororoLa Chapter 6. Utilities 6-79

config_decoder

6.4.2 Building

6.4.2.1 Using unix commands

To compile and link the program use this command. This description uses the generic CC
for the compiler invocation. We use the GNU GCC compiler:

CC *.c -0 config_decoder.elf

6.4.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has two targets.

« all - default - builds config_decoder.elf and a.elf
* clean - cleans all the files

6.4.3 Command syntax

The makefile builds two executables, a.elf and config_decoder.elf. These are identical, and the
user can invoke the program with either name, however, aelf is easier to type then
config_decoder.elf.

Usage:

config_decoder.elf < inputfile > outputfile

Exampl es:

config_decoder.elf < mpcl07.in > temp.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

Input description:
any value on one line - This is the description of the input file

integer value between 1 and 4 to specify which decoder you desire, MPC106, MPC107,
MPC8240A, MPC8240H.

hh:nnnnnnnn - hh is the configuration register address, nnnnnnnn is the hex value for that
register. Note, do not supply a preceeding Ox.

exampl e:
I nput :

MPC107 registers from Doug
2

6-80 Dink32 R12 User’s Manual @ MOTOROLA

config_decoder

0: 41057
3c: 100
f0:12345678

Out put :

[finster:/config_decoder] a.elf

Configuration Register Decoder Version 0.4 June 20, 2000
Enter a description of this data, 60 characters or |ess
>>MPC107 registers from Doug

Data set: MPC107 registers from Doug

Pl ease chose one of the followi ng by number 1,2,3, or 4: Decode
1. MPC106
Decode
2. MPCl107
Decode
3. MPC8240 Host
Decode
4. MPC8240 Agent
>>2

MPC107 Decoder
Enter all values in hex, DO NOT preceed them with 0x
Only use word boundry addresses, e.g. 0,4,8,etc

Values are in little endian orientation
and will be padded with zeros on the |eft
Ent er address : val ue
Exampl e: 04 : a00106
Enter "~D" i.e. EOF to exit
>> 0:41057
Reg00 Device ID and Vendor I D = 0x00041057
0x00: Vendor I D = 0x1057
0x02: Device I D = 0x0004

>> 3c¢: 100
Reg3c Max Lat, Min GNT, Interrupt Pin, Interrupt Line = 0x00000100

Ox3C:Interrupt Line = 0x00
O0x3D: I nterrupt Pin = 0x01
Ox3E: M N GNT = 0x00
OxO0F: MAX LAT = 0x00

>> f0:12345678

Regf 0 MCCR1 Memory Control Config Reg = 0x12345678
Bank 0 Row = 0x0 9 or (12 x n x 4)
Bank 1 Row = 0x2 11 or (13 x n x 4)
Bank 2 Row = 0x3 12,13 or (11 x n x 2)
Bank 3 Row = 0x1 10 or (13 x n x 2)
Bank 4 Row = 0x2 11 or (13 x n x 4)
Bank 5 Row = 0x1 10 or (13 x n x 2)
Bank 6 Row = 0x1 10 or (13 x n x 2)
Bank 7 Row = 0x1 10 or (13 x n x 2)
PCKEN Memory interface parity checking = 0x0 Disabl ed
RAM_TYPE = 0x0 SDRAM
SREN Sel f refresh memory parity = 0x1 Enabl ed
MEMGO RAM i nterface | ogic = 0x0 Disabl ed
BURST Burst mode ROM ti mi ng = 0x1 burst-mode
DBUS_SI Z[0- 1] = 0Ox1

M) mororoLa Chapter 6. Utilities 6-81

Memory Test

ROMFAL access time = 0x04
ROMNAL next access time = 0Ox1
>>A"D (control D - eof - to term nate the program

6.5 Memory Test

A simple memory test is included in DINK as an option. It is enabled via a #define in
config.h. If MEMORY _TEST isdefined, then, before DINK is copied from ROM to RAM
a memory test will be performed from address 0x0 to the MEMORY _END || 0x0000
location. If MEMORY_END is defined as 0x7 then the test is performed between 0x0 and
0x70000. The address of the memory location iswritten into the memory location and then
read back. If an error is detected then the verify loop will go to an infinite loop located at
error_memory_test. The location of thisloop can be found in the map file and can easily b

The following listing will show up on the flash screen:
Memory test performed from 0x00000000 - 0x70000

The user may feel free to enhance the memory test algorithm by adding additional test into
the memory_test function located in except2.s

Note: The user must ensure that the ending address(MEMORY _END) isvalid or the debug
monitor may not boot.

Thereis also amemory test command, mt.

6-82 Dink32 R12 User’s Manual @ MOTOROLA

Execution Steps

Chapter 7 User Program Execution

The DINK32 firmware includes a file transfer utility that allows the user to download
S-Record files from the host to the target board.

This download function stores the S-Records into memory starting at the address given in
the S-Record file. The user can then use the go or trace command to execute the user
program. Listed below are the steps to take to execute a user program.

7.1 Execution Steps

Download the user program to run on DINK32.

1. Create an executable S-Record file of the user program to be run on DINK32. Most
modern compiler vendors supply afacility for converting an executable or
generating an S-Record file directly. E.g. Gnu supplies an elfhex tool, Metaware
supplies an elf2hex tool. Ensure that the S-Record isaMotorolatype S-Record file.

2. Download the s-record file into memory on the target board using the DINK 32
download command. The same command is used for compressed s-Record files.
Using aterminal program, receive an S-Record file into the target board. The
recommeded settings are databits = 8, parity = none, stopbits = 1, flowcontrol =
hardware (although none will work), and baud rate = 57600 on excimer, 38400 for
yellowknife.

3. Thisoptional step may be desired. The default baud rateis 9600, however, DINK 32
is capable of downloading at 57600 on Excimer and Maximer and 38400 on
Yellowknife and Sandpoint. For large programs, we suggest changing the baud rate
to 57600 before the download. One can start and debug the downloaded programin
any baud rate. However before pressing the reset button restore the baud rate to
9600.

4. go 90000. One needsto build the executable program so that it starts at address
0x90000. Upon invocation, the program will userl as the stack pointer, which will
have been set to Ox8fffO by DINK32.

Note: Hardware flow control isimplemented on the Excimer and Maximer platform and is
required for file downloading.

Example:
DI NK32_750 >> sb -k 57600
Change the baud rate to 57600. Also change the setting on your

term nal emul ator.

DI NK32_750 >> dlI -k
Downl oading in s-record format.

@ MOTOROLA Chapter 7. User Program Execution 7-83

Downl oad Conmpl et e.
DI NK32_750 >>

Set breakpoints, if necessary, and execute the user program at the
| ocation to which it was downl oaded using go or trace.

DI NK32_750 >> go <address>
DI NK32 750 >> trace <address>

7-84 Dink32 R12 User’s Manual @ MOTOROLA

Chapter 8 Errors and Exceptions

8.1 Error Codes

8.1.1 Parser Errors
¢« OxFBOO UNKNOWN_COMMAND unknown command
 OxFBO1 UNKNOWN_REGISTER unknown register
 OxFBO2 ILLEGAL_RD_STAGE cannot specify whole register family in range
 OxFBO3 ILLEGAL_REG_FAMILY cannot specify a range of special registers
« OxFB04 RANGE_CROSS_FAMILY cannot specify a range across register families
 OxFBO5 UNIMPLEMENTED_STAGE invalid rd or rmm parameter format
 0OxFB06 UNKNOWN_OPERATOR unknown operator in arguments
* OxFBO7 INVALID_FILENAME invalid download filename

8.1.2 Errors from Error Checking Toolbox
« OxFDOO INVALID NOT valid
« OxFDO1 VALID valid
* OxFDO02 INVALID_SIZE the input was not 8 characters long

e OxFD03 OUT_OF BOUNDS ADDRESS the address given falls outside of valid
memory defined by MEM_START to MEM_END

* OxFDO4 INVALID_HEX_INPUT one of more of the characters entered are not
valid hex

» characters. Valid hex characters are 0-9, A-F, a-f
« OxFDO5 INVALID_REGISTER a given register does not exist

o« OxFDO7 NOT_WORD_ALIGNED the given address is not word-aligned. A
word-aligned address ends in 0x0,0x4,0x8,0xc

« OxFDO08 REVERSED_ADDRESS the starting address is greater than the ending
address.

 OxFD09 RANGE_OVERLAP the address specified as the destination is within the
source

8.1.3 addresses
e OxFDOA ERROR an error occurred
* OxFDOB INVALID_PARAM invalid input parameter

@ MOTOROLA . 8-85

8.1.4 Get Argument Errors

OxXFEOO INVALID_NUMBER_ARGS invalid number of command arguments
OxFEO1 UNKNOWN_PARAMETER unknown type of parameter

8.1.5 Tokenizer Toolbox Errors

OxFFOO ILLEGAL_CHARACTER unrecognized character in input stream
OxFFO1 TTL_NOT_SORTED token translation list not sorted

OxFFO2 TTL_NOT_DEFINED token translation list not assigned

OxFFO3 INVALID_STRING unable to extract string from input stream
OxFF04 BUFFER_EMPTY input buffer is empty

OxFFO5 INVALID_MODE input buffer is in an unrecognized mode
OxFF06 TOK_INTERNAL_ERROR internal tokenizer error

OxFFO7 TOO_MANY_IBS too many open input buffers

OxFF08 NO_OPEN_IBS no open input buffers

8.1.6 Screen Toolbox Errors

OxFCO0 RESERVED_WORD used a reserved word as an argument

8.1.7 Breakpoint Errors

O0xFAOO FULL_BPDS breakpoint data structure is full

8.1.8 Download Errors

OxF900 NOT_IN_S RECORD_FORMAT not in S-Record Format
0xF901 UNREC_RECORD_TYPE unrecognized record type
0xF902 CONVERSION_ERROR ascii to int conversion error
0xF903 INVALID_MEMORY bad S-Record memory address

8.1.9 Compression and Decompression Errors

0xF800 COMP_UNK_CHARACTER unknown compressed character
0xF801 COMP_UNKNOWN_STATE unknown binary state
0xF802 NOT_IN_COMPRESSED_FORMAT not in compressed S-Record format

8.1.10 DUART Handling Errors

8-86

OxF700 UNKNOWN_PORT_STATE unrecognized serial port configuration

Dink32 R12 User’s Manual @ MOTOROLA

« 0OxF600 TM_NEEDS_BOTH_PORTS transparent mode needs access to two serial
ports

8.1.11 Register Errors
 OxF600 SPR_NOT_FOUND cannot find register in special purpose register file

8.1.12 Flash Errors
* OxF100 FLASH_ERROR error in flash command activity

8.2 Exceptions

There are twenty one exceptions in this version of DINK32. A message indicating which
exception has occurred is displayed for all of them except System Reset.
e 0x0100System Reset
* 0x0200M achine Check
* 0x0300Data Access
e 0x0400Instruction Access
* OxO0500External Interrupt
* 0x0600Alignment
e 0x0700Program
* 0x0800Floating-Point Unavailable
* 0x0900Decrementer
* 0OxO0AO00I/O Controller Interface Error
* 0x0CO00System Call
 0OxODOOTrace
* OxOEOOFloating Point Assist
* OxOFOOPerformance Monitor
¢ 0x1000Instruction Trandation Miss
¢ 0x1100Datal oad Trandation Miss
* 0x1200Data Sore Trandation Miss
e 0x1300Instruction Address Breakpoint
* 0x1400System Management | nterrupt
* 0x1600Java Mode denorm detection
* 0x2000Run Modeor Trace

@ MOTOROLA . 8-87

System Reset occurs when the software is booted up or the evaluation board is reset. The
other exceptions occur due to interrupts or errors in the execution of the code.

When using DINK, the user is notified of exceptions by a message that appears on the
terminal. Control isreturned to thefirmware. If the exception was caused by the compl etion

of a trace or by arriving at a breakpoint during execution of the user’s code, the user can
continue testing. Otherwise the user may need to modify the code to correct a problem and
download the program again to resume testing.

For details on what causes each exception, see the Programming Environments Manuals
(PEM) and the appropriate PowerPC User’s Manual for the part in question.

8-88 Dink32 R12 User’s Manual @ MOTOROLA

Chapter 9 Restrictions

9.1 Special Purpose Registers

There are four Special Purpose General Registers (SPRGs), numbered 0 through 3.

DINK 32 makes use of SPRG2 and SPRG3, so any user values placed into these two registers will be destroyed when-
ever control is returned to DINK32. The user is encouraged to place any values that are of interest or necessity into
only SPRGO and SPRGL1, although the user can use the other two SPRGs for calculations or temporary storage.

@ MOTOROLA . 9-89

Chapter 10 Known Bugs

10.1 Known Bugs

10-90

setbaud On Excimer and Maximer platform the sb —h or —k without a baud rate will
always return 0.

The assembler will silently ignore any register it doesn’t recognize, inserting O in it's
place. For example: mfspr r3,1010 will substitute mfsrp r3,0.

mdink 12.1 may not start dink 12.1 correctly. Last verified good version of mdink32
was 10.7.

The gcc built version of DINK32 srecord and elf file
— is 50% larger than the Metaware build

Dink32 R12 User’s Manual @ MOTOROLA

Adding Commands and Arguments

Appendix A Adding Commands and
Arguments

A.1 Help

All help information is displayed by the help.c file. The help file has two types of help, the
main summary menu and the specific help information for a specific command.

A.1.1 Help Menus

There are two summary help menus, one for dink32 and the other for mdink32. They are
discriminated by the "dink_type" variable. dink_type = 0 for dink32 and dink_type =1 for
mdink32. Simply add the summary command to the appropriate menu. The menus are
simply PRINT statements in the function menu().

There is no distinction between dink32 and mdink32 for the specific command help file.
Simply build a function caled hel p_<conmmand> such as hel p_i nfo(). This
function consists entirely of PRINT commands describing the new command.

To make the specific help commands available, specify the hel p function with the command
function in the command_tb.h file. There are two steps.

1. add an extern for the command and help functions. Such as extern STATUS
par_bm() and extern void help_bm() for the benchmark command.

2. Add the command name, tag, function and help function name to the structure
cmd_struct dink_cmds.

— struct cmd_struct dink_cmds[NUM_CMD] = {

— {"ab", "about", NO_TAG, par_about, help about},

— {'"as", "assemble", MODIFY_TAG, par_asdm, help_asm},
— {"ds", "disassem", DISPLAY_TAG, par_asdm, help_disasm},

The entry in this table will "register" your command and your help file. The members of
each entry are: short_name, long_name, tag, function_name, and help_function_name. The
tag is used to specify the argument list for your function and is invoked in the
par_head_parser function in par_tb.c. NO_TAB indicates that no command pointer is sent
to your function, i.e. define your function with a null argument list, as STATUS
newcommand(); CMD_TAG will send you a pointer to a string with the invocation
command from the command line, but not the argument list. I.e. define your function with

a string pointer, such as STATUS newcommand(char *dink_cmd), dink_cmd will be a null
terminated string containing only the invocation command. Such as dink_cmd -
"new_command\0".

@ MOTOROLA Appendix A. Adding Commands and Arguments 10A-91

Adding Commands and Arguments

Example (existing about command)

hel p. c

void hel p_about ()

{

PRI NT(" ABOUT: \n");
PRI NT("====== \n");

PRI NT(" Mnemoni c: about, ab \n");

PRI NT(" Syntax: ab \n");

PRI NT(" Descri ption: This command displays the general information
")

PRI NT("on DI NK32.\n");

PRI NT(" Exampl e: \"ab\" would display the opening screen of DI NK32.
\n");

}

Example (fl command)
hel p. c

void help_flash()

{
PRI NT(" FLASH COMMANDS: \n");
PRI NT("====== \n");

PRI NT(" Mnemonic: flash, fl \n");

PRI NT("Syntax: fl -flags -o value -s sector number\n");

PRI NT(" Descri ption: This command performs actions to the flash
memory\n");

PRI NT(" Fl ags: -e er ase erase all of flash\n");

PRI NT(" Fl ags: -cp copy copy MDINK from RAMto Flash\n");

PRI NT(" Requi red FIl ags: -0 <value> copy address in
flash\n");

PRI NT(" Optional Flags: -e erase flash first\n");

PRI NT(" Fl ags: -sp protect i ndicated sector\n");

PRI NT(" Required Flags: -n <value> sector number 0-18\n");
PRI NT(" Fl ags: -su unprotect indicated sector\n");

PRI NT(" Required Flags: -n <value> sector number 0-18\n");
PRI NT(" Fl ags: -se erase i ndicated sector\n");

PRI NT(" Required Flags: -n <value> sector number 0-18\n");

PRI NT(" Exampl e: fl -sp -n 5 - sector protect sector 5 \n");
}

A.2 Input Arguments

Now we are ready to specify input arguments. Arguments are effected by entries in two
tables, one is toks.h and the other is toks.c. The toks.h table is a set of lines of #define
macros. Each argument is treated as a member of a symbol table called
SYMBOL_BASE TOK. The base of the table is defined as some value. There are severa

10A-92 Dink32 R12 User’s Manual @ MOTOROLA

Adding Commands and Arguments

such bases for various other symbols, such asthe REG_GEN_BASE TOK. By reading the
comments at the beginning of the file, we ascertain that this is a scheme to guarantee that
all tokens (command arguments, register names, etc.) have a unique integer value that can
be used by the tokenizer to uniquely identify any symbol desired by the dink32 code.

A.2.1 Input Token Facility

Specify the name of your token with a#define macro, and give it the value of one morethan
the previous values.

Note: either do not exceed the MAX_SYMBOLS TOKENS
size defined in toks.h, currently set at 32 or increase the value.

example:

toks. h
#define DASH_TO SYMBOL BASE_TOK + 2 /* symbol2 - the dash(-) synbol
*/

#define BOTH TOK SYMBOL_BASE _TOK + 8 /* symbol8 to select both
serial ports */

#define HOST_TOK SYMBOL BASE _TOK + 9 /* symbol 9 sel ect only the host
port */

#define KEY_TOK SYMBOL_BASE_TOK + 10 /* symbol 10 select only the
keyboard */

#define QUEST_TOK SYMBOL_BASE_TOK + 11 /* symbol11l the question
mark (?) */

This exampleisfor the s (setinput command). It defines the dash token and the k,h,and ?
command arguments, which are invoked as:
s [-k]|-h]-7].

The ADD_TOKEN macro in toks.c adds these symbol sto tokenizer so that the function can
search the argument list.

example:

t oks. c
ADD_TOKEN("both", BOTH_TOK, &i); /* symbol8 - to select both seria
2%31?OKEN("host",HOST_TOK, &); I * symbol9 - to select only the host
RgBiTOLEN("key",KEY_TOK, &); [* symboll1l0 - to select only the

keyboard port */

ADD_TOKEN("k", KEY_TOK, &i); /* same as above */
ADD_TOKEN("?\ 0", QUEST_TOK, &i); /* symbol 11 - the question mark (?)
symbol */

Note that the token is a null terminated string, not a single character. In this example, we

@ MOTOROLA Appendix A. Adding Commands and Arguments 10A-93

Adding Commands and Arguments

are looking for the strings "both", "host", "key", "k", and "?" and the comment tells us
which symbol it refersto in the toks.h file.

There are at least two ways to get these tokens. par_si uses the getarg_tok function as this
code fragment shows:

if((status = getarg_tok(&state))!=SUCCESS) return status;

PRI NT(" Set | nput Port : ");
switch(state)
{

case BOTH _TOK : duart_configuration = BOTH_PORTS;

A more extensive method is to use the functions tok is next token and
tok_get_next_token.

These examples are from the new flash_commands that will be in the next release.
The code shown below extracts the arguments from the command line.

This code will parsetheline:

fl -sp -n 5

however, it will give an error for these lines:

fl -sp -n f1 hex val ue

fl -xp -n 1 -Xxp instead of valid -sp | -su -se etc

fl -sp 1 m ssing -n

fl -sp -n m ssing a deci mal val ue

toks.h:

#define SECTOR_PROTECT_TOK SYMBOL_BASE_TOK + 15/* symbol 15 - ’'sp’

for sector protect */

#define SECTOR_UNPROTECT_TOK SYMBOL_BASE_TOK + 16/ * symbol 16 -
"su’ for sector unprotect */

#define SECTOR_ERASE_TOK SYMBOL_BASE_TOK + 17/* symbol 17 - 'se’ for
sector erase */

#define FLASH COPY_TOK SYMBOL_ BASE_TOK + 18/* symbol 18 - ’'cp’' for
flash copy */
#define SECTOR_NUMBER_TOK SYMBOL_BASE_TOK + 19/* symbol19 - 'n’

for sector number */

toks.c

ADD_TOKEN("sp", SECTOR_PROTECT_TOK, &i);/* symbol 15 - Sector Protect
*/

ADD_TOKEN(" su", SECTOR_UNPROTECT_TOK, &)l * symbol 16 - Sect or
Unpr ot ect */

ADD_TOKEN("se", SECTOR_ERASE _TOK, &i);/* symbol 17 - Sector Erase */
ADD_TOKEN("cp", FLASH COPY_TOK, &i);/* symbol 18 - Sector Erase */
ADD_TOKEN("n", SECTOR_NUMBER _TOK, &i);/* symbol1l9 - Sector Number
val ue */

10A-94 Dink32 R12 User’s Manual @ MOTOROLA

Adding Commands and Arguments

fl.c

This code checks the first token for a dash, then the second token for one of sp, su, se, e,
cp. The function get_sector _number gets the sector number specified.

if (!'(tok_is_next_token(DASH TOK)))

{
PRI NT(" Must specify [-sp | -su | -se | -e | -cp]l\n");
return FAI LURE;
}
if ((status = tok_get_ next_token(&t oken, temp)) != SUCCESS)
{
PRI NT(" Must specify [-sp | -su | -se | -e | -cp]l\n");
return status;
}

switch (token)

{
case SECTOR_PROTECT_TOK:

get _sector_number (§or _nunber) ;
PRI NT(" Got -sp, -n is %d\n",sector_number);
break;

case SECTOR_UNPROTECT_TOK:
get _sector_number (§or _nunber) ;
PRI NT(" Got -su, -n is %d\n",sector_number);
break;

This code gets the next token, which must be a -n and then gets the next token which must
be an ascii string containing one valid decimal number, which will be converted to int by
the ascii_to_int_dec function.

if (!(tok_is_next_token(DASH_TOK)))

{
PRI NT(" Must specify [-n]\n");
return FAI LURE;
}
if ((status = tok_get_next_token(&t oken, temp))
== SUCCESS)
{
if (token !'= SECTOR_NUMBER_TOK)
{
PRI NT(" Must specify [-n]\n");
return FAI LURE;
}
if ((status = tok_get_next_token(&t oken, temp)) != SUCCESS)
{

return FAI LURE;
}

i f ((status = ascii_to_int_dec(temp, sector _number,

@ MOTOROLA Appendix A. Adding Commands and Arguments 10A-95

Adding Commands and Arguments

strlen(temp)))

I = SUCCESS)
{
PRI NT("Error getting deci mal
return (status);
}
10A-96 Dink32 R12 User’'s Manual

value.\n");

Adding ERROR Groups to MDINK/DINK32

Appendix B Adding ERROR Groups to
MDINK/DINK32

B.1 Error Group Files

Thetwo files used for adding an ERROR grouping to dink32 and mdink32 areerr_tb.h and
errors.h.

Both files contain the defined macro, NUM_ERRORS, and both must be changed whenever
anew error group is added.

B.1.1 err_tb.h

About line 30, increment NUM_ERRORS by the number of error groups you are adding.
In this case, change it from 46 to 47.

#define NUM_ERRORS 47

Now add the new entry to the structure err_element. This structure has two parts, the code
and a string constant for the error message. Add the message

{FLASH_ERROR, "FLASH error") /* 46*/

It isagood ideato add a comment to the end of any added lines for the struct entries with
the error number.

B.1.2 errors.h

About line 51 increment the defined macro NUM_ERRORS asin err_tb.h. It isimportant to
do this as err_tb.h includes this file. However, it then defines NUM_ERRORS again as
we saw above. In effect, overwriting the NUM_ERRORS valuein thisfile, errors.h.

Thisfile is used to define the code for each error message. This code is printed out along
with the string for the error. About line 215, add the value for the FLASH ERROR code.

#define FLASH ERROR Oxf 100.

0xF100 was chosen, because it appears that the grouping is determined by the first two hex
characters and the last two hex characters are just sequential increments for errors in that
category. So codes Oxf5xx through Oxffxx were already in use. So chose Oxf1xx randomly
from the available ones of OxfOxx through Oxf4xx.

These are the only files that need to be changed. The actual work is performed by err_tb.c.
When a dink32 function returns to the main dink32 loop it can return one of these error
messages. Asinreturn(FLASH_ERROR);. Thenthefunction err_print_error (about line 35)
searchesthis structure, err_list, comparing the error number with the err_list[i].code. When

M) mororoLa Appendix B. Adding ERROR Groups to MDINK/DINK32 10B-97

Adding ERROR Groups to MDINK/DINK32

it findsthe code, it printsthe code value and the error message. If it can't find the code, then
it prints the message, UNKNOAN ERROR.

10B-98 Dink32 R12 User’s Manual @ MOTOROLA

History of MDINK32/DINK32 changes

Appendix C History of MDINK32/DINK 32
changes

C.1
1
2.

Version 12.1 August 30, 1999.

Improved the flash capability for Yellowknife and Sandpoint in the fu command.

Reorganized all the demo directories into one highlevel directory demos and added
makefile _gcc

User spr registers are now initialized during bootup. No need to perform a’'go’
command to initialize register table. Added a return path through the exception
handler for user codeto safely returnto DINK. Theroutineiscalled user_returnand
Issort of adummy exception vector that allows the exception handler to take care of
all context switching between DINK and USER code.

Added "dev epic ISRCnt" to "dev epic" command list. This command allows the
user to connect a downloaded Interrupt Service Routine to an epic interrupt vector.

PMC ROM support.

Add memSpeed (memory bus speed) and processor_type (type of processor
MPC603, etc) to the dink_transfer_table.

Version 12.0 November 30, 1999.

Implement adink transfer table to dynamically assign dink functions such as printf,
dinkloop, getchar, in atable so that it is no longer necessary to statically determine
the function address and change them in demo or dhrystones or any user program.

Configuration (environment variables) are saved in NVRAM for yk/sp, saved in
RAM for Excimer and Maximer. New command, env, manipulates these
configurations. Also implements multiple command aliases, however, daand raare
still available.

New command, tau, display and/or calibrate the Thermal Assist Unit.

Faster download and no need to set character delays on the serial line, implemented
by turning on the duart FIFO.

Turn on both banks of memory in the YellowKnife and Sandpoint, now
32Megabytesis available on dink32 startup.

Improved printf format facilities, including floating point.

Most commands can now be placed into quiet mode, and verbose mode can be used
with the -v command. Default is verbose on both, same as always, with or without
ENV. The-€ mode expands fields and can be made default with env RDMODE=e.
Only Excimer and Maximer require the setup, and RDMODE can be’'Q’ (quiet), 'E’

@ MOTOROLA Appendix C. History of MDINK32/DINK32 changes 10C-99

History of MDINK32/DINK32 changes

(expand fields), or anything else. On Excimer and Maximer it can be set up with
these commands:
env -c, env rdnode=0

The dl command can be placed in silent mode with the "-q".

rd or rm can use these aliases for the memory register, northbridge, nb, mpc106,
mpcl07, or mpc8240.

10. Fixed command termination character, ’x’, so it will not restart if unexpected.
11. Fixed problems with double prompts printed on startup with DCACHE.
12. Implement a new makefile, makefile_gcc, and conform the dink code to build with

the gcc PowerPC eabi compatible compiler. Build and load works, al memory
features are broken. Thiswill be fixed in the next release.

13. Implemented flash programming for PCI-hosted boot ROM on Y K/SP platforms.

The command 'l -h’ transfers 512k from a specified memory location to the flash.

14. Added share memory between host and agent targets using the Address Tranglation

Unit (ATU).

C.3 Version 11.0.2 June 1, 1999

1

o~ 0N

Fixed invalid cacheing on 603. 603 does not reset the cache invalidate bitsin
hardware, so added the facility in software.

Detects MPC107.

About command now reports board and processor identification.
Improved the help facility.

Added makefiles for the PC, makefile_pc in every directory.

C.4 Version 11.0.1 May 1, 1999 Not Released

1

O N O ok~ wbd

Change the location of Stack pointer |load/save. DINK code now occupies through
0x0080000. USER CODE MUST NOT START EARLIER THAN 0x0090000!

Fixed vector alignment.

Fixed VSCR register implementation issue.

Fixed accessissue for registers VRSAVE,RSCR,FPSCR,RTCU, RTCL & RPA.
Fixed HID1 display for 603e, 604e.

Fixed breakpoint/exception problem broken in rev10.7 for 603e.

Fixed location of exception vectors after EH1200, they were wrong.

Fixed flushhead in except2.s to work correctly.

10C-100 Dink32 R12 User’s Manual @ MOTOROLA

C.5

> LoD PR

C.6
1
2.

aob W NP O

History of MDINK32/DINK32 changes

Version 11.0 March 29, 1999

Add AltiVec support for the MAX processor.

Added vector registersto register list.

Add assembler disassembler code for altivec mnemonics.

fl -dsi has been expanded to display the flash memory range for each sector.

Version 10.7 February 25, 1999
Add 1999 to copyright dates.

Addtimeout toflash write to_memory, so an unfinished writeto flash won't last for
ever, it will timeout and issue an error message.

Add test all flash write for protected sector and if protected issue an error and refuse
the write.

Disable transpar,tm from excimer.
Set DCFA bit from 0to 1 for MAX chips only

Version 10.6 January 25, 1999

Implement the history.c file and allow the about command to use constants for
Version, Revision, and Release.

Implement the fl —dsi and fl -se commands.
Automatically detect flash between Board Rev 2 and 3.
Remove the fw -e command from DINK32, it is only available in MDINK32.

Version 10.5 November 24, 1998

Changed default reset address to be -xfffO for standalone dink
Fix bugs in trace command

Version 10.4 November 11, 1998

Recapture 10.3 LED post routine in MDINK

Add BMC_BASE_HIGH for kahlua to reach the high config registers
Added memory test feature during POR.

Corrected ending address for kahlua X4 configuartion

Added basic Kahlua support

@ MOTOROLA Appendix C. History of MDINK32/DINK32 changes 10C-101

History of MDINK32/DINK32 changes

C.10 Version 10.3 no date
1. Thiswas never released

C.11 Version 10.2 September 11, 1998

1. Thisreleaseisthe same as Version 10 Revision 1

C.12 Version 10.1 September 10, 1999
1. Enable ICACHE and DCACHE

C.13 Version 9.5 August 5, 1998

1. Implement flash commands, fw -e and basic flash erase and write support.
2. Split dink into two types, mdink - minimal dink and dink.
3. Implement support for excimer.

C.14 Version 9.4 May 22, 1998
1. Implement L2 Backside Code.
2. Turned on DCACHE and ICACHE as default at boot time.
3. Added Yellowknife X4 boot code (Map A & B)

C.15 Prior to Version 9.4 Approximately
October 10, 1997
1. Merged CHRP and PREP
2. Added W_ACCESS (Word access) H ACCESS, and B_ ACCESS
3. Oneversion of dink works with all processors, 601, 603, 604, and ARTHUR.

10C-102 Dink32 R12 User’s Manual @ MOTOROLA

S-Record Format Description

Appendix D S-Record Format
Description

D.1 General Format

An S-record is a file that consists of a sequence of specially formatted ASCII character
strings. Each line of the S-record file adheres to the same general format (with some
variation of the specific fields) and must be 78 bytes or fewer in length. A typical S-record
file might look like this:

S010000077726974656D656D2E73726563AA
S21907000074000000700000003D20DEAD6129BEEF3C60000060EO
S2190700156300003CC0004060C600007D20192E7CEO182E7CO7FC
S21907002A480040820014386304007C0330004180FFE848000059
S20907003F004800000068

S804070000F4

Thisinformation isan encoding of datato beloaded into memory by a S-record loader. The
address at which the data is loaded is determined by the information in the S-record. The
dataisverified through the use of achecksum located at the end of each record. Each record
in afile should be followed by alinefeed.

The general format of an S-record is as follows:

Type char [2]

Count char [2]

Addr ess char[4,6, or 8]
Dat a char [0-64]

Checksum char][2]

Note that the fields are composed of characters. Depending on the field, these characters
may be interpreted as hexadecimal values or as ASCII characters. Typicaly, the valuesin
the Type field are interpreted as characters, while the values in al other fields are
interpreted as hex digits.

Type: Describes the type of S-record entry. There are SO, S1, S2, S3, S5, S7, S8, and SO
types. Thisinformation is used to determine the format of the remainder of the characters
in the entry. The specific format for each S-record type is discussed in the next section.

Count: When the two characters comprising this field are interpreted as a hex value,
indicates the number of remaining character pairsin the record.

Address: These charactersareinterpreted as ahex address. They indicate the address where
the data is to be loaded into memory. The address may be interpreted as a 2, 3, or 4 bytes
address, depending on the type of record. 2-byte addresses require 4 characters, 3-byte
addresses require 6 characters, and 4-byte addresses require 8 characters.

@ MOTOROLA Appendix D. S-Record Format Description 10D-103

S-Record Format Description

Data: Thisfield can have anywhere from O to 64 characters, representing 0-32 hexadecimal
bytes. These valueswill beloaded into memory at the address specified in the addressfield.

Checksum: These 2 characters are interpreted as a hexadecimal byte. This number is
determined as follows: Sum the byte values of each pair of hex digitsin the count, address,
and data fields of the record. Take the one’'s complement. The least significant byte of the
result is used as the checksum.

D.2 Specific Formats

Each of the record types has a dightly different format. These are all derived from the
general format specified above and are summarized in the following table.

TypeDescription
O

Contains header information for the S-record. This dataisn’t actually loaded into memory.
The addressfield of an SO record isunused and will contain 0x0000. The datafield contains
the header information, which is divided into severa sub-fields:

char[20] modul e name

char[2] version number

char[2] revision number
char[0-36] text comment

Each subfield is composed of ASCII characters. These are paired and interpreted as one
byte hex values in the case of the revision number and version number fields. For the
module name and text comment fields these values should be interpreted as hexadecimal
values of ASCII characters.

S1

The address field is interpreted as a 2-byte address. The data in the record is loaded into
memory at the address specified.

S2

The address field is interpreted as a 3-byte address. The data in the record is loaded into
memory at the address specified.

S3

The address field is interpreted as a 4-byte address. The data in the record is loaded into
memory at the address specified.

S5

The addressfield isinterpreted as a 2-byte value which represents a count of the number of

10D-104 Dink32 R12 User’s Manual @ MOTOROLA

S-Record Format Description

S1, S2, and S3 records previously transmitted. The datafield is unused.
S7

The addressfield isinterpreted as a 4-byte address and contains the execution start address.
The datafield is unused.

8

The addressfield isinterpreted as a 3-byte address and contains the execution start address.
The datafield is unused.

9

The addressfield isinterpreted as a 2-byte address and contains the execution start address.
The datafield is unused.

D.3 Examples

Following are some sample S-record entries broken into their parts with a short
explanation:

Exampl e 1: S010000077726974656D656D2E73726563AA
Separated: SO0-10-0000-77726974656D656D2E73726563- AA

*Type: SO - this is a header record «Count: 10 - interpreted as 0x10; indicates that 16
character pairs follow *Address: 0000 - interpreted as 0x0000. The address field for SO is
always 0x0000. «Data: Since this is a header record, the information can be interpreted in a
number of ways. It doesn't really matter since you usually don't use this field for anything
interesting. *Checksum: AA - the checksum

Exampl e 2: S21907000074000000700000003D20DEAD6129BEEF3C60000060ED
Separ at ed:
S2-19-070000-74000000700000003D20DEAD6129BEEF3C60000060- EO

*Type: S2 - the record consists of memory-loadable data and the address should be
interpreted as 3 bytes «Count: 19 - interpreted as 0x19; indicates that 25 character pairs
follow *Address: 070000 - data will be loaded at address 0x00070000 <Data: Memory
loadable data representing executable code *Checksum: EO - checksum

Exampl e 2: S804070000F4
Separ ated: S8-04-070000-F4

*Type: S8 - this is the record with the execution start address; also indicates we have
reached the end of our s-record «Count: 04 - interpreted as 0x04; indicates that 4 character

@ MOTOROLA Appendix D. S-Record Format Description 10D-105

S-Record Format Description

pairs follow <Address: 070000 - execution will begin at 0x00070000 <Data: None - this
field is unused for S8 records. «Checksum: F4 - checksum

D.4 Summary of Formats

The following table summarizes the length (in characters, bytes) of each field for the
different S-record types. It is useful as a reference when parsing records manually during
debug.

Table 10-1. Summary of Formats in Bytes

Type Count Address Data Checksum
SO 2 n/a 0-60 2
S1 2 2 byte address 0-64 2
S2 2 3 byte address 0-64 2
S3 2 4 byte address 0-64 2
S5 2 2 byte count 0 2
S7 2 4 byte execution address 0 2
S8 2 3 byte execution address 0 2
S9 2 4 byte execution address 0 2

10D-106 Dink32 R12 User’s Manual @ MOTOROLA

Example Code

Appendix E Example Code

E.1 General Information

Eight example directories are included in the DINK32 distribution. These directories
include all the source files, makefiles, and readme files(s). All these directories contain
examples of using the new dynamic dink addresses as described in Appendix G.

There are generally three makefiles for each of these demos.

* makefile - UNIX metaware
* makefile_pc - PC/DOS metaware
* makefile_gcc - UNIX GNU GCC

The metaware compiled code will complete by returning to dink with out error. The GCC
compiled code will return to DINK32 with the 0x00000c00 system call exception. It
appears that GCC attempts to return by issuing the sc instruction.

E.2 agentboot

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This example program is meant to
demonstrate how to boot an MPC8240/MPC107 based PCI Agent from Host local memory
space on the Sandpoint reference platform.

E.2.1 Background

DINK32 V12.0 and later is currently setup up so that once the Host boots up from the DINK
image in ROM, it then configures the Agent. Once the Agent is configured, it's PCI
Command Register is then set and it is allowed to boot up from the same DINK image in
ROM. What this example code does is force the Agent to boot up from code it thinks is in
ROM, but is actually in Host local memory space.

E.2.2 In This Directory
« README.txt - this appendix
e main.c - C code routines
e agentboot.s - ASM code routines
* makefile - UNIX makefile
* makefile_pc - PC makefile
» agentboot.txt - agentboot demo summary file including the source files and readme.

@ MOTOROLA Appendix E. Example Code 10E-107

Example Code

E.2.3 Assumptions

Running on a Sandpoint Reference Platform.

MPC8240/MPC107 based Agent in 32bit PCI slot #4 (Third from PMC). See Note
3 below on using alternate PCI slots.

Running DINK32 V12.0 or later.

E.2.4 Usage

Download the modified DINK32 V12.0 (See Notes section).

Compile/Assemble the code below and link into S-Record format downloadable to
0x90000 using makefile or makefile_pc. Simply typeke to use the UNIX
makefile, or typerake -f makefil e_pc to use the PC makefile.

Download the S-Record to Host local memory usihg- k at the Host's DINK32
command prompt.

Launch the program usirgp 90000 at the Host's DINK32 command prompt.

The program should set up the Agent to boot from the Host's local memory space at
0x0100. The agent boot code located there will have the Agent write the value 777
(Ox309) to Host local memory at 0x4C04. The user can verify this by using DINK
to display that memory location by typing 4c04 at the DINK command prompt.

E.2.5 Notes

Usage of this program on the current release of DINK32 V12.0, requires the
DINK32 source code to be modified to NOT allow a detected PCI agent to boot up
from ROM. This modification will NOT be necessary in the next release of
DINK32. The modification is as follows:

In the except2.s file, modify the config_kahlua_agent routine by commenting out
the store to PCI Command Register (PCICMD) instructions pointed to below...

/1 slave enabl e: enabl e menory access in PO comand reg.
/1 since we don't need to configure the ATU, we will

/1 enable PO naster at this tine.

ori r3,r7, PA QWD

li r 4, 0x0006 /1l set nenory access bit

-->// stwbrx r3,0,r5

sync

-->// sthbrx r4,0,r6 Il wite

sync

In order to use DINK's Dynamic Functions such as printf you must #include
dinkusr.h and link dinkusr.s during compilation/link time. Please see DINK32 V12.0
User's Guide Appendix G for more info.

10E-108 Dink32 R12 User’s Manual @ MOTOROLA

Example Code

» Using the other available Sandpoint PCI slots simply requires modifying the
configuration address in the pciConfigOutWord() and pciConfigOutHalfWord()
routines. Currently the routines are set for 0x800080XX, the configuration address
for slot #4 on Sandpoint with the OxXX representing the config register offset.
Please refer to Rev 0.10 or later of the "Sandpoint Motherboard Technical
Summary" white paper, Section 1.8 PCI Slot Information. The Configuration
Address column of Table 1-1 shows the correct configuration address for each PCI
slot.

E.3 Demo

The demo directory contains source files that can be built to build an application that can
then be downloaded into dink at address 0x90000 and run.

E.3.1 Building

The demo can be built with the UNIX or PC commanteke -f nakedeno. The
demo.src file can be downloaded with the DINK32 commdind- k. It can be executed
with the DINK32 commandgo 90000. Demo will run continuously. It can be stopped
by a reset, or by setting the flow control to none before the go 90000.

E.3.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

E.4 Dhrystone

The dhrystone directory contains source files that can be built to build an application that
can then be downloaded into dink at address 0x90000 and run. The dhrystone directory has
two subdirectories ties, MWnosc and watch. The makefile is contained in the MWnosc
directory. This directory contains all the code necessary to build and run a Dhrystone
benchmark program. Before starting execution, change the value of hid0 and dbatll.
DINK32 by default starts the downloaded program with caches off and cache inabled in the
dbats. Change hid0 to 0000cc00 and dbatll to 12. Use these commands:

rm hidO | 0000cc00, rmdbatll | 12.

E.4.1 Building

The demo can be built with the UNIX or PC commandgpke. After making the
dhrystone src, download the file, dhry.src with the DINK32 comnaihnd k. Then change
the hid0 register to 8000C000 and change the dbatlL to 12.

@ MOTOROLA Appendix E. Example Code 10E-109

Example Code

There are two makefiles:
 makefile - use the UNIX PowerPC cross tools.

* makefile_pc - use the PC PowerPC cross tools.
It can be executed with the DINK32 commagd, 90000.

E.4.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

E.5 Lltest

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This application will test the L1 cache.
Read the Iltest.readme for more information.

E.5.1 Building

The I1test program can be built with the UNIX or PC commandke. There are two
targets

« |ltestdink - target that runs under the control of dink - I1testdink.src

» |lteststdalone - target that can run standalone - |1teststd.src

The I1testdink.src file can be downloaded with the DINK32 comnathind- k. It can be
executed with the DINK32 commanglp 90000.

E.5.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

E.5.3 Excimer versus Yellowknife

The default code is designed to run on the Yellowknife/Sandpoint. The Bat registers,0 and
1, are the same for these platforms and the Excimer/Maximer. However, the bat register 2,
ibat2 and dbat2 are the 10 space bats. The IO space is different for Yellowknife/Sandpoint
The user can look at the code in L2test to determine how to set up the bat2 registers for
Excimer, see E.7.3, “Excimer versus Yellowknife".

E.6 I2sizing

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This example program is meant to

10E-110 Dink32 R12 User’s Manual @ MOTOROLA

Example Code

demonstrate how to detect whether a processor isaMPC740 or MPC750. It also detectsthe
size of the L2 Backside Cache.

E.6.1 In This Directory
« README.txt - this appendix
* I2sizingl.c - C code routines
* I2sizing2.s - ASM code routines
* I2sizing.h - Header file
» I2sizing.src - Downloadable S-Record
« makefile - UNIX makefile
* makefile_pc - PC makefile

E.6.2 Assumptions
Running DINK32 V12.0 or later.

E.6.3 Usage
« Download the modified DINK32 V12.0 (See Notes section).

« Compile/Assemble the code below and link into S-Record format downloadable to
0x90000 using makefile or makefile_pc. Simply typeke to use the UNIX
makefile, or typerake -f makefil e_pc to use the PC makefile.

« Download the S-Record to Host local memory uslhg- k at the Host's DINK32
command prompt.

« Launch the program usirgpp 90000 at the Host's DINK32 command prompt.

E.6.4 To Build
« UNIX: make [clean]
« PC: make -f makefile_pc [clean]

E.6.5 Notes

e In order to use DINK's Dynamic Functions such as printf you must #include
dinkusr.h and link dinkusr.s during compilation/link time. Please see DINK32 V12.0
User's Guide Appendix G for more info.

E.7 L2test

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This application will test the L2 cache

@ MOTOROLA Appendix E. Example Code 10E-111

Example Code

and exercise the performance monitor. Read the | 2test.readme for more information.

E.7.1 Building

The demo can be built with the UNIX or PC command, nake. There are seven targets,
composed of aUNIX PowerPC target, aUNIX nativetarget, and a PC target. The|2test.src
file can be downloaded with the DINK32 command dl - k. It can be executed with the
DINK32 command, go 90000. There are two makefiles:

* makefile - used for this release of DINK32 R12 and beyond.
* makefile_dink1l - used for previous releases of dDINK32.

E.7.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

E.7.3 Excimer versus Yellowknife

The default code is designed to run on the Yellowknife/Sandpoint. The Bat registers,0 and
1, are the same for these platforms and the Excimer/Maximer. However, the bat register 2,
ibat2 and dbat2 are the 10 space bats. The IO space is different for Yellowknife/Sandpoint
than for Excimer/Maximer. Therefore, this code will make and run only on the
Yellowknife/Sandpoint systems. In order to make and run it on the Excimer/Maximer it is
necessary to modify I12testutils.s. In the BATInit function about line 267 is the bat2 code for
Yellowknife/Sandpoint, about line 276 is the Excimer/Maximer code. Ifdef or comment out
the Yellowknife code, and remove the ifdef around the Excimer code. Then make the I2test
executable and run it on the Excimer/Maximer platform.

E.8 lab4

The directory contains source files that can be built to build an application that will blink
the lights on the Excimer platform when it is downloaded into dink at address 0x90000 and
run. This test will only work on Excimer.

E.8.1 Building

The lab4 can be built with the any of the three makefiles. It can be executed with the
DINK32 commandgo 90000. Demo will run continuously.

E.8.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

10E-112 Dink32 R12 User’s Manual @ MOTOROLA

Example Code

E.9 memspeed

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This application will demonstratesusing

the dynamic variable (and dynamic function) capability. The two variables, memSpeed

(bus speed), and process_type (Processor type) are available viathe dink_transfer_table as
described in Appendix G, “Dynamic functions such as printf and variables such as
memSpeed".

It prints out the memory bus speed and processor name of the board on which it is
executing.

E.9.1 Building

The demo can be built with the UNIX or PC commandke. The memspeed.src file can
be downloaded with the DINK32 commadd - k.

It can be executed with the DINK32 commagd, 90000.

E.9.2 Function Addresses

All dink function addresses and the two dink variable addresses are determined
dynamically, see Appendix G for more information.

E.10 printtest

The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This application will test the various
printf features.

E.10.1 Building

The demo can be built with the UNIX or PC commandke. The printtest.src file can be
downloaded with the DINK32 commauid - k.

It can be executed with the DINK32 commagd, 90000.

E.10.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

@ MOTOROLA Appendix E. Example Code 10E-113

Example Code

E.11 testfile

This directory contains source files that can be built to build an application, which is an
endless loop, that can then be downloaded into dink at address 0x90000 and run.

E.11.1 Building

The testfile can be built with the UNIX or PC command, makefiles. The demo.src file can
be downloaded with the DINK32 command dl - k. It can be executed with the DINK 32
command, go 90000. testfile will run continuously. It can be used to try out the
breakpoint and other features of DINK 32.

E.11.2 Function Addresses

All dink function addresses are determined dynamically, see Appendix G for more
information.

10E-114 Dink32 R12 User's Manual M) mororoLa

Updating DINK32 from the Web

Appendix F Updating DINK32 from the
Web

F.1 General Information
The DINK 32 web site is part of the motorola non-confidential web site. The URL is:

http://www.mot.com/SPS/PowerPC/tecsupport/tool'DINK 32/index.html
The format in general includes elf and sfiles for DINK 32 both debug and non-debug on.

F.1.1 For YellowKnife and Sandpoint:

Using aROM burner or inline ROM emulator |oad the dink32.src srecord file or the dink32
executable.

See Section 4.1.13, “fupdate fu".

F.1.2 For Excimer and Maximer:

Using the mdink32 facility running on an Excimer and Maximer board, download the new
dink32 with the command dl -fl -o ffcO0000, then using your terminals ascii download
facility, download the dink32 sfile. See Section 4.1.14, “fw fw -e" and Section 4.1.10,
“‘download dI".

The steps for downloading a new DINK32 into excimer or maximer:
1. Connect the board to the computer by using a null-serial cable to connect portl from

excimer or maximer board to com1 on the host computer PC.

2. Start Hyperterminal on a Windows NT PC see F.3.1, “Hyperterm on NT" or a
terminal emulator on a Mac see F.3.2, “Zterm on Mac".

3. Reset the excimer or maximer board and stop MDINK32 by hitting any key on the
keyboard during MDINK32 startup. Perform the command, fw -e, which will erase
all of flash memory and recopy MDINK32 to flash. Normally, the MDINK32 flash
sector is protected and the copy will be a no operation.

4. When mdink prompt returns, reset board.
5. Reset the baud rate by doing the following:
— sb -k 57600
— Press enter
— Select Disconnect icon
— Select Properties icon

@ MOTOROLA Appendix F. Updating DINK32 from the Web 10F-115

Updating DINK32 from the Web

— Press Configure button
— Change bits per second (baud rate) to 57600
— Press Okay button
— Select connect button
— Press enter
6. Type fl -dsi (Only required on mdink32 V10.6)
7. Type dl -fl -o ffcO0000

8. Select pull down menu “transfer” use option “send text file” and select the
dink32.src file from the list of files. (DO NOT use the option “send file”.)

MDINKS32 is not supplied as elf or sfiles on this site. However, all the code (some code is
purposefully removed and the object files are substituted) is available to build mdink32.
Loading MDINK32 requires unprotecting sector 15 on the Excimer and Maximer and using
some type of emulator to download the code.

Selected DINK32 code is available at this site. Some files are not released in source form,
however, the object code for the removed files are supplied so that DINK32 can be built.

All the source, including the removed code, is available from the Motorola confidential site
and can be obtained from you Motorola Salesperson.

F.2 Makeing a DINK32 or MDINK32 from the Release

This release does not include several source files. These source files are included here as
empty files. None of the dink_dir or mdink_dir directories are included in this distribution.

In order to modify any of the source files and remake a dink or mdink, it is necessary to
copy the appropriate directory from the "objects" directory to this source directory and
name it dink_dir or mdink_dir.

The objects directories are:

e dink_excimer_met/

o dink_yk _met/

* mdink_excimer_met/

» dink_excimer_met_g/

« dink_yk _met_g/
 mdink_excimer_met_g/
e dink_excimer_pc/

o dink_yk_ pc/
 mdink_excimer_pc/

10F-116 Dink32 R12 User’s Manual @ MOTOROLA

Updating DINK32 from the Web

« dink_excimer_pc_g/

« dink_yk pc_g/

* mdink_excimer_pc_g/:

« dink_excimer_gcc/

« dink_yk _gcc/

 mdink_excimer_gcc/
The naming convention is:

e dink -dink
 mdink - mdink
e excimer - excimer or maximer
* met - metaware compiler on unix
e gcc - gnu gcc compiler on unix
* pc - metaware compiler on an NT/PC.
The steps to make a succesful compile are:
1. copy one of the sfile directories to the source directory and call it dink_dir or
mdink_dir

2. make tch This will touch all the object files in the dink_dir or mdink_dir directories,
so that none of the empty *.c files will replace the associated object file.

3. make your source file changes.
4. make dink or make mdink.

If you forget the "make tch", then remove the dink_dir or
mdink_dir directory, and recopy it.

example:

« unzip the dink32_12_0.zip file, it will unzip to readable.
* unzip the dink32_12 0 _objects.file it will unzip to objects.
» copy one of the objects to the unzipped readabile file.

— e.g.
cp -r objects/dink_yk met readable
make tch
make dink

@ MOTOROLA Appendix F. Updating DINK32 from the Web 10F-117

Updating DINK32 from the Web
F.3 Settings for terminal emulators

F.3.1 Hyperterm on NT
Connect the NT and Excimer with a standard 9 pin null modem cable.

Start Hyperterminal.
Use these properties

* Function - Terminal Keys checked
e Emulation - ANSI
« Backscrool Buffer lines - 500

Use this ASCII setup

« ASCII Sending
— Send line ends with line feeds - unchecked
— Echo typed character locally - unchecked

e Line delay -0

o Character delay - 0

* ASCII Receiving
— Wrap lines that exceed teminal width - checked
— all others unchecked

Use these settings:

e baud - 9600

e data bits - 8

e parity - none

o stop bits- 1

« flow control - hardware

F.3.2 Zterm on Mac

1. Connect Mac and Excimer with a null modem cable. It may not be possible to find
a standard cable for this connection, so one can build a cable as follows. One end is
a female PC DB9 (9 pin) connector, the other end is a Mac DIN8 (8 pin) male
connector. The pinout is listed below.

10F-118 Dink32 R12 User’s Manual @ MOTOROLA

Updating DINK32 from the Web

Mac Pins| PC Pins

6 Female DB9 PC Cable
1,78 5 4 3 2 1 Male DIN8 Mac Cable
2 @] O (e} @] (@]
(@] O @] @]

NC
NC

OoONOoOO Ok wN -
w

Notice the gap between
Pin4and 5

2. Instal Z-term 0.9 or equivaent, terminal emulator.It can be downloaded over the
internet from the url: (http://www.sendit.nodak.edu/sendit/software/zterm09.hgx).

Z-Term settings :
« Under Settings, goto Connection and set only the following:

e Service Name: SENDIT
« Data Rate: 9600

» Data Bits: 8
» Parity: None
» Stop Bits: 1

Under Settings, goto Terminal and set only the following:
« Don'tdrop DTR on exit

« PC ANSI-BBS

Under Settings, goto TextPacking and only set the following:
* Delay between chars: 0

* Delay between lines: 1

Under Settings, goto Modem preferences and make sure there is nothing set in this win-
dow.

All other settings should be the default.

To use Z-Term connect excimer and power it on. Z-Term should automatically detect it

@ MOTOROLA Appendix F. Updating DINK32 from the Web 10F-119

Updating DINK32 from the Web

and display the bootup output on the screen.

3. Install Fetch 2.02 or equivalent. This enables downloading and uploading filesfrom
aunix to/from a Mac account. It can be found at he url:
(http://www.dartmouth.edu/pages/softdev/fetch.html).

After installing set up the preferences. Goto Customize and select Preferences. Then select
the tab named Firewall. Check off the Use Proxy FTP server box and enter frpgate0 in the
text box provided. In the text box below that enter w3-aus. For the text box that goes with
'Don't Use proxy or socksfor" It you are using a proxy server ensure al the proxy settings
are correct. For our Motorolasite, enter the following:
www,webman,sps.mot.com,w3-phx,w3-aus,w3-muc, w3-hkg, w3-tky

Close Fetch and reopen it. Now it will ask you to enter a Host, User ID, Password, Direc-
tory.... Enter all these and then say O.K.
It is advisable to always use binary when downloading a file.

4. Install NCSA Telnet 2.6 or above from url:
(http://www.ncsa.uiuc.edu/SDG/Software/MacTel net/HowToGetlt.html). Thisisa
simple telnet session for a Macintosh. It Enables the user to connect to the unix
server. No adjustment to the setting are required. Just enter the server name, user
name , and password when prompted.

10F-120 Dink32 R12 User’s Manual @ MOTOROLA

Dynamic functions such as printf and variables such as memSpeed

Appendix G Dynamic functions such as
printf and variables such as memSpeed

G.1 General Information

Many library functions such as printf are available via the DINK32 debugger. In the past,
it has been necessary to ascertain the address of these functions, which change with each
compile, from the cross reference listing, and statically set these addressesin the programs
that used these features. The demo and dhrystone directories included with the DINK32
distribution contained examples of how to set these static function addresses. With the
release of DINK32 V11.1 and V12.0, these addresses are now dynamically ascertained and
the user only need call a few functions and set up some #defines. This technique is
described in this appendix. Users with access to the entire DINK 32 source base can modify
or add DINK 32 functions. DINK 32 global variables can also be ascertained from thistable.
R12.1 includes the two global variables, memSpeed, and process type.

G.2 Methodology and implementation.

This method is implemented with a static structure that is filled with the current functions
address during link time. The table is alocated in the file par_th.c. Only users with access
to this file can change the contents of the table, thereby, determining which DINK32
functions are available. par_tb.c is only available via the motorola sales office, it is not
included on the web site. However, all users can use the technique for linking their code
with the these DINK 32 functions.

The structure is defined in dink.h as dink_exports

typedef struct {

int version; /[* 0 */
unsigned | ong *keyboard; /[* 4 *]
int (*printf)(const char*,...); /* 8 */
unsigned int (*dink_loop)(); [* 12 */
int (*is_char_in_duart)(); /* 16 */
unsigned int (*menu)(); /* 20 */
unsigned int (*par_about) (); [* 24 *]
unsigned int (*disassenmble)(/*long, long*/); /* 28 */
char (*get_char) (unsigned | ong); /* 32 */
char (*write_char) (char); /* 36 */
unsigned | ong *memSpeed; [* 40 */
char *process_type; /* 46 */

} dink_exports;

and populated in par_tb.c asdink_transfer_table.

di nk_exports dink_transfer_table = {
1 1

MOTOROLA Appendix G. Dynamic functions such as printf and variables such as mem-
Speed 10G-121

Dynamic functions such as printf and variables such as memSpeed

&KEYBOARD,

(int (*)(const char*,...))dink_printf,

di nk_loop,
is_char_in_duart,
menu,

par _about,

di sassembl e

get char,

write char,
&memSpeed,
&process_type

b

Asyou can see, at this time, these are the only functions and variables that are supported.
Additional or replacement DINK32 functions and global variables can be added to the

table.

Thistableis allocated and linked into the DINK 32 binaries. The user typicaly downloads
his/her program into the starting location of free memory, at this release, address 0x90000.
Unfortunately, the user program has no way of determining where the dink_transfer_table
islocated. Thereforewhen DINK32 transfers control to the user program, it setsthe address
of the dink_transfer_table in general purpose register 21 in go_tr2.s. This register appears
to be immune from being used by the compiler prior to the invocation of the user programs
start address, usually, main(). Therefore the user must call the supplied function,
set_up transfer _base, or equivalent, which is described below in G4. After this call the

address of the dink_transfer_table is available to the user program.

G.3 Setting up the static locations.

The table below shows all the functions that are currently supported.

Table 1. DINK 32 dynamic names

DINK 32 name Common name

Version of table

1

&KEYBOARD com port for Keyboard support
dink_printf printf
dink_loop DINK32 idle function

is char_in_duart

has DINK 32 detected a character

menu entry point for DINK 32 menu function
par_about entry point for DINK32 about function
disassemble entry point for DINK 32 disassemble function
10G-122 Dink32 R12 User’'s Manual

Dynamic functions such as printf and variables such as memSpeed

Table 1. DINK 32 dynamic nhames

DINK32 name Common name
get_char get_char - get next character from com port
write_char put_char - send character to com port
memSpeed address of global variable memSpeed
process type address of global variable process type

To change or add any new DINK32 functions or variables, one must change the
dink_transfer_table.

To use any of these functionsin user code, define the user code function nameto bethe dink
function name. For example, to link the user code printf to the DINK32 printf function,
#define printf dink_printf, to link the user code put_char to DINK32
write_char, #defi ne put _char w it echar. Seethedirectoriesdemo and dhrystone
for examples of setting up these #define statements. See the directory memspeed for an
example of how to use dynamic global variables.

G.4 Using the Dynamic Functions.

Using these functionsisimplemented viathe assembly languagefile, di nkusr . s, andthe
include file di nkusr . h. The user #includes dinkusr.h and links in dinkusr.s during
compilation/link time. All of the functions in this table except

set _up_transfer base, transfer control to the DINK32 function while leaving the

link register, Ir, unchanged. This effectively transfers control to the DINK 32 function and

the DINK32 function on completion returns directly to the caller in the user’s code. The
functions supplied in dinkusr.s are shown in the table below.

Table 2: dinkusr.s Functions

Function name Function definition

set_up_transfer_base Capture the dink_transfer_table address
from r21 and storeit into alocal memory
cell for future use. You must call this func-
tion before using any of the functions
below, and it should be called immediately
after entry, such asthefirst statement in

main().
dink_printf DINK32 entry into printf.
dink_loop DINK32 idleloop
MOTOROLA Appendix G. Dynamic functions such as printf and variables such as mem-

Speed 10G-123

Dynamic functions such as printf and variables such as memSpeed

Table 2: dinkusr.s Functions

Function name

Function definition

is char_in_duart

DINK 32 function to determineif acharacter
has been received.

menu DINK 32 display menu function.
par_about DINK 32 display about function.
disassemble DINK 32 disassemble instruction

get KEYBOARD

Return address of keyboard com port

get_char

DINK 32 get next character from the duart
buffer, essentially the keyboard for the user.
This function requires the KEY BOARD
value, obtained from get KEYBOARD, as
an argument. See G.6 example program
_getcannon for an example of the correct
way to obtain this value.

write_char

DINK 32 put character to the output buffer.

get_memSpeed

returns the integer value of memSpeed
example:

int val;

val=get_memSpeed();

get_process type

returns the character value of process type
example:

char type;

type=get_process_type();

The simple steps for using these dynamic addresses are:

1. UseDINK32V1l.1or later.
2. Use#define for local functions that you wish to connect to the DINK 32 functions

example: #define printf dink_printf

3. Thefirst executable statement in your C code must be: set_up_transfer_base();
4. Now whenever your program calls one of these functions, such as printf, it will

transfer control to the equivalent DINK 32 function.

5. Or, whenver your program needs the value of aDINK 32 global value defined in the

table, call the associated get function in dinkusr.s.

10G-124

Dink32 R12 User’s Manual

Dynamic functions such as printf and variables such as memSpeed

G.5 Error Conditions.

The only error condition is a trapword exception, which indicates that the
dink_transfer_table addressis zero. Thisis caused by one of the following conditions:

1. Theuser hasnot called set _up_transfer _base()
2. R21 isgetting trashed before set_up_transfer base() is called.

3. TheDINK32 version does not support dynamic functions. DINK32 V11.0.2 wasthe
last version that DID NOT support this feature. Ensure that you are using DINK 32
V12.0 or greater.

G.6 Alternative method for Metaware only.

While printf is fairly straightforward, scanf is more complex. In the drystone directory, a
local copy of scanf is supplied in the file, support. c. Scanf and printf can also be
emulated in a simpler program when using the metaware compiler. Two metaware
functions are supplied to the user to give control to characters that are scanned into and out
of the program buffers. Refer to the metaware documentation for more information than is
given here.

When the user compiles and links with the -Hsds flag, two functions, i nt

_putcanon(int a),and int _getcanon() arecaledwhenevertheuser getsor
receives a character. Thus, the user can write the ssmple functions shown below, and scanf
and printf will usethe DINK 32 functionsfor printf and scanf. In thiscase, it isnot necessary
to use #define to change the name of the printf or scanf functions or write your own printf
or scanf function. It is still necessary to call set _up_transfer_base() asthe first
statement in your program.

/***

* %

* Functions to capture characters from printf and scanf using
* the -Hsds hooks in the metaware compil er
* mo 7/22/99

R I I A B A B A R I B B B B A B AR A A I B A

*/
#include "dinkusr.h"

int _putcanon(int a)

{

/* grab the character sent by printf in -Hsds and
* use it in dink putchar

*/

char c;
c=a;
write_char(c);
return 1;
MOTOROLA Appendix G. Dynamic functions such as printf and variables such as mem-

Speed 10G-125

Dynamic functions such as printf and variables such as memSpeed

int _getcanon()

/* extract the character received by scanf
* it in dink putchar
*/
unsigned | ong key;
key = get _KEYBOARD() ;
return (get_char(key));

10G-126 Dink32 R12 User’s Manual

in

-Hsds and use

MPC8240 (Kahlua) Drivers

Appendix H MPC8240 (Kahlua) Drivers

H.1 Drivers directory.
There are four drivers for the MPC8240 integrated peripheral devices.

« DMA - memory controller
* 12C - serial controller

* 120 - doorbell controller

« EPIC - interrupt controller

Sample code for each of these drivers are in the directory, drivers, under dink32. Under the
drivers directory are four directories, one for each controller see Figure 3-1. The following
sections describe the driver and the sample code. Each driver is discussed in one of the
following four appendices.

* Appendix I, “MPC8240 DMA Memory Controller."

* Appendix J, “MPC8240 12C Driver Library."

* Appendix K, “MPC8240 120 Doorbell Driver"

* Appendix L, “MPC8240 EPIC Interrupt Driver"

@ MOTOROLA Appendix H. MPC8240 (Kahlua) Drivers 10H-127

MPC8240 DMA Memory Controller.

Appendix | MPC8240 DMA Memory
Controller.

This section provides information about the generic Application Program Interface (API)
to the DMA Driver Library as well as information about the implementation of the
Kahlua-specific DMA Driver Library Internas (DL1).

.1 Background

Theintended audience for this document is assumed to be familiar with the DMA protocol.
It is a companion document to the Kahlua specification and other documentation which
collectively give details of the DMA protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua DMA
interface. This softwareisintended to assist in the development of higher level applications
software that uses the DMA interface.

Note: The DMA driver software is currently under
development. The only mode that is functional is a direct
transfer (chaining is not yet implemented). Only transfers to
and from local memory has been tested. Controlling a remote
agent processor is not yet implemented. Of the various DMA
transfer control options implemented in Kahlua, the only ones
currently available in this release of the DMA library are
source address, destination address, length, channel, interrupt
steering and snoop enable.

.2 Overview

This document consists of these parts:

* An Application Program Interface (API) which provides a very simple, "generic",
application level programmatic interface to the DMA driver library that hides all
details of the Kahlua-specific implementation of the interface (i.e., control register,
status register, embedded utilities memory block, etc.). Features provided by the
Kahlua implementation that may or may not be common with other implementations
(i.e., not "generic" DMA operations) are made available to the application; however,
the interface is controlled by passing parameters defined in the API rather than the
application having to have any knowledge of the Kahlua implementation (i.e.,
registers, embedded utilities memory block, etc.) The APl will be expanded to
include chaining mode and additional DMA transfer control features in future
releases.

« DMA API functions showing the following:

101-128 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 DMA Memory Controller.

— how the function is called (i.e., function prototype) parameter definition possible
return values brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

A DMA Driver Library Internals (DLI) which provides information about the lower
level software that is accessing the Kahlua-specific implementation of the DMA
interface.

« DMA DLI functions showing the following:
— how the function is called (i.e., function prototype)
— parameter definition possible
— return values
— brief description of what the function does

1.3 DMA Application Program Interface (API)
API functions description

The DMA API function prototypes, defined return values, and enumerated input parameter
values are declared in drivers/dma/dma_export.h.

The functions are defined in the source file drivers/dma/dmal.c.

DVA_St at us
DVA Initialize(int(*app_print_function)(char*,...));

« app_print_functionisthe address of the optional application's print function,
otherwise NULL if not available

* Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR.

Description:
Configure the DMA driver prior to use, as follows:

The optional print function, if supplied by the application, must be similar to the C standard
library printf library function: accepts a format string and a variable number (zero or more)
of additional arguments. This optional function may be used by the library functions to
report error and status condition information. If no print function is supplied by the

application, the application must provide a NULL value for this parameter, in which case
the library will not attempt to access a print function.

NOTE: Each DMA transfer will be configured individually by
the function call that initiates the transfer. If it is desirable to
establish a default configuration, these could be added as

@ MOTOROLA Appendix I. MPC8240 DMA Memory Controller. 101-129

MPC8240 DMA Memory Controller.

parameters. Alternately, the first (or most recent) transfer
configuration values could also be used to establish defaults.

NOTE: Thisfunction call triggers the DMA library to read the
eumbbar so that it is available to the driver, so it is a
requirement that the application first cal DMA_Initiaize
before starting any DMA transfers. This could be eliminated if
the other functions read the eumbbar if it has not already been
done.

DMA_St at us DMA_direct _transfer(DMA_I NTERRUPT_STEER i nt _steer
DMA_TRANSFER_TYPE type,

unsigned int source,

unsigned int dest,

unsigned int I|en,

DMA_ CHANNEL channel

DMA_SNOOP_MODE snoop);

* int_steer controls interrupt steering, use defined constants as follows:
DMA _INT_STEER_LOCAL to steer to local processor
DMA_INT_STEER_PCI to steer to PCI bus through INTA_

* type is the type of transfer, use defined constants as follows:
DMA_M2M local memory to local memory (note, this is currently the only one
tested)
DMA_M2P local memory to PCI
DMA_P2M PCI to local memory
DMA_P2P PCI to PCI

e source is the source address of the data to transfer
« destis the destination address, the target of the transfer
* lenis the length in bytes of the data

 channel is the DMA channel to use for the transfer, use defined constants as follows:
DMA_CHN_0 Kahlua has two channels, zero and one
DMA CHN 1

e snoop controls processor snooping of the DMA channel buffer, use defined
constants a follows:
DMA_SNOOP_DISABLE
DMA_SNOOP_ENABLE

e Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR.
Description:

Initiate the DMA transfer.

This function does not implement any validation of the transfer. It does check the status of
the DMA channel to determine if it is OK to initiate a transfer, but the application must

101-130 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 DMA Memory Controller.

handle verification and error conditions via the interrupt mechanisms.

1.3.1 APl Example Usage

The ROM monitor program DINK32 currently usesthe DMA API to initiate a direct data
transfer in local memory only. The DINK 32 program runsinteractively to alow the user to
transfer a block of data in local memory. DINK32 obtains information from the user as
follows: interrupt steering, transfer type, source address of the data, destination (target)
address, length of the datato transfer, DMA channel, and snoop control.

Note that the initialization call to configure the DMA interface is made once: the first time
the user requests a DMA transfer operation. Each transmit or receive operation isinitiated
by asinglecall toaDMA API function. The DINK32 program is an interactive application,
so it gives the DMA library access to its own print output function. DINK32 does not
currently implement any handling of interrupts for error handling or completion of transfer
verification.

These are the steps DINK 32 takes to perform a DMA transfer:

1. Cal DMA _Initialize (if first transfer) to identify the optional print function.
2. Cal DMA_direct_transfer to transmit the buffer of data.

Thefollowing code samples have been excerpted from the DINK 32 application toillustrate
the use of the DMA API:

#define PRINT di nk_printf

int dink_printf(unsigned char *fm, ...)

{

/* body of application print output function, */
}

/* In the function par_devtest, for testing the DMA device interface
*/

{

/[* initialize the DMA handler, if needed */

if (DMAInited == 0)

{

DMA_St atus st atus;

if ((status = DMA_Initialize(PRINT)) != DMA_SUCCESS)
{

PRI NT("devtest DMA: error in initiation\n");
return ERROR,

} else {

DMAI nited = 1;
}

}

return test_dma(en_int); /* en_int is the steering control option
*/
}

/***

* function: test _dma

@ MOTOROLA Appendix I. MPC8240 DMA Memory Controller. 101-131

MPC8240 DMA Memory Controller.

description: run dma test

not e:
test |local dma channe
**/

static STATUS test _dma(int en_int)

* Ok ¥ X F

{

int len = 0, chn = O;
long src = 0, dest = 0;
int mode = O;

DMA_SNOOP_MODE snoop = DMA_SNOOP_DI SABLE
DMA_ CHANNEL channel
DMA_| NTERRUPT_STEER st eer

[* The default for is en_int = 0 for DMA, this steers the DMA
interrupt to the |local processor. If the DINK user puts a '+ on the
command line, en_int = 1 and the steering for the DMA interrupt is

to the PCI bus through I NTA_ . */

steer = (en_int == 0 ? DMA_I NT_STEER_LOCAL : DMA_I NT_STEER_PCI);
/* read source and destination addresses, |length, type, snoop and
channel */

/* validate and translate to APl defined parameter values */

/* call the DMA library to initiate the transfer */
if (DMA direct _transfer (steer, type, (unsigned int)src,

(unsigned i nt)dest, (unsi gned int)len, channel , snoop) I =
DMA_SUCCESS)
{

PRI NT("dev DMA: error in DMA transfer test\n");
return ERROR;

}
return SUCCESS;

}

.4 DMA Driver Library Internals (DLI)
Thisinformation is provided to assist in further development of the DMA library.

All of these functions are defined as static in the source file drivers/dma/dmal.c.

.4.1 Common Data Structures and Values

The following data structures, tables and status values are defined (see drivers/dma/dma.h
unless otherwise noted) for the Kahlua DMA driver library functions.

These are the register offsets in a table of the Embedded Utilities

Memory Bl ock addresses for the DMA registers.
#define NUM_DMA_REG 7

101-132 Dink32 R12 User’s Manual @ MOTOROLA

#define DMA_MR_REG 0

#define DMA_SR_REG 1

#define DMA_CDAR_REG 2
#define DMA_SAR_REG 3
#define DMA_DAR_REG 4
#define DMA_BCR_REG 5
#define DMA_NDAR_REG 6

MPC8240 DMA Memory Controller.

The table that contains the addresses of the local and remote registers for both DMA

channels (defined in drivers/dma/dmal.c):

unsigned int dma_reg_tb[][14]

/* local DMA registers */
{

/* DMA_O_MR */ 0x00001100,
/* DMA_O_SR */ 0x00001104,
/* DMA_O_CDAR */ 0x00001108,
/* DMA_O_SAR */ 0x00001110,
/* DMA_O_DAR */ 0x00001118,
/* DMA_O_BCR */ 0x00001120,
/* DMA_O_NDAR */ 0x00001124,
/* DMA_1_MR */ 0x00001200,
/* DMA_1_SR */ 0x00001204,
/* DMA_1_CDAR */ 0x00001208,
/* DMA_1_SAR */ 0x00001210,
/* DMA_1_DAR */ 0x00001218,
/* DMA_1_BCR */ 0x00001220,
/* DMA_1_NDAR */ 0x00001224,

}

/* remote DMA registers */

{

/* DMA_O_MR */ 0x00000100,
/* DMA_O_SR */ 0x00000104,
/* DMA_O_CDAR */ 0x00000108,
/* DMA_O_SAR */ 0x00000110,
/* DMA_O_DAR */ 0x00000118,
/* DMA_O_BCR */ 0x00000120,
/* DMA_O_NDAR */ 0x00000124,
/* DMA_1 MR */ 0x00000200,
/* DMA_1_SR */ 0x00000204,
/* DMA_1_CDAR */ 0x00000208,
/* DMA_1_SAR */ 0x00000210,
/* DMA_1_DAR */ 0x00000218,
/* DMA_1_BCR */ 0x00000220,
/* DMA_1_NDAR */ 0x00000224,

},
}s

These values are the function status

typedef enum _dmast atus
{

DMASUCCESS = 0x1000,
DMAL MERROR,

DMAPERROR,

DMACHNBUSY,

return val ues:

@ MOTOROLA Appendix I. MPC8240 DMA Memory Controller. 101-133

MPC8240 DMA Memory Controller.

DMAEOSI NT,

DMAEOCAI NT,
DMAI NVALI D,
DMANOEVENT,
} DMASt at us;

These structures reflect the bit assignments of the DMA registers.

typedef enum dma_nr bit
{

| RQS = 0x00080000,
PDE = 0x00040000,
DAHTS = 0x00030000,
SAHTS = 0x0000c000,
DAHE = 0x00002000,
SAHE = 0x00001000,
PRC = 0x00000c00,
EIE = 0x00000080,
EOTIE = 0x00000040,
DL = 0x00000008,
CTM = 0x00000004,
CC = 0x00000002,

CS = 0x00000001,

} DMA_MR_BIT,;
typedef enum dma_sr _bit
{

LME = 0x00000080,
PE = 0x00000010,

CB = 0x00000004,
EOSI = 0x00000002,
EOCAI = 0x00000001

} DMA_SR_BI T;

can modi fy the

DMA transaction.

/* structure for DMA Mode Register */

typedef struct _dma_nr

{

unsigned int reservedO 12

unsigned int irqs : 1;

unsigned int pde : 1;

unsigned int dahts : 2;

unsigned int sahts 2;

unsigned int dahe : 1;

unsigned int sahe : 1;

unsigned int prc : 2;

unsigned int reservedl : 1;

unsigned int eie : 1;

unsigned int eotie : 1;

unsigned int reserved2 : 3;

unsigned int dl : 1;

unsigned int ctm: 1;

/* if chaining mode is enabled, any time, user

* descriptor and does not need to halt the current
* Set CC bit, enable DMA to process the modified descriptors

* Har dwar e wi
* [

unsigned i nt

101-134

Il clear this bit

cc : 1;

each ti me,

Dink32 R12 User’s Manual

DMA starts.

MPC8240 DMA Memory Controller.

/* c¢cs bit has dua role, halt the current DMA transaction and

* (re)start DMA transaction. In chaining mode, if the descriptor
* needs modification, cs bit shall be used not the cc bit.

* Hardware will not set/clear this bit each time DMA transaction
* stops or starts. Software shall do it.

*

* ¢s bit shall not be used to halt chaining DMA transaction for
* modi fying the descriptor. That is the role of CC bit.

*/

unsigned int cs : 1;

} DMA_MR;

/* structure for DMA Status register */
typedef struct _dma_sr

{

unsigned int reserved0 : 24
unsigned int Ime : 1;
unsigned int reservedl : 2;
unsigned int pe : 1;
unsigned int reserved2 : 1;
unsigned int cb : 1;
unsigned int eosi : 1;
unsigned int eocai : 1;

} DMA_SR;

/* structure for DMA current descriptor address register */
typedef struct _dma_cdar

{

unsigned int cda : 27
unsigned int snen : 1;
unsigned int eosie : 1;
unsigned int ctt : 2;
unsigned int eotd : 1;
} DMA_CDAR;

/* structure for DMA byte count register */
typedef struct _dma_bcr

{

unsigned int reserved : 6;
unsigned int bcr : 26;

} DMA_BCR;

/* structure for DMA Next Descriptor Address register */
typedef struct _dma_ndar

{

unsigned int nda : 27;
unsigned int ndsnen : 1;
unsigned int ndeosie: 1;
unsigned int ndctt : 2;
unsigned int eotd : 1;

} DMA_NDAR

/* structure for DMA current transaction info */
typedef struct _dma_curr

{

unsigned int src_addr;

unsigned int dest_addr;

unsigned int byte_cnt;

} DMA_CURR;

@ MOTOROLA Appendix I. MPC8240 DMA Memory Controller. 101-135

MPC8240 DMA Memory Controller.

.5 Kahlua DMA Driver Library Internals: function
descriptions

The API function DMA_direct_transfer (described above) accepts predefined parameter
values to initialize a DMA transfer. These parameters are used by the DMA driver library
functions to set up the Kahlua DMA status and mode registers so that the application does
not have to interface to the Kahlua processor on such a low level. A description of the
processing performed in the DMA _direct_transfer function and descriptions of the lower
level DMA driver library functions follow.

Thisisadescription of the DMA_direct_transfer processing, which initiatesasimple direct
transfer:

1. Read the moderegister (MR) by calling DMA_Get_Mode

2. Set the valuesin the mode register as follows:
IRSQ is set from the int_steer parameter
If steering DMA interruptsto PCI, set EIE and EOTIE
the other mode controls are currently hard coded:
PDE cleared
DAHS = 3; however thisisignored because DAHE is cleared
SAHS = 3; however thisisignored because SAHE is cleared
PRC is cleared
DL iscleared
CTM is set (direct mode)
CCiscleared

3. Vadlidate the length of transfer value, report error and return if too large
4. Read the current descriptor address register by calling DMA_Poke Desp

5. Setthevauesinthe CDAR asfollows:
SNEN is set from the snoop parameter
CTT is set from the type parameter

6. Writethe CDAR by caling DMA_BId_Desp, which checks the channel status to
ensureitisfree

7. Write the source and destination address registers (SAR and DAR) and the byte
count register (BCR) by caling DMA_BId_Curr, which maps them according to
channel and host and ensure the channel isfree

8. Write the mode register by calling DMA_Set Mode

9. Beginthe DMA transfer by calling DMA_Start, which ensures the channel isfree
and then clears and sets the mode register channel start (CS) bit

10. The proceeding steps 6 through 9 are done in asequence so that each call must return
a successful status prior to executing the following step. The status is checked and
error conditions are reported at this point if all did not execute successfully.

101-136 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 DMA Memory Controller.

11. If this point is reached, the DMA transfer was initiated successfully, return success

status

These are descriptions of the DMA library functions reference above in the
DMA _direct_transfer processing steps.

DMASt at us DMA_Get Mode(LOCATI ON host,
unsigned eumbbar,

unsigned int channel,

DMA_MR *mode) ;

host is LOCAL or REMOTE, only LOCAL is currently tested

eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

channel is DMA_CHN_O or DMA_CHN_1

mode is a pointer to the structure (DMA_MR) to receive the mode register contents
Return value is DMASUCCESS or DMAINVALID

Description:

Read the DMA mode register.

DMASt at us DMA_Poke_Desp(LOCATI ON host,
unsigned eumbbar,

unsigned int channel,

DMA_CDAR *desp);

host is LOCAL or REMOTE, only LOCAL is currently tested

eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

channel is DMA_CHN_O or DMA_CHN_1

desp is a pointer to the structure (DMA_CDAR) to receive the CDAR contents
Return value is DMASUCCESS or DMAINVALID

Description:

Read the current descriptor address register (CDAR) specified by host and channel.

DMASt at us DMA_ Bl d_Desp(LOCATI ON host,
unsigned eumbbar,

unsigned int channel,

DMA_CDAR *mode) ;

host is LOCAL or REMOTE, only LOCAL is currently tested

eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

channel is DMA _CHN_O0 or DMA CHN_1

desp is a pointer to the structure (DMA_CDAR) holding the CDAR control bits
Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

@ MOTOROLA Appendix I. MPC8240 DMA Memory Controller. 101-137

MPC8240 DMA Memory Controller.

Description:

Set the current descriptor address register (CDAR) specified by host and channel to the
given values.

DMASt at us DMA_BlI d_Curr(LOCATI ON host,
unsigned eumbbar,

unsigned int channel,

DMA_CURR *desp);

* hostis LOCAL or REMOTE, only LOCAL is currently tested
* eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE
« channelis DMA_CHN_O or DMA_CHN_1

» despis a pointer to the structure (DMA_CURR) holding the source, destination and
byte count

* Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID
Description:

Set the source address register (SAR), destination address register (DAR) and byte count
register (BCR) specified by host and channel to the given values.

DMASt at us DMA_St art (LOCATI ON host,
unsigned eumbbar,
unsigned i nt channel);

* hostis LOCAL or REMOTE, only LOCAL is currently tested

* eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

e channelis DMA_CHN 0 or DMA_CHN 1

* Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Start the DMA transfer on the specified host and channel. Ensure the channel is free, then
clear and set the CS bit in the mode register. That O to 1 transition triggers the DMA transfer.

101-138 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

Appendix J MPC8240 12C Driver Library.

This section provides information about the generic Application Program Interface (API)
to the 12C Driver Library as well as information about the implementation of the
Kahlua-specific 12C Driver Library Internals (DLI).

J.1 Background

The intended audience for this document is assumed to be familiar with the 12C bus
protocol. It isacompanion document to the Kahlua specification and other documentation
which collectively give details of the 12C protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua 12C
interface. This softwareisintended to assist in the development of higher level applications
software that uses the 12C interface.

Note: The 12C driver softwareis currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

J.2 Overview

This document consists of these parts:

* An Application Program Interface (API) which provides a very simple, generic,
application level programmatic interface to the 12C driver library that hides all
details of the Kahlua-specific implementation of the 12C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

« |12C API functions showing the following:
— how the function is called (i.e., function prototype)
— parameter definition
— possible return values
— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

e An I2C Driver Library Internals (DLI) which provides information about the lower
level software that is accessing the Kahlua-specific implementation of the 12C
interface.

— 12C DLI functions showing the following:
— how the function is called (i.e., function prototype)
— parameter definition

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-139

MPC8240 12C Driver Library.

— possible return values
— brief description of what the function does

J.3 12C Application Program Interface (API)

J.3.1 API functions description

The 12C API function prototypes, defined return values, and enumerated input parameter
values are declared in drivers/i2c/i2c_export.h.

The functions are defined in the source file drivers/i2c/i2cl.c.

| 2C_Status 12C_Initialize(unsigned char addr,
| 2C_| NTERRUPT_MODE en_i nt,
int (*app_print_function)(char *,...));
e addr is the Kahlua chip's 12C slave device address

* en_int controls the 12C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

» app_print_function is the address of the optional application's print function,
otherwise NULL if not available

* Return: 12C_Status return value is either 12C_SUCCESS or I2C_ERROR.
Description:

Configure the 12C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the 12C library currently only
supports polling mode.

The slave address can be set to the 12C listening address of the device running the
application program, but the DLI does not yet support the application's device responding
as an 12C slave to another 12C master device.

The optional print function, if supplied by the application, must be similar to the C standard
library printf library function: accepts a format string and a variable number (zero or more)
of additional arguments. This optional function may be used by the 12C library functions to
report error and status condition information. If no print function is supplied by the
application, the call to 12C_Initialize must provide a NULL value for this parameter, in
which case the I12C library will not attempt to access a print function.

| 2C _Status 12C do_transaction(|2C_| NTERRUPT_MODE en_i nt,
| 2C_TRANSACTI ON_MODE act,

unsigned char i2c_addr,

unsigned char data_addr,

int |en,

char *buffer,

| 2C_STOP_MODE st op,

10J-140 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

int retry,
| 2C_RESTART_MODE r st a) ;

« en_int controls the 12C interrupt enable status (currently use 12C_INT_DISABLE
only, polling mode)

» actis the type of transaction: 12C_MASTER_RCYV or I2C_MASTER_XMIT
e i2c_addr is the 12C address of the slave device

« data_addr is the address of the data on the slave device

* lenis the length in bytes of the data

« bufferis a pointer to the buffer that contains the data (xmit mode) or receives the data
(rcv mode)

« stop controls sending an 12C STOP signal after completion (curently use I2C_STOP
only)

* retry is the timeout retry value (currently ignored)
rsta controls 12C restart (currently use 1I2C_NO_RESTART only)

* Return: 12C_Status return value is either 12C_SUCCESS or I2C_ERROR.
Description:

Act as the 12C master to transmit (or receive) a buffer of data to (or from) an 12C slave
device.

This function currently only implements a simple master-transmit or a master-receive
transaction. It does not yet support the application retaining 12C bus ownership between
transactions, operating in interrupt mode, or acting as an I12C slave device.

J.3.2 APl Example Usage

The ROM monitor program DINK32 uses the 12C API in both currently implemented
modes: master-transmit and master-receive. The DINK32 program runs interactively to
allow the user to transmit or receive a buffer of data from an 12C device at address 0x50 on
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/write
mode, 12C device address for the data (this is the address of the data on the 12C device, not
the 12C bus address of the device itself, which is hard-coded in DINK32), the raw data (if
in write mode), and the length of the data to transfer to or from the device. Note that the
initialization call to configure the 12C interface is actually made only once, the first time
the user requests an 12C transmit or receive operation. Each transmit or receive operation
is performed by a single call to an I12C API function. The DINK32 program is an interactive
application, so it gives the 12C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call 12C_lInitialize (if needed) to set the Kahlua 12C address, polling mode, and
identify the optional print function.

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-141

MPC8240 12C Driver Library.

2. Call 12C _do_transaction to transmit the buffer of data.
These arethe steps DINK 32 takes to perform amaster-receive transaction in polling mode:

1. Cdl 12C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.
2. Call 12C_do_transaction to receive the buffer of data.

Thefollowing code samples have been excerpted from the DINK 32 application toillustrate
the use of the 12C API:

#define PRINT di nk_printf

int dink_printf(unsigned char *fm, ...)

{

/* body of application print output function, see Appendix ??7? */
}

/* In the function par_devtest, for testing the | 2C device interface

{

/* initialize the |2C handler to |2C address 48, if needed */

if (12CInited == 0)

{

| 2C_Status status;

if ((status = 12C Initialize(48, en_int, PRINT)) !'=12C_SUCCESS)
{

PRI NT("devtest 12C: error in initiation\n");

return ERROR,

} else {

| 2Clnited = 1;

}

}

return test _i2c(action, en_int);

}

static unsigned char rcv_buffer[BUFFER_LENGTH] = { 0 };
static unsigned char xmt_buffer[BUFFER_LENGTH] = { 0 };

/***

* function: test _i2c
description: run i2c test by polling the device
not e:

Test i2c device on PMC card, 0x50 serial EPROM
The device test data is currently only printable characters.

L S

This function gets some data fromthe command |ine, validates it,
and calls the 12C library function to perform the task
****************************7\-***7\—*********************/

static STATUS test_i2c(int act, int en_int)

{

int retry = 800, len = 0, rsta = 0, addr = O0;
unsi gned char eprom_addr = 0x50;

/* read transaction address */

addr
/* read # of bytes to transfer */

10J-142 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

I en
/* validate the data address, |length, etc. */
[* If transmitting, get the raw data into the transmt buffer */

xmt_buffer[]
/* read built-in |12C device on Kahlua PMC card */

if (act == DI SPLAY_TAG)

{

if (12C_do_transaction (en_int, |12C_MASTER_RCV, eprom addr, addr,
len, rcv_buffer, 12C_STOP, retry, |12C_NO_RESTART) != | 2C_SUCCESS)
{

PRI NT("dev 12C: error in master receive test\n");

return ERROR,

} else {

rcv_buffer[len] = 0; /* ensure NULL term nated string */

PRI NT("%s",rcv_buffer); /* expecting only printable data */
PRI NT("\n");

}

}

[* write to built-in |2C device on Kahlua PMC card */

if (act == MODI FY_TAG)

{

if (12C_do_transaction (en_int, |2C_MASTER_XM T, eprom_addr, addr
len, xmt_buffer, 12C_STOP, retry, |12C_NO_RESTART) !=12C_SUCCESS)
{

PRI NT("dev 12C: error in master transmt test\n");
return ERROR,

}

}
return SUCCESS;

}

J.4 12C Driver Library Internals (DLI)

This information is provided to assist in further development of the 12C library to enable
the application to operate as an 12C dave device, interrupt enabled mode, bus retention
between consecutive transactions, correct handling of device time out, no slave device
response, no acknowledgment, 12C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2cl.c.

J.4.1 Common Data Structures and Values

These data structures and status values are defined (see driversi2c/i2c.h) for the Kahlua
[2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the |2C registers.
#define | 2CADR 0x00003000

#define | 2CFDR 0x00003004
#define | 2CCR 0x00003008

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-143

MPC8240 12C Driver Library.

#define | 2CSR 0x0000300C
#define | 2CDR 0x00003010
typedef enum _i2cstatus
{

2CSUCCESS = 0x3000,

2 CADDRESS,

2 CERROR,

2CBUFFFULL,

2CBUFFEMPTY,

2CXM TERROR,

2 CRCVERRCOR,

2CBUSBUSY,

2CALGCSS,

2CNOEVENT,

} 12CSt at us;

These structures reflect the bit assignments of the |2C registers.

typedef struct _i2c _ctrl

{

unsigned int reservedO : 24;
unsigned int men : 1;
unsigned int men : 1;
unsigned int msta : 1;
unsigned int mx : 1;
unsigned int txak : 1;
unsigned int rsta : 1;
unsigned int reservedl : 2;
} | 2C_CTRL;

typedef struct _i2c_stat
{

unsigned int rsrv0 : 24;
unsigned int mef : 1;
unsigned int maas : 1;
unsigned int mbb : 1;
unsigned int mal : 1;
unsigned int rsrvl : 1;
unsigned int srw: 1;
unsigned int mf : 1;
unsigned int rxak : 1;

} | 2C_STAT;

Val ues to indicate receive or transmt mode.
typedef enum _i 2c_mode

{

RCV = 0,
XM T = 1,

} 1 2C_MODE;

J.5 Kahlua 12C Driver Library Internals: function

descriptions

| 2CStatus 12C_Init(unsigned int eumbbar,
unsigned char fdr,
unsigned char addr,

10J-144 Dink32 R12 User’s Manual

MPC8240 12C Driver Library.

unsigned int en_int);

« eumbbar is the address of the Embedded Utilities Memory Block

« fdris the frequency divider value used to set the 12C clock rate

e addr is the Kahlua chip's 12C slave device address

* en_int controls the 12C interrupt enable status: 1 = enable, 0 = disable

* Return: 12CStatus return value is always I2CSUCCESS.
Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and interrupt
enable mode (I2CCR:MIEN).

| 2C_CTRL 12C_Get _Ctrl (unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

* Return: 12C_CTRL is the contents of the 12C control register (I2CCR)
Description:

Read the 12C control register.

void | 2C_Set _Ctrl (unsigned int eumbbar, |I2C _CTRL ctrl);
« eumbbar is the address of the Embedded Utilities Memory Block

» ctrl is the contents of the I12C control register (I2CCR)
* Return: none
Description:

Set the 12C control register.

| 2CStatus |12C_put(unsigned int eumbbar,
unsigned char rcv_addr,
unsi gned char *buffer_ptr,
unsigned int |ength,
unsigned int stop_flag,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

e rcv_addr is the receiver's 12C device address

» Dbuffer_ptr is pointer to the data buffer to transmit
« length is the number of bytes in the buffer

» stop_flag: 1 - signal STOP when buffer is empty
* 0 -don't signal STOP when buffer is empty

* is_cnt: 1 - thisis a restart, don't check MBB

* O -thisis a not restart, check MBB

» Returns: Any defined status indicator

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-145

MPC8240 12C Driver Library.

Description:

Set up to send a buffer of datato the intended rcv_addr. If stop_flag is set, after the whole
buffer is sent, generate a STOP signal provided that the receiver doesn't signal the STOPin
the middle. Caller isthe master performing transmitting. If no STOP signal is generated at
the end of current transaction, the master can generate a START signal to another slave
address.

Thefunction does not actually perform the data buffer transmit,
it just setsup the DLI global variablesto control the transaction
and calls12C_Start to send the slave address out on the | 2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter aloop of calling
12C_Timer_Event to poll the 12C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has compl eted.

| 2CSt atus |12C_get(unsigned int eumbbar,
unsigned char sender _addr
unsigned char *buffer_ptr,
unsigned int |ength,
unsigned int stop_flag,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

e sender_addr is the sender's 12C device address

» Dbuffer_ptr is pointer to the data buffer to transmit

« length is the number of bytes in the buffer

« stop_flag: 1 - signal STOP when buffer is empty

* 0 -don'tsignal STOP when buffer is empty

e is_cnt: 1 - thisis a restart, don't check MBB

* O -thisis a not restart, check MBB

* Returns: Any defined status indicator
Description:
Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, when the
buffer is full and the sender does not signal STOP, generate a STOP signal. Caller is the

master performing receiving. If no STOP signal is generated, the master can generate a
START signal to another slave address.

The function does not actually perform the data buffer receive,

10J-146 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

it just setsup the DLI global variablesto control the transaction
and calls12C_Start to send the slave address out on the I 2C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter aloop of calling
12C_Timer_Event to poll the 12C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has compl eted.

| 2CSt at us | 2C_Ti mer _Event (unsi gned i nt eumbbar, | 2CSt at us
(*handl er)(unsigned int));

« eumbbar is the address of the Embedded Utilities Memory Block
* handler is a pointer to the function to call to handle any existing status event,

* Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is not set
results from call to the handler function if there was a pending event completed

Description:

In polling mode, 12C_Timer_Event can be called to check the 12C status and call the given
(or the default: 12C_ISR) handler function if the I2CSR MIF bit is set.

| 2CStatus |12C_Start(unsigned int eunbbar,
unsigned char sl ave_addr,
| 2C_MODE node,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

» slave_addr is the 12C address of the receiver

 mode: XMIT(1) - put (write)

« RCV(0) - get (read)

* is_cnt: 1 - thisis a restart, don't check MBB

* 0 -thisis a not restart, check MBB

« Returns: Any defined status indicator
Description:
Generate a START signal in the desired mode. Caller is the master. The slave_addr is
written to bits 7:1 of the I2CDR and bit O of the I2CDR is set to 0 for mode = XMIT or 1

for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (used by
I2C_ISR function).

| 2CStatus |12C_Stop(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

* Returns: Any defined status indicator
Description:

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-147

MPC8240 12C Driver Library.

Generate a STOP signal to terminate the master transaction.

| 2CStatus |12C_Master _Xmt(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

» Returns: Any defined status indicator
Description:

Master sends one byte of data to slave receiver. The DLI global variables ByteToXmit,
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STOP, to
transmit. If a data byte is sent, it is written to the I2CDR. This function may only be called
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXAK =

0 12CCR.MSTA=112CCR.MTX =1

| 2CStatus |12C_Master _Rcv(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block
* Returns: Any defined status indicator

Description:

Master receives one byte of data from slave transmitter. The DLI global variables
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data byte
or sending of a STOP if the buffer is full. This function may only be called when the
following conditions are met: 1I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =1
[2CCR.MTX =0

| 2CSt atus |12C_Slave_Xmit(unsigned int eumbbar);
[NOTE untested]

« eumbbar is the address of the Embedded Utilities Memory Block

e Returns: I2CSUCCESS if data byte sent
[2CBUFFEMPTY if no data in sending buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteToXmit,
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This function
may only be called when the following conditions are met: I2CSR.MIF =1 [2CSR.MCF =
1 12CSR.RXAK =0 I2CCR.MSTA=0I12CCR.MTX =1

| 2CSt atus |12C_Slave_Rcv(unsigned int eumbbar);
[NOTE untested]

« eumbbar is the address of the Embedded Utilities Memory Block

* Returns: I2CSUCCESS if data byte received
[2CBUFFFULL if buffer is full or no more data expected

Description:

10J-148 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

Slave receives one byte of data from master transmitter. The DLI global variables
ByteToRcv, RcvByte, and RevBufFul Stop are used to control the accepting of the data byte
or setting the acknowledge hit (I2CCR.TXAK) if the expected number of bytes have been
received. This function may only be called when the following conditions are met:
[2CSR.MIF =1 12CSR.MCF = 112CCR.MSTA =012CCR.MTX =0

| 2CStatus |12C_Slave_ Addr(unsigned int eumbbar);
[NOTE untested]

« eumbbar is the address of the Embedded Utilities Memory Block

» Returns: I2CADDRESS if asked to receive data
results from call to I2C_Slave Xmit if asked to transmit data

Description:

Process slave address phase. Called from 12C_ISR. This function may only be called when
the following conditions are met: 2CSR.MIF = 1 I2CSR.MAAS =1

| 2CStatus |12C_I SR(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

* Returns:

— I2CADDRESS if address phase for master receive
— results from call to 12C_Slave_Addr if being addressed as slave (untested)
— results from call to 12C_Master_Xmit if master transmit data mode
— results from call to 12C_Master_Rcv if master receive data mode
— results from call to 12C_Slave_Xmit if slave transmit data mode (untested)
— results from call to 12C_Slave_Rcyv if slave receive data mode (untested)
— I2CSUCCESS if slave has not acknowledged, generated STOP (untested)
— I2CSUCCESS if master has not acknowledged, wait for STOP (untested)
— I12CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which caused this
function to be called. Handle condition, see above in possible return values. This function
is called in polling mode as the handler function when an 12C event has occurred. It is
intended to be a model for an interrupt service routine for polling mode, but this is untested
and the design has not been reviewed or confirmed. This function may only be called when
the following condition is met: I2CSR.MIF = 1

This function is tested only for the master-transmit and
master-receive in polling mode. | don't think it is tested even in
those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc.

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-149

MPC8240 12C Driver Library.

J.5.1 DLI Functions Written but not Used and not Tested:

| 2CStatus 12C _write(unsigned int eunbbar,
unsigned char *buffer_ptr,

unsigned int |ength,

unsigned int stop_flag);

« eumbbar is the address of the Embedded Utilities Memory Block
» buffer_ptr is pointer to the data buffer to transmit
» length is the number of bytes in the buffer
» stop_flag: 1 - signal STOP when buffer is empty
e 0-don'tsignal STOP when buffer is empty
« Returns: Any defined status indicator
Description:
Send a buffer of data to the requiring master. If stop_flag is set, after the whole buffer is

sent, generate a STOP signal provided that the requiring receiver doesn't signal the STOP
in the middle. Caller is the slave performing transmitting.

| 2CStatus |12C _read(unsigned int eumbbar,
unsi gned char *buffer_ptr,

unsigned int |ength,

unsigned int stop_ flag);

« eumbbar is the address of the Embedded Utilities Memory Block
» Dbuffer_ptr is pointer to the data buffer to transmit
« length is the number of bytes in the buffer
« stop_flag: 1 - signal STOP when buffer is empty
* 0 -don't signal STOP when buffer is empty
« Returns: Any defined status indicator
Description:
Receive a buffer of data from the sending master. If stop_flag is set, when the buffer is full

and the sender does not signal STOP, generate a STOP signal. Caller is the slave performing
receiving.

J.6 12C support functions

unsigned int get_eumbbar();
* Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary for
information about the Embedded Utilities Memory Block Base Address Register. This
function is defined in kahlua.s.

10J-150 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 12C Driver Library.

unsigned int load_runtime_reg(unsigned int eumbbar,
& nbsp; unsigned int reg);

« eumbbar is the address of the Embedded Utilities Memory Block
* reg specifies the register: I2CDR, I2CFDR, 12CADR, I12CSR, [2CCR
* Returns: register content

Description:

The content of the specified register is returned. This function is defined in
drivers/i2c/i2c2.s.

unsigned int store_runtime_reg(unsigned int eumbbar,
& nbsp; unsigned int reg,
& nbsp; unsigned int val);

« eumbbar is the address of the Embedded Utilities Memory Block
» offset specifies the register: I2CDR, I2CFDR, 12CADR, I12CSR, I2CCR
« valis the value to be written to the register
» Return: No return value used, it should be declared void.
Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2c2.s

@ MOTOROLA Appendix J. MPC8240 12C Driver Library. 10J-151

MPC8240 120 Doorbell Driver

Appendix K MPC8240 120 Doorbell
Driver

K.1 120 Description of Doorbell Communication
between Agent and Host

The sequence of events that transpire during communication viathe 120 doorbell registers
between host and agent applications running on Kahluaare described. Thisimplementation
enables basic doorbell communication. It can be expanded to include other Kahluamessage
unit activity viathe message registers and the 120 message queue.

K.1.1 System startup and memory map initialization

An understanding of the agent’s Embedded Utilities Memory Block Base Address Register
(EUMBBAR) and Peripheral Control and Status Registers Base Address Register
(PCSRBAR) is important for 120 doorbell communication because both host and agent use
the agent’s inbound and outbound doorbell registers and message unit status and control
registers. The host accesses the agent’s registers via the agent's PCSR and the agent
accesses its own registers via its own EUMB. It is worth noting that some registers, such as
the doorbell registers, can be accessed via either the PCSR or the EUMB. Other registers,
such as the message unit's status and interrupt mask registers, can only be accessed via one
or the other of the PCSR or EUMB, but not both. The 120 library functions require the
caller to provide the base address (which will be either the PCSR or the EUMB) and a
parameter indicating which is used. In the DINK32 environment, functions are provided to
obtain both of these base addresses: get_kahlua_pcsrbar() and get_eumbbar(). The methods
of setting and obtaining the PCSR and EUMB base addresses are application-specific, but
the register offsets and bit definitions of the registers are specified for the Kahlua chip
memory map B and will be the same for all applications. Details about the register offsets
within the EUMB and PCSR as well as bit definitions within registers are found in the
Kahlua or Kahlua User’s Manual.

When the Kahlua host and agent come up running the DINK32 application, the host
application assigns the agent's PCl address for the PCSR and writes it in the agent’s
PCSRBAR by calling config_kahlua_agent(). The agent application initializes its own
EUMBBAR [this actually happens in the Kahlualnit() function, defined in .../kahlua.s] and
inbound and outbound address translation windows. This is done during initialization in the
main() function, main.c.
/ *
** Try to enable a Kahlua slave device. This is only

enabl ed for Map B.

*

if (address_map[0] == 'B")

10K-152 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver
if (target_mode == 0)

/* probe PClI to see if we have a kahlua */

if (pci KahluaProbe(KAHLUA_ID_LO, VENDOR_I D_HI,
&t arget _add
r)==1)

PRI NT("Host\n");
config_kahlua_agent();

}
}
else if (target_type == ((KAHLUA_ID LO << 16) |
VENDOR_I D_HI 1))
PRI NT(" Agent\n");
/* I nbound address translation */
sysEUMBBARW i te(L_ATU_ | TWR, ATU_BASE| ATU_I W _64K) ;
pci RegSet (PCI _REG_BASE, PCl_LMBAR_REG,
PClI _MEM_ADR) ;
/* Out bound address translation */
sysEUMBBARW i te(L_ATU_OTWR, 0x100000| ATU_I W _64K) ;
sysEUMBBARW i te(L_ATU_OMBAR, 0x81000000);

}

K.1.2 Interrupt Service Routines: 120_ISR_host() and
120 _ISR_agent()

There is a fundamental difference in the interrupt service routine (ISR) for the host and

agent: the 120_ISR_agent function only has to handle inbound message unit interrupts, but

the 120_ISR_host must handle any possible interrupt from a Kahlua agent, not limited to

the agent’s outbound message unit. The ISRs implemented at present just check for
doorbell activity. If a doorbell event occurred, the ISR prints out a simple message
including the doorbell register content and the doorbell register is cleared. Otherwise, the
ISR prints a message that it was unable to determine the cause of the interrupt. The
120 _ISR_agent function checks the Inbound Message Interrupt Status Register (IMISR) to
determine the cause of the message unit interrupt. The Message Unit interrupt can occur
because of doorbell, message register, or message queue activity. The ISR will distinguish
and handle the interrupt accordingly; but at first stage implementation, only doorbell
interrupts will be handled.

The 120 library function 120InMsgStatGet() is used to read the IMISR. It returns the
content of the IMISR after applying the mask value in the Inbound Message Interrupt Mask
Register (IMIMR) and clears the status register. The 120 library function 120DBGet() is
used to read the IDBR. It returns the content and clears the register. Similarly, the
120_ISR_host function checks the agent’'s Outbound Message Interrupt Status Register

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-153

MPC8240 120 Doorbell Driver

(OMISR) to determine if the cause of the interrupt was due to the agent’s outbound
doorbell. It is important to note that the 120_ISR_host must be expanded to check for any
kind of expected interrupt from the agent, not just message unit interrupts. The 120 library
function 1200utMsgStatGet() is used to read the OMISR. It returns the content of the
OMISR after applying the mask value in the Outbound Message Interrupt Mask Register
(OMIMR) and clears the status register. The 120 library function 120DBGet() is used to
read the ODBR. It returns the content and clears the register.

The two functions 120_ISR_host() and 120_ISR_agent() are defined in the source file
.../drivers/i2o/i2ol.c and are linked into the libdriver.a library. For testing, they are
currently manually called when requested by the user in the function test_i2o(). Eventually,
the host and agent will register an interrupt service routine (ISR) with their respective
Embedded Programmable Interrupt Controller (EPIC) systems. Details about how to
register the ISRs with EPIC are not yet specified. It may take the form of a function call to
an EPIC-provided function that accepts a pointer to the ISR function. Alternately, it may be
integrated by the linker by placing a reference to the ISR functions in some configuration
table. When the integration takes place, this document will be updated to reflect the details.
The code for the entire 120_ISR_host function follows. Note that the only type of interrupt
that is currently handled is doorbell interrupt from the message unit, but there are comments
in the code indicating where to check for other causes of interrupts. The code can be found
in i2o0l.c.

K.1.3 Enable Doorbell Interrupts:

Since the agent is servicing the inbound doorbell, the agent enables it by calling the 120
library function 120DBEnable(), which clears the Inbound Doorbell Interrupt Mask
(IDIM) bit in the Inbound Doorbell Interrupt Mask Register (IMIMR). The IMIMR is at
offset 0x104 in the agent’s Embedded Utilities Memory Block (EUMB), whose address is
in the agent's EUMBBAR. Similarly, since the host is servicing the agent’s outbound
doorbell, the host enables it by calling the 120 library function 120DBDisable(), which
clears the Outbound Doorbell Interrupt Mask (ODIM) bit in the agent’s Outbound Message
Interrupt Mask Register (OMIMR). The OMIMR is at offset 0x34 in the agent's PCSR
block, whose address is in the agent's PCSRBAR at offset 0x14 in the agent’s
Configuration Registers.

The address of the agent’'s Configuration Registers are known by the host and are accessible
from the PCI bus. At present, the user interface in DINK32 allows the user to set or clear
the ODIM or IDIM bit. The functions I20DBEnable() and 120DBDisable() are defined in
.../drivers/i2o/i201.c to perform this task. See the code in test_i20() for a usage example. It
Is interesting to note that the observed behavior of the Kahlua chip with regard to message
unit registers is not dependant on the ODIM and IDIM bit settings Even if the ODIM or
IDIM mask bits are set, writes to the affected doorbell are not blocked and the appropriate
bit is set in the message unit’s status register. It is up to software to apply the mask to the
status register to determine whether or not to take any action. The interrupt should not occur

10K-154 Dink32 R12 User's Manual M) mororoLa

MPC8240 120 Doorbell Driver

if the mask bit is set, but this has not yet been tested.

K.1.4 Writing and Reading Doorbell Registers:

The functions 120DBPost() and 120DBGet() are defined in .../drivers/i2o/i2o0l.c to write a

bit pattern to or return the contents of the agent’s inbound and outbound doorbell registers.

Note that the agent application accesses both inbound and outbound doorbell registers via
its own EUMB and the host application accesses these same doorbell registers via the
agent’s PCSR. See the code in test_i20() for usage examples.

K.1.4.1 Host Rings an Agent via Agent's Inbound Doorbell

The host application calls the 120 library function 120DBPost() to write the bit pattern to

the agent’s Inbound Door Bell Register (IDBR). If the inbound doorbell is enabled, this
generates a Message Unit interrupt to the agent processor and the agent’s EPIC unit will
execute the 120_ISR_agent function to determine the cause of the message unit interrupt
and handle it appropriately. If the inbound doorbell is not enabled, no interrupt is generated;
but the doorbell and the status register bit are still set. The agent application reads the IDBR
by calling the 120 library function 1I20DBGet(). This clears the IDBR.

K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell

The agent application calls the 120 library function 1I20DBPost() to write the bit pattern to

the agent’'s Outbound Door Bell Register (ODBR). If the outbound doorbell is enabled, this
causes the outbound interrupt signal INTA to go active which interrupts the host
processor. After the ISR is integrated into the EPIC unit, this mechanism will be
documented here. If the outbound doorbell is not enabled, no interrupt is generated; but the
doorbell and the status register bit are still set. The host application reads the ODBR by
calling the 120 library function 120DBGet(). This clears the ODBR.

Sample application code. Here is some sample code from the DINK32 function test_i20()
in device.c that provides examples of how the 120 library functions can be used by an
application. When this section of code is entered, the DINK32 user interface has already set
the local variables “mode” and “bit”. Mode reflects the user request. Bit is the doorbell bit
number to set. Mode = 4 to manually run the ISR’s for testing prior to integration with
EPIC.

/* different depending on if DINK = is running on host or agent */
if (target_mode O0)
{
/* running on host */
unsigned int kahlua_pcsrbar get_kahlua_pcsrbar();
/* PRINT("kahlua’'s pcsrbar Ox%x\ n", kahl ua_pcsrbar); */
switch (mode)
{
case O:
/* read agent’s outbound DB register and print it out */
db_reg_content | 20DBGet (REMOTE, kahl ua_pcsrbar);

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-155

MPC8240 120 Doorbell Driver

0X%x\ n

PRI NT(

interr

PRI NT(" Agent’ s out bound doorbel | register:
",db_reg_content);
br eak;
case = 1:
[* set agent’s inbound doorbell register */

db_reg_content 1 << bit;
| 20DBPost (REMOTE, kahl ua_pcsrbar,db_reg_conte
br eak;

case = 2:
/* enable agent’s outbound DB register inte
if (1 20DBEnabl e(REMOTE, kahl ua_pcsrbar,0) ! =
"Cannot enabl e agent’s outbound doorbell int
el se
PRI NT(" Enabl ed agent’s outbound door bel
br eak;

case = 3:
/* disable agent’s outbound DB register int
if (120DBDi sabl e(REMOTE, kahl ua_pcsrbar, 0) !

nt);

rrupts */
| 20SUCCESS)
errupt.\n");

interrupt.\n");

errupts */
= | 20SUCCESS)

PRI NT(" Cannot disable agent’s outbound doorbel

upt.\n");
el se
PRI NT(" Di sabl ed agent’s outbound doorbel
br eak;

#i f def DBG_I 20

interrupt.\n");

case 4:
I 20_I SR_host ();
break;
#endi f
}
}
el se
{
/* running on agent */
/* PRINT("kahlua's eumbbar Ox%\n", eumbbar); */
switch (mode)
{
case O:
/* read agent’'s inbound DB register and print it out */
db_reg_content | 20DBGet (LOCAL, eumbbar) ;
PRI NT(" Agent’' s i nbound door bel | register
Ox%\n",db_reg _content);
break;
case = 1:
/* set agent’s outbound doorbell register */
db_reg_content 1 << bit;
| 20DBPost (LOCAL, eunmbbar, db_reg _content);
br eak;
case = 2:
10K-156 Dink32 R12 User’'s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

/* enable agent’s inbound DB register interrupts */

i f (1 20DBEnabl e(LOCAL, eumbbar, 3) ! | 20SUCCESS)
PRI NT(" Cannot enabl e agent’s i nbound doorbell interrupt.\n");
el se
PRI NT(" Enabl ed agent’s inbound doorbell interrupt.\n");
br eak;
case = 3:
/* disable agent’s inbound DB register interrupts */
i f (1 20DBDi sabl e(LOCAL, eumbbar, 3) ! | 20SUCCESS)

PRI NT(" Cannot disable agent’s inbound doorbel
interrupt.\n");
el se

PRI NT(" Di sabl ed agent’s inbound doorbell interrupt.\n");
br eak;

#i fdef DBG_I 20
case 4.

I 20_| SR_agent () ;
break;

#endi f

}
}

K.1.4.3 Descriptions of the 120 library functions

| 20STATUS | 20DBEnabl e (LOCATION | oc, unsi gned i nt base, unsigned int
in_db)

* loc =LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE if called
from host. This controls the use of the base parameter as PCSR (ifREMOTE) or
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) mask registers.

* Dbase is the base address of PCSR or EUMB.
* in_dbis used for LOCAL to control enabling of doorbell and/or machine check
* Returns: I2Z0SUCCESS

Description:

Enable the specified doorbell interrupt by clearing the appropriate mask bits.

| 20STATUS | 20DBDi sabl e(LOCATION | oc, unsi gned int base, unsigned int
in_db)

« Same as I20DBEnable, but it disables the specified interrupts bysetting the mask
bits.

unsigned int |20DBGet (LOCATION | oc,unsigned int base)

* loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE) or
EUMB (ifLOCAL) and selection of outbound (if REMOTE) or inbound(if LOCAL)
doorbell registers.

* base is the base address of PCSR or EUMB.

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-157

MPC8240 120 Doorbell Driver

* Returns:Contents of agent's inbound (if loc = LOCAL) or outbound (if loc
REMOTE) doorbell register.

Description:

Returns content of specified doorbell register and clears the doorbell register.

void | 20DBPost (LOCATION | oc, unsigned int base,unsigned int msg)

* loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE) or
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) doorbell registers.

* base is the base address of PCSR or EUMB
* msg is the 32 bit value written to the specified doorbell register
Description:

The 32 bit value is written to the specified doorbell register.

| 20STATUS | 20l nMsgSt at Get (unsi gned int eumbbarl 20l MSTAT *val)
« eumbbar is the base address of the agent's EUMB

* *val receives the agent's inbound message interrupt statusregister
* Returns: I20SUCCESS
Description:
The agent's Inbound Message Interrupt Status Register (IMISR)content is masked

by the agent's Inbound Message Interrupt Mask Register(IMIMR) and placed in the address
given in the val parameter. The IMISRregister is cleared.

| 20STATUS | 200ut MsgSt at Get (unsi gned int pcsrbar, | 200MSTAT *val)
* pcsrbar is the base address of the agent's PCSR

* *val receives the agent's outbound message interrupt statusregister
* Returns: I2Z0SUCCESS

Description:

The agent's Outbound Message Interrupt Status Register (OMISR)content is masked by the
agent's Outbound Message Interrupt Mask Register(OMIMR) and placed in the address
given in the val parameter. The OMISRregister is cleared.

K.2 12C Driver Library

This section provides information about the generic Application Program Interface (API)
to the 12C Driver Library as well as information about the implementation of the
Kahlua-specific 12C Driver Library Internals (DLI).

10K-158 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

K.2.1 Background

The intended audience for this document is assumed to be familiar with the 12C bus
protocol. It isacompanion document to the Kahlua specification and other documentation
which collectively give details of the 12C protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua 12C
interface. This softwareisintended to assist in the development of higher level applications
software that uses the 12C interface.

Note: The 12C driver softwareis currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

K.2.2 Overview

This document consists of these parts:

* An Application Program Interface (API) which provides a very simple, generic,
application level programmatic interface to the 12C driver library that hides all
details of the Kahlua-specific implementation of the 12C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

» |12C API functions showing the following:
— how the function is called (i.e., function prototype)
— parameter definition possible
— return values
— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

* An I2C Driver Library Internals (DLI) which provides information about the lower
level software that is accessing the Kahlua-specific implementation of the 12C
interface.

* |12C DLI functions showing the following:
— how the function is called (i.e., function prototype)
— parameter definition
— possible return values
— brief description of what the function does

K.2.3 12C Application Program Interface (API)

K.2.3.1 API functions description
The 12C API function prototypes, defined return values, and enumerated input parameter

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-159

MPC8240 120 Doorbell Driver

values are declared in drivers/i2c/i2c_export.h. The functions are defined in the sourcefile
drivers/i2cl/i2cl.c.

| 2C_Status 12C_Initialize(unsigned char addr, |2C_I NTERRUPT_MODE
en_int, int (*app_print_function)(char *,...));

e addr is the Kahlua chip's 12C slave device address

« en_int controls the 12C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

* app_print_function is the address of the optional application's print function,
otherwise NULL if not available

* Return: 12C_Status return value is either 12C_SUCCESS or I2C_ERROR.
Description:

Configure the 12C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the 12C library currently only
supports polling mode.

The slave address can be set to the 12C listening address of the device running the
application program, but the DLI does not yet support the application's device responding
as an 12C slave to another 12C master device.

The optional print function, if supplied by the application, must be similar to the C standard
library printf library function: accepts a format string and a variable number (zero or more)
of additional arguments. This optional function may be used by the 12C library functions to
report error and status condition information. If no print function is supplied by the
application, the call to 12C_Initialize must provide a NULL value for this parameter, in
which case the I12C library will not attempt to access a print function.

| 2C _Status 12C do_transaction(|2C_| NTERRUPT_MODE en_i nt,
| 2C_TRANSACTI ON_MODE act ,
unsigned char i2c_addr,
unsigned char data_addr,
int |en,
char *buffer,
| 2C_STOP_MODE st op,
int retry,
| 2C_RESTART_MODE rsta);
Wher e:
« en_int controls the 12C interrupt enable status (currently use 12C_INT_DISABLE

only, polling mode)
« actis the type of transaction: 12C_MASTER_RCV or I2C_MASTER_XMIT
e i2c_addr is the 12C address of the slave device
« data_addr is the address of the data on the slave device

10K-160 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

* lenis the length in bytes of the data

« bufferis a pointer to the buffer that contains the data (xmit mode) or receives the data
(rcv mode)

» stop controls sending an 12C STOP signal after completion (curently use I2C_STOP
only)

» retry is the timeout retry value (currently ignored)

« rsta controls 12C restart (currently use 12C_NO_RESTART only)

* Return: 12C_Status return value is either 12C_SUCCESS or I2C_ERROR.

Description:

Act as the 12C master to transmit (or receive) a buffer of data to (or from) an 12C slave
device.

This function currently only implements a simple master-transmit or a master-receive
transaction. It does not yet support the application retaining 12C bus ownership between
transactions, operating in interrupt mode, or acting as an I12C slave device.

K.2.3.2 APl Example Usage

The ROM monitor program DINK32 uses the 12C API in both currently implemented
modes: master-transmit and master-receive. The DINK32 program runs interactively to
allow the user to transmit or receive a buffer of data from an 12C device at address 0x50 on
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/write
mode, 12C device address for the data (this is the address of the data on the 12C device, not
the 12C bus address of the device itself, which is hard-coded in DINK32), the raw data (if
in write mode), and the length of the data to transfer to or from the device. Note that the
initialization call to configure the 12C interface is actually made only once, the first time
the user requests an 12C transmit or receive operation. Each transmit or receive operation
is performed by a single call to an I12C API function. The DINK32 program is an interactive
application, so it gives the 12C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call 12C_lInitialize (if needed) to set the Kahlua 12C address, polling mode, and
identify the optional print function.

2. Call 12C_do_transaction to transmit the buffer of data.
These are the steps DINK32 takes to perform a master-receive transaction in polling mode:

1. Call 12C_lInitialize (if needed) to set the Kahlua 12C address, polling mode, and
identify the optional print function.

2. Call 12C _do_transaction to receive the buffer of data.
The following code samples have been excerpted from the DINK32 application to illustrate

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-161

MPC8240 120 Doorbell Driver

the use of the 12C API from par_devtest in device.c:

#define PRINT dink_printf

int dink_printf(unsigned char *fm, ...)

{

/* body of application print output function, */
}

/* In the function par_devtest, for testing the |2C device interface

{

/[* initialize the |12C handler to |2C address 48, if needed */

if (12CInited == 0)

{

| 2C_Status status;

if ((status = 12C Initialize(48, en_int, PRINT)) !'=12C_SUCCESS)
{

PRI NT("devtest 12C: error in initiation\n");

return ERROR;

} else {

I 2Clnited = 1;

}

}

return test i2c(action, en_int);

}

static unsigned char rcv_buffer[BUFFER_LENGTH] = { 0 };
static unsigned char xmt_ buffer[BUFFER_LENGTH] = { 0 };

/***

* function: test_i2c
description: run i2c test by polling the device

*
*
*
* note:

* Test i2c device on PMC card, 0x50 serial EPROM

* The device test data is currently only printable characters.
*

*

*

*

This function gets some data fromthe command |ine, validates it,
and calls the I2C library function to performthe task.

***/

static STATUS test i2c(int act, int en_int)
{
int retry = 800, len = 0, rsta = 0, addr = 0;
unsigned char eprom addr = 0x50;
/* read transaction address */

addr
/* read # of bytes to transfer */

I en

/* validate the data address, |length, etc. */
/* 1If transmtting, get the raw data into the transmt buffer */
xmt_buffer[]

/* read built-in 12C device on Kahlua PMC card */
if (act == DI SPLAY_TAG)
{

10K-162 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

if (12C_do_transaction (en_int, |12C_MASTER_RCV, eprom addr, addr,
len, rcv_buffer, 12C_STOP, retry, 12C_NO_RESTART) != 12C_SUCCESS)
{

PRI NT("dev 12C: error in master receive test\n");

return ERROR,

} else {

rcv_buffer[len] = 0; /* ensure NULL term nated string */

PRI NT("%s",rcv_buffer); /* expecting only printable data */

PRI NT("\ n");

}

}

/* write to built-in 12C device on Kahlua PMC card */

if (act == MODI FY_TAG)

{

if (12C_do_transaction (en_int, |I2C_MASTER_XM T, eprom_addr, addr
len, xmt_buffer, 12C_STOP, retry, |12C_NO_RESTART) !=12C_SUCCESS)
{

PRI NT("dev 12C: error in master transmt test\n");
return ERROR,
}

}
return SUCCESS;

}

K.2.4 12C Driver Library Internals (DLI)

This information is provided to assist in further development of the 12C library to enable
the application to operate as an 12C slave device, interrupt enabled mode, bus retention
between consecutive transactions, correct handling of device time out, no slave device
response, no acknowledgment, 12C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2cl.c.

K.2.4.1 Common Data Structures and Values

These data structures and status values are defined (see drivers/i2c/i2c.h) for the Kahlua
|2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the |2C registers.

#define | 2CADR 0x00003000
#define | 2CFDR 0x00003004
#define | 2CCR 0x00003008

#define | 2CSR 0x0000300C

#define | 2CDR 0x00003010

typedef enum _i 2cstatus

{

| 2CSUCCESS = 0x3000,

| 2CADDRESS,

| 2CERROR,

| 2CBUFFFULL,

| 2CBUFFEMPTY,

| 2CXM TERROR,

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-163

MPC8240 120 Doorbell Driver

| 2CRCVERROR,

| 2CBUSBUSY,

| 2CALOSS,

| 2CNOEVENT,

} 12CSt at us;

These structures reflect the bit assignments of the |12C registers.
typedef struct _i2c_ctrl

{

unsigned int reservedO : 24;
unsigned int men : 1;
unsigned int men : 1;
unsigned int msta : 1;
unsigned int mx : 1;
unsigned int txak : 1;
unsigned int rsta : 1;
unsigned int reservedl : 2;
} 1 2C_CTRL;

typedef struct _i2c_stat
{

unsigned int rsrv0 : 24;
unsigned int mcf : 1;
unsigned int maas : 1;
unsigned int mbb : 1;
unsigned int mal : 1;
unsigned int rsrvl : 1;
unsigned int srw: 1;
unsigned int mf : 1;
unsigned int rxak : 1;

} | 2C_STAT;

Val ues to indicate receive or transmt mode.
typedef enum _i2c_mode

{

RCV = 0,
XM T = 1,

} 1 2C_MODE;

K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions

| 2CStatus |12C_Init(unsigned int eumbbar,
unsigned char fdr,
unsi gned char addr,
unsigned int en_int);
« eumbbar is the address of the Embedded Utilities Memory Block

« fdris the frequency divider value used to set the 12C clock rate

e addr is the Kahlua chip's I12C slave device address

* en_int controls the 12C interrupt enable status: 1 = enable, 0 = disable
* Return: 12CStatus return value is always I2CSUCCESS.

Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and interrupt

10K-164 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

enable mode (I2CCR:MIEN).

| 2C_CTRL 12C _Get _Ctrl (unsigned int eumbbar);
: eumbbar is the address of the Embedded Utilities Memory Block
* Return: 12C_CTRL is the contents of the I12C control register (I2CCR)

Description:

Read the 12C control register.

void | 2C _Set _Ctrl (unsigned int eumbbar, |12C CTRL ctrl);
« eumbbar is the address of the Embedded Utilities Memory Block

» ctrl is the contents of the 12C control register (I2ZCCR)
* Return: none
Description:

Set the 12C control register.

| 2CSt atus |1 2C_put (unsigned int eumbbar,
unsigned char rcv_addr,
unsigned char *buffer_ptr,
unsigned int |ength,
unsigned int stop_flag,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

rcv_addr is the receiver's 12C device address

» Dbuffer_ptr is pointer to the data buffer to transmit

* length is the number of bytes in the buffer

» stop_flag: 1 - signal STOP when buffer is empty

* 0 -don't signal STOP when buffer is empty

e is_cnt: 1 -thisis a restart, don't check MBB

e O - thisis a not restart, check MBB

» Returns: Any defined status indicator
Description:
Set up to send a buffer of data to the intended rcv_addr. If stop_flag is set, after the whole
buffer is sent, generate a STOP signal provided that the receiver doesn't signal the STOP in
the middle. Caller is the master performing transmitting. If no STOP signal is generated at

the end of current transaction, the master can generate a START signal to another slave
address.

The function does not actually perform the data buffer transmit,

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-165

MPC8240 120 Doorbell Driver

it just setsup the DLI global variablesto control the transaction
and calls12C_Start to send the slave address out on the I 2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter aloop of calling
12C_Timer_Event to poll the 12C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has compl eted.

| 2CSt atus |12C_get(unsigned int eumbbar,
unsi gned char sender _addr,
unsi gned char *buffer_ptr,
unsigned int |ength,
unsigned int stop_flag,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

» sender_addr is the sender's 12C device address
buffer_ptr is pointer to the data buffer to transmit

« length is the number of bytes in the buffer

« stop_flag: 1 - signal STOP when buffer is empty

e 0 -don'tsignal STOP when buffer is empty

* is_cnt: 1 - thisis a restart, don't check MBB

* O -thisis a not restart, check MBB

* Returns: Any defined status indicator
Description:

Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, when the
buffer is full and the sender does not signal STOP, generate a STOP signal. Caller is the
master performing receiving. If no STOP signal is generated, the master can generate a
START signal to another slave address.

The function does not actually perform the data buffer receive,
it just sets up the DLI global variables to control the transaction
and calls [2C_Start to send the slave address out on the 12C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the 12C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

| 2CSt at us | 2C_Ti mer _Event (unsi gned i nt eumbbar, | 2CSt at us
(*handl er)(unsigned int));

« eumbbar is the address of the Embedded Utilities Memory Block

10K-166 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

* handler is a pointer to the function to call to handle any existing status event,

* Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is not set
results from call to the handler function if there was a pending event completed

Description:

In polling mode, I12C_Timer_Event can be called to check the 12C status and call the given
(or the default: 1I2C_ISR) handler function if the I2CSR MIF bit is set.

| 2CStatus |12C_Start(unsigned int eunmbbar,
unsigned char sl ave_addr,
| 2C_MODE nmode,
unsigned int is_cnt);
« eumbbar is the address of the Embedded Utilities Memory Block

» slave_addr is the 12C address of the receiver

 mode: XMIT(1) - put (write)

« RCV(0) - get (read)

* is_cnt: 1 - thisis a restart, don't check MBB

* 0 - thisis a not restart, check MBB

« Returns: Any defined status indicator
Description:
Generate a START signal in the desired mode. Caller is the master. The slave_addr is
written to bits 7:1 of the I2CDR and bit O of the I2CDR is set to 0 for mode = XMIT or 1

for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (used by
[I2C_ISR function).

| 2CSt atus |12C_Stop(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

» Returns: Any defined status indicator
Description:

Generate a STOP signal to terminate the master transaction.

| 2CSt atus |12C_Master_Xmt(unsigned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block

« Returns: Any defined status indicator
Description:
Master sends one byte of data to slave receiver. The DLI global variables ByteToXmit,
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STOP, to

transmit. If a data byte is sent, it is written to the I2CDR. This function may only be called
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXAK =

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-167

MPC8240 120 Doorbell Driver

012CCR.MSTA =112CCRMTX =1

| 2CStatus |12C_Master _Rcv(unsigned int eumbbar);

« eumbbar is the address of the Embedded Utilities Memory Block
» Returns: Any defined status indicator
Description:

Master receives one byte of data from slave transmitter. The DLI global variables
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data byte
or sending of a STOP if the buffer is full. This function may only be called when the
following conditions are met: 1I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =1
[2CCR.MTX =0

| 2CStatus |12C_Slave_Xmit(unsigned int eumbbar);
[NOTE untested]
« eumbbar is the address of the Embedded Utilities Memory Block
* Returns: I2CSUCCESS if data byte sent I2CBUFFEMPTY if no data in sending
buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteToXmit,
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This function
may only be called when the following conditions are met: I2CSR.MIF =1 [2CSR.MCF =
1 12CSR.RXAK =0 I2CCR.MSTA=0I12CCR.MTX =1

| 2CSt atus |12C_Slave_Rcv(unsigned int eumbbar);
[NOTE untested]

« eumbbar is the address of the Embedded Utilities Memory Block

* Returns: I2CSUCCESS if data byte received I2CBUFFFULL if buffer is full or no
more data expected

Description:

Slave receives one byte of data from master transmitter. The DLI global variables
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data byte
or setting the acknowledge bit (I2CCR.TXAK) if the expected number of bytes have been
received. This function may only be called when the following conditions are met:
[2CSR.MIF =1 12CSR.MCF = 1 I2CCR.MSTA =0 I2CCR.MTX =0

| 2CStatus |12C_Slave_ Addr(unsigned int eumbbar);
[NOTE untested]

« eumbbar is the address of the Embedded Utilities Memory Block

10K-168 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

* Returns: I2CADDRESS if asked to receive data
results from call to 12C_Slave_Xmit if asked to transmit data

Description:

Process slave address phase. Called from 12C_ISR. This function may only be called when
the following conditions are met: I2CSR.MIF = 1 I2CSR.MAAS =1

| 2CSt atus |12C_I SR(unsi gned int eumbbar);
« eumbbar is the address of the Embedded Utilities Memory Block
* Returns:

— I2CADDRESS if address phase for master receive results from call to
I2C_Slave Addr if being addressed as slave (untested)

— results from call to 12C_Master_Xmit if master transmit data mode

— results from call to 12C_Master_Rcv if master receive data mode

— results from call to 12C_Slave_Xmit if slave transmit data mode (untested)
— results from call to 12C_Slave_Rcyv if slave receive data mode (untested)
— I2CSUCCESS if slave has not acknowledged, generated STOP (untested)
— 12CSUCCESS if master has not acknowledged, wait for S(Tested)

— I2CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which caused this
function to be called. Handle condition, see above in possible return values. This function
is called in polling mode as the handler function when an 12C event has occurred. It is
intended to be a model for an interrupt service routine for polling mode, but this is untested
and the design has not been reviewed or confirmed. This function may only be called when
the following condition is met: I2CSR.MIF = 1

[NOTE: This function is tested only for the master-transmit
and master-receive in polling mode. | don't think it is tested
even in those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc. |

K.2.4.3 The following DLI functions were written but not used and not

tested:

| 2CStatus 12C _write(unsigned int eunbbar,
unsigned char *buffer_ptr,

unsigned int |ength,

unsigned int stop_flag);

« eumbbar is the address of the Embedded Utilities Memory Block
» buffer_ptr is pointer to the data buffer to transmit
» length is the number of bytes in the buffer

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-169

MPC8240 120 Doorbell Driver

« stop_flag: 1 - signal STOP when buffer is empty
* 0 -don'tsignal STOP when buffer is empty
* Returns: Any defined status indicator
Description:
Send a buffer of data to the requiring master. If stop_flag is set, after the whole buffer is

sent, generate a STOP signal provided that the requiring receiver doesn't signal the STOP
in the middle. Caller is the slave performing transmitting.

| 2CStatus |12C _read(unsigned int eumbbar,
unsi gned char *buffer_ptr,

unsigned int |ength,

unsigned int stop flag);

« eumbbar is the address of the Embedded Utilities Memory Block
» buffer_ptr is pointer to the data buffer to transmit
« length is the number of bytes in the buffer
» stop_flag: 1 - signal STOP when buffer is empty
* 0 -don'tsignal STOP when buffer is empty
« Returns: Any defined status indicator
Description:
Receive a buffer of data from the sending master. If stop_flag is set, when the buffer is full

and the sender does not signal STOP, generate a STOP signal. Caller is the slave performing
receiving.

K.2.4.4 12C support functions

unsigned int get_eumbbar();
* Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary for
information about the Embedded Utilities Memory Block Base Address Register. This
function is defined in kahlua.s.

[NOTE: I don't understand the initialization sequences for
establishing the config_addr and config_data well enough at
this point to be able to explain them; however, | think it is

essential to offer the user a complete explanation of the
initialization process. |

unsigned int load runtime_reg(unsigned int eumbbar,
unsigned int regqg);
« eumbbar is the address of the Embedded Utilities Memory Block

10K-170 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 120 Doorbell Driver

* reg specifies the register: I2CDR, 12CFDR, 12CADR, I2CSR, 12CCR
* Returns: register content
Description:

The content of the specified register is returned. This function is defined in
drivers/i2c/i2c2.s.

unsigned int store_runtime_reg(unsigned int eumbbar,
unsigned int reg,
unsigned int val);

« eumbbar is the address of the Embedded Utilities Memory Block

« offset specifies the register: I2CDR, 12CFDR, 12CADR, I2CSR, 12CCR
« valis the value to be written to the register
* Return: No return value used, it should be declared void.

Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2c2.s

@ MOTOROLA Appendix K. MPC8240 120 Doorbell Driver 10K-171

MPC8240 EPIC Interrupt Driver

Appendix L MPC8240 EPIC Interrupt
Driver

This appendix describes the sample EPIC driver source code provided in this DINK32
release and its usage on the Sandpoint Reference Platform running DINK 32.

L.1 General Description

EPIC is the embedded programmable interrupt controller feature implemented on
Motorolas MPC8240 and MPC107. It is derived from the Open Programmable Interrupt
Controller (PIC) Register Interface Specification R1.2 developed by AMD and Cyrix.
EPIC provides support for up to five external interrupts or one serial-style interrupt line
(supporting 16 interrupts), four internal logic-driven interrupts (DMAO, DMA1, 12C, 1,0),
four global timers, and it supports a pass through mode. Please refer to Chapter 12 of the
MPC8240 User's Manual for amore in depth description of EPIC on the MPC8240.

L.2 EPIC Specifics

Unlike other embedded features of the MPC8240 and MPC107 such as DMA and |,0, the
EPIC unitisaccessiblefromthelocal processor only. The control and statusregisters of this
unit cannot be accessed by external PCl devices. The EPIC registers are accessed as an
offset from the Embedded Utilities Memory Block (EUMB). The EPIC unit supports two
modes: Mixed and Pass-through.

The DINK32 EPIC driver sample code demonstrates EPIC in direct mode and also error
checks for Pass-through mode in case external interrupts are enabled with no interrupt
handler setup. Serial mode is implemented in DINK 32, but as a coding example only due
to the need for external hardware necessary to test this mode which is not provided on the
Sandpoint reference platform.

The EPIC registersarein little-endian format. If the systemisin big-endian mode, the bytes
must be appropriately swapped by software. DINK 32 is written for big-endian mode and
the sample code referred to in this appendix performs the appropriate byte swapping.

L.2.1 Embedded Utilities Memory Block (EUMB)

The EUMB is a block of local and PCI memory space allocated to the control and status
registers of the embedded utilities. The embedded utilities of the MPC8240 are the
Messaging Unit (1,0), DMA controller, EPIC, 1°C, and ATU. The local memory map
location of the EUMB is controlled by the embedded utilities memory block base address
register (EUMBBAR). The PCI bus memory map location of the EUMB is controlled by
the peripheral control and status registers base address register (PCSRBAR). SinceEPIC is
only accessible from local memory, only the EUMBBAR is of concern for this appendix.

10L-172 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 EPIC Interrupt Driver

Please refer to the following sections in the MPC8420 User’'s Manual:
Section 4.4 Embedded Utilities Memory Block

Section 5.5 Embedded Utilities Memory Block Base Address Register
Section 5.1 Configuration Register Access

L.2.2 EPIC Register Summary

The EPIC register map occupies a 256 Kilobyte range of the EUMB. All EPIC registersare
32 bits wide and reside on 128 bit address boundaries. The EPIC registers are divided into
four distinct areas whose address offsets are based on the EUMB location in local memory
controlled by the value in the EUMBBAR configuration register.

The EPIC address offset map areas:

* 0x4_1000 - 0x4_10FO0: Global EPIC register map

 0x4_1100 - Ox4_FFFO: Global timer register map

* 0x5_0000 - 0x5_FFFO: Interrupt source configuration register map
 0x6_0000 - 0x6_OFFO: Processor-related register map

Please refer to Section 12.2 in the MPC8420 User's Manual for the complete EPIC register
address map table and Section 12.9 for all register definitions.

L.2.3 EPIC Modes
» Pass-through Mode

This mode provides a mechanism to support alternate interrupt controllers such as the 8259
interrupt controller architecture. Pass-through is the default mode of the EPIC unit.

 Mixed Mode

This mode supports two subsequent interrupt modes, either a serial interrupt mode (up to
16 serial interrupt sources) or a direct interrupt mode (up to 5 interrupt sources).

Refer to Sections 12.4 -12.6 in the MPC8240 User's Manual for more on EPIC modes.

L.3 Directory Structure
DINK32/drivers/epic

« epic.h: contains all EPIC register address macros and all function declarations

« epicl.c: contains all C language routines

* epic2.s: contains all Assembly language routines

« epicUtil.s: contains assembly routines to load and store to registers in the EUMB
* makefile: used by the DINK32 makefile to build this directory into a driver library

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-173

MPC8240 EPIC Interrupt Driver

* Readme.txt: a text version of this appendix

L.4 EPIC Cross-Reference Table Structure

The following table is defined in epicl.c in order to cross reference interrupt vector
numbers with the corresponding interrupt vector/priority register address and interrupt
service routine address:

/* Regi ster Addr ess Of fset/ Vect or Descri ption /1SR Addr
cross-reference table */
struct SrcVecTable SrcVecTabl e[MAXVEC] =

{
{ EPIC_EX I NTO_VEC REG, "External Direct/ Serial Source 0", 0x0},
{ EPIC _EX INT1 _VEC REG, "External Direct/ Serial Source 1", 0x0},
{ EPIC _EX INT2 VEC REG, "External Direct/ Serial Source 2", 0x0},
{ EPIC_EX I NT3_VEC REG, "External Direct/ Serial Source 3", 0x0},
{ EPIC_EX I NT4_VEC REG, "External Direct/ Serial Source 4", 0x0},
{ EPI C_SR I NT5_VEC_REG, "External Serial Source 5", 0x0},
{ EPI C_SR_I NT6_VEC_REG, "External Serial Source 6", 0x0},
{ EPI C_SR_I NT7_VEC_REG, "External Serial Source 7", 0x0},
{ EPI C_SR_|I NT8_ VEC_REG, "External Serial Source 8", 0x0},
{ EPI C_SR_I NT9_VEC_REG, "External Serial Source 9", 0x0},
{ EPIC_SR INT10_VEC REG, "External Serial Source 10", 0x0},
{ EPIC_SR INT11 VEC REG, "External Serial Source 11", 0x0},
{ EPIC_SR INT12 VEC REG, "External Serial Source 12", 0x0},
{ EPIC_SR INT13_VEC REG, "External Serial Source 13", 0x0},
{ EPIC_SR INT14 VEC _REG, "External Serial Source 14", 0x0},
{ EPIC_SR _INT15 VEC REG, "External Serial Source 15", 0x0},
{ EPI C_TMO_VEC_REG, "Gl obal Ti mer Source 0", 0x0},
{ EPI C_TMLl_VEC_REG, "Gl obal Ti mer Source 1", 0x0},
{ EPI C_TM2_VEC_REG, "Gl obal Ti mer Source 2", 0x0},
{ EPI C_TM3_VEC_REG, "Gl obal Ti mer Source 3", 0x0},
{ EPIC_I2C_I NT_VEC_REG, "I nternal |2C Source", 0x0},
{ EPI C_DMAO_I NT_VEC_REG, "Internal DMAO Source", 0x0},
{ EPI C_DMA1l I NT_VEC_REG, "Internal DMAl Source", 0x0},
{ EPI C_MSG_I| NT_VEC_REG, "I nternal Message Source", 0x0}
3

Each of the 24 entries conforms to the following:

{ "vector/priority register address offset",
"text description",
"Interrupt Service Routine address” }.

The first column of the structure contains the macro for each of the 24 interrupt
vector/priority register address offsets in EPIC. The middle column is the text description
of the interrupt vector, and the last column is the address of the registered interrupt service
routine (ISR) for each interrupt vector. Currently the structure is initialized such that each
vector ISR address is 0x0. This can be modified such that each defaults to a "catch all ISR"

10L-174 Dink32 R12 User's Manual M) mororoLa

MPC8240 EPIC Interrupt Driver

address instead of 0x0. As each interrupt vector is set up, an ISR must be registered with
EPIC viathe epicl SRConnect() routinein the epicl.c sourcefile. Thisroutine takesthe ISR
function name and stores the address of that function in the ISR Address structure location
corresponding to the interrupt vector number. Although each interrupt’s vector/priority
register allows the vector number to range from 0-255, this structure limits the vector
number range from 0-23. So as each interrupt’s vector/priority register is set up, the 8-bit
vector field value must match the vector number location in the structure.

L.5 EPIC Sample Routines

The EPIC sample routines are contained in the epicl.c and epic2.s files. All C language

routines are in epicl.c and all assembly language routines are in epic2.s. These routines,

along with the structure described in L.4, “EPIC Cross-Reference Table Structure"”, can be
used as sample code for systems using the MPC8240 EPIC Unit. L.6, “EPIC Commands in
DINK32" describes how these routines are used by DINK32.

L.5.1 Low Level Routines
The following routines are in the epic2.s source file:

« External Interrupt Control Routines:
— CoreExtIntEnable(): enables external interrupts by setting the MSR[EE] bit
— CoreExtIntDisable(): disables external interrupts by clearing the MSR[EE] bit
* Low Level Exception Handler:

— epic_exception():
Save the current (interrupted) programming model/state
Calls epicISR() to service the interrupt
Restore the programming model/state and
RFI back to interrupted process

L.5.2 High Level Routines
The following routines are in the epicl.c source file:

L.5.2.1 EPIC Initialization Routines:
epiclnit(): initialize the EPIC Unit by:
« Setting the reset bit in the Global Configuration Register which will:
— Disables all interrupts
— Clears all pending and in-service interrupts

— Sets EPIC timers to base count
— Sets the value of the Processor Current Task Priority to the highest priority (OxF)

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-175

MPC8240 EPIC Interrupt Driver

thus disabling interrupt delivery to the processor
— Reset spurious vector to OxFF
— Default to pass-through mode

« Setsthe EPIC operation mode to Mixed Mode (vs. Pass Through or 8259 compatible
mode)

— If IRQType (input) is Direct IRQs:

— IRQType is written to the SIE bit of the EPIC Interrupt Configuration Register
(ICR)

— clkRatio is ignored
— If IRQType is Serial IRQs:
— both IRQType and clkRatio will be written to the ICR register

epicCurTaskPrioSet(): Change the current task priority value
epicintiISRConnect(): Register an ISR with the EPIC unit cross-reference table
L.5.2.2 High Level Exception Handler:

epiclSR(): this routine is a catch all for all EPIC related interrupts:

« perform IACK (interrupt acknowledge) to get the vector number
» check if the vector number is a spurious vector

» cross-reference vector ISR (interrupt service routine) from table
 call the vector ISR

« perform EOI (end of interrupt) for the interrupt vector

L.5.2.3 Direct/Serial Register Control Routines:
epicintEnable(): enable an interrupt source
epicintDisable(): disable and interrupt source

epicintSourceConfig(): configure and interrupt source

L.5.2.4 Global Timer Register Control Routines:
epicTmBaseSet(): set the base count value for a timer

epicTmBaseGet(): get the base count value for a timer
epicTmCountGet(): get the current counter value for a timer
epicTmInhibit(): inhibit counting for a timer

epicTmEnable(): enable counting for a timer

10L-176 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 EPIC Interrupt Driver

L.6 EPIC Commands in DINK32

The following commands are typed from the DINK32 command line to control the EPIC
unit.
* help dev epic - Display usage of EPIC commands
» dev epic - Display content and addresses of EPIC registers, and current task priority
* dev epic ex - “dev epic’ command example uses
« dev epic init - Initialize the EPIC unit to default direct mode

» dev epic init [Mode(0|1)] [Ratio(1-7)] - Initialize the EPIC unit (this calls the
epiclnit() routine)

» dev epic ta [0-15]- Change the Processor Task priority register
» dev epic en [Vector(0-23)] - Enable a particular interrupt vector
» dev epic dis [Vector(0-23)] - Disable a particular interrupt vector
» dev epic con [Vector(0-23)] - Print content of a Source Vector/Priority register
» dev epic con [Vector(0-23) Polarity(0]|1) Sense(0|1) Priority (0-15)]
— Program the Source Vector/Priority register
» dev epic tmbase [Timer(0-3)] - Display a timer current count register
» dev epic tmbase [Timer(0-3)] Count(hex value) Inhibit(0|1)
— Set, enable/disable a Timer Base Count Register
» dev epic tmcnt [Timer(0-3)] - Display a Timer Current Count Register
» dev epic tmdis [Timer(0-3)] - Inhibits counting for a timer
» dev epic tmen [Timer(0-3)] - Enables counting for a timer
» dev epic ISRCnt [Vector(0-23) Address]
— Manually link an ISR to an interrupt vector
Example:

dev epic init - Initialize EPIC unit to default Direct Mode.

dev epic init 0 7 - Initialize EPIC unit to Serial Mode with a clock ratio of 7.
dev epic en 1 - Enable interrupt vector 1

dev epic ta 10 - Set the Processor Task priority register to 10

dev epic dis 5 - Disable interrupt vector 5

dev epic con 2- Print the configuration of Interrupt vector 2

dev epic con 7 1 0 5- Configure the source Vector/Priority

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-177

MPC8240 EPIC Interrupt Driver

register of vector 7 to have the following properties:
Polarity =1
Sense =0
Priority =5
dev epic tmbase O - Display Timer 0 Base Count Register
dev epic tmbase 0 7fff O

— Set Timer 0 Base Count Register to 0x7fff and enable counting to proceed
dev epic tmcnt 1 - Display Timer 1 Current Count Register

dev epic tmdis 2 - Inhibit counting on Timer 2
dev epic tmen 3 - Enable counting on Timer 3

dev epic ISRCnt 1 90000 - Set the ISR address for vector 1 to 0x90000

L.7 EPIC Unit Startup

When the MPC8240 comes up running DINK32, the EUMBBAR is configured such that
the EUMB is located at an offset of OxFC00_0000 from local memory. The EPIC unit is
untouched by the DINK32 initialization routines and is left in its default state of
Pass-Through mode. External interrupts are also left untouched and left in the default state
of disabled. The following list shows the necessary routine calls needed to utilize the EPIC
unit:
* Initialize the EPIC unit
— epiclnit()
» For each interrupt vector to be used:
— epicSourceConfig()
— epiclSRConnect()
» For each interrupt vector to be used:
— epicintEnable()
» Set the Processor Current Tast Priority
— epicCurTaskPrioSet()
« Enable External Interrupts

— CoreExtIntEnable()

10L-178 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 EPIC Interrupt Driver

L.8 External Interrupt Exception Path in DINK32

The path of an external interrupt exception in DINK32 begins at the 0x500 interrupt
exception vector. All DINK32 exception vector locations are set up in the same manner
which isto save the exception type and pass the exception handling to acatch all exception
handler. Thishandler iscalled handl e_ex andislocated in the except2.s DINK 32 source
file.

Inthe handl e_ex handler a check is performed to see if the exception was a 0x500 and
if DINK32 is running on an MPC8240 or MPC107. If the two conditions are true, the
exception handling is passed to the EPIC low level interrupt handler, epi c_excepti on
located in the epic2.s source file. Epi c_excepti on: handles any necessary context
switching and saving of state before calling the EPIC high level interrupt handler, epicl SR()
located in the epicl.c sourcefile.

Note: Currently, epi c_excepti on first checks the mode of the EPIC unit. If in
pass-through mode, an error message is printed stating that the EPIC unit isin pass-through
mode and must be initialized.

Epi cl SR() acknowledges the interrupt by calling the epi cl ACK() which returns the
vector number of the interrupting vector source. This vector number is then compared to
the spurious vector value located in the EPIC Spurious Vector Register. If the interrupting
vector is a spurious vector the interrupt is ignored and state is restored to the interrupted
process. If the interrupting vector is a valid interrupt, then the vector number is used to
reference the vector ISR from the cross-reference table. The vector ISR is then caled to
service the particular interrupt. Once the ISR completes and returns, an end-of-interrupt is
issued by calling epi cEQ () . Control then returnsto epi c_excepti on.

Epi c_exception finishes by restoring state and performs an RFI (return from
interrupt) back to the interrupted process.

L.9 Example Usage on Sandpoint Reference Platform

The EPIC driver source code currently defaults to a demonstration mode. The demo code
is located in the epi clnit() routine and alows for an interactive demonstration of
external interrupts. The externa interrupts demonstrated are IRQ lines 1 and 2, use of
Global Timers 0 and 1, DMAO, and the Message Unit if in a Host/Agent setup. A debug
mode is also provide and is controlled by the - DEPI CDBG compiler directive in the
makefile located in the EPIC source directory. The compiler directive allows the driver
code to be much more verbose and informative when exercising the EPIC unit featuresin
the debug state.

L.9.1 L.9.1 Sandpoint Reference Platform
The Sandpoint Reference Platform provides ameansto test external interruptsviatwo slide

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-179

MPC8240 EPIC Interrupt Driver

switches (S5 and S6) located on the mother board. Although these switches can be
manipulated to demo the EPIC unit, this is not the intended function of the switches. The
intended usage of these switches is described in the document titled, "Sandpoint PPMC
Processor PCI Mezzanine Card Host Board Technical Summary".

Switch S5 manipulates a 5V signal that originates from the interrupt output line of the
Winbond southbridge chip in the center of mother board. With S5 dlid to the left, a 5V
signal is passed on, with S5 dlid right, a0V signal is passed on. The EPIC IRQO-4 interrupt
lines can be configured to be active-low or active-high triggered.

Switch S6 specifies to which IRQ line (IRQ1 or IRQ 2) the interrupt signal from S5 is
passed. With the S6 dlid right, IRQ1 is selected. With S6 dlid left, IRQ2 is selected.

L.9.2 Demo Code Snippet

Thefollowing codeisincluded in epicl.c and shows the default setup used to demonstrated
external interrupts on the Sandpoint Reference Platform.

/* direct mode (default mode) specific setup */
if (IRQType == EPI C_DI RECT_I RQ)
{
/* 1f DINK is running on a Host:
Set up IRQlL and | RQ2 for Sandpoint slide switches S5 and S6
unl ess an Agent was detected on either line.
If DINK is running on an Agent:
Do not setup IRQ lines. */

if (pmclntLine !'= AGENT_DETECTED) /* Not an Agent */
{
if (pmclntLine !'= 1) /* No Agent on |IRQl */
/* set int 1 to active |ow, edge-sensitive, priority 10 */
printf("EPIC: |RQ1 Configure... ")
status = epiclntSourceConfig(1, 0,0, 10);
printf("Connect | SR. ")

epchSRConnect(l,IRQlISR);
/* enable interrupt vector 1 */

printf("Enable\n");

epi cl nt Enabl e(1);

}

if (pmclintLine '=2) /* No Agent on |IRQ2 */

{

/* set int 2 to active | ow, edge-sensitive, priority 10 */
printf("EPIC: | RQ2 Configure... ")
status = epiclntSourceConfig(2,0,0,10);
printf("Connect | SR ")

epi cl SRConnect (2, IRQZISR);
/* enable interrupt vector 2 */

printf("Enable\n");

epi cl nt Enabl e(2);

10L-180 Dink32 R12 User’s Manual @ MOTOROLA

MPC8240 EPIC Interrupt Driver

}

/* 1f DINKis running on an Agent in a host/agent setup, we’l
enabl e the use of the Message Unit. The Message Unit can be
exercised using the "dev i20" command in DINK

If DINKis running on the Host, we’'ll set up the IRQ i nterrupt
vector for whatever 1RQIline the Agent was detected on. */

if (pmclntLine == AGENT_DETECTED)/* Di nk running on Agent */
{

printf("\n");

printf("EPIC: Host/Agent setup detected\n");

printf("EPIC: Message Unit Interrupt Configure... ");
status = epiclntSourceConfig(pmclntlLine,0,0,10);
printf("Connect |SR... ")

epi cl SRConnect (pmcl ntLine, 120 1SR _agent);
printf("Enable\n");

/* enable interrupt vector 23 */

epi cl nt Enabl e(pmcl ntLine);

}
else if (pmclntLine !'= Oxff) /*Dink running on Host */
{
printf("\n");
printf("EPIC: Agent detected on I RQ %d\n", pmclntLine);
printf("EPIC: | RQ¥d Confi gure... ",pmclntLine);
status = epiclntSourceConfig(pmclntlLine,0,0,10);
printf("Connect |SR... ")
epi cl SRConnect (pmcl ntLine, 120 1SR _host);
printf("Enable\n");
epi cl nt Enabl e(pmcl ntLine);
}
} //end of Direct Mode specific setup
/* Set up ISR for global timers 0-3. The timers will not be
configured or enable so they are not continually interrupting.
Set up will be left for the user to do fromthe command |ine */

printf("EPIC: Timer0O Connect ISR...\n");
epi cl SRConnect (16, Ti mer 0l SR) ;
printf("EPIC: Timerl Connect ISR...\n");
epi cl SRConnect (17, Ti mer 11 SR);
printf("EPIC: Timer2 Connect ISR...\n");
epi cl SRConnect (18, Ti mer 21 SR) ;
printf("EPIC: Timer3 Connect ISR...\n");
epi cl SRConnect (19, Ti mer 31 SR) ;

/* Set up DMAO interrupt */

printf("EPIC: DMAO Confi gure... ")
status = epiclntSourceConfig(21,0,0,10);
printf("Connect |SR... ")

epi cl SRConnect (21, DMAOI SR) ;
printf("Enable\n");

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-181

MPC8240 EPIC Interrupt Driver

epi cl nt Enabl e(21);

L.9.3 Running the Interactive Demo

The interactive demo requires that DINK32 is running on a Sandpoint system with an
MPC8240 PMC module. From the DINK32 command line, initialize the EPIC unit by
typing the EPIC initialization command. DINK 32 will respond with initialization messages
and will be ready to handle external interrupts. The user may now aso manipulate the S5
and S6 switches to trigger interrupts on the IRQ1 and IRQ2 lines. The Global Timers can
now be manipulated to generated timed interrupts. The Message Unit (120) can be used if
in aHost/Agent setup. DMAO can be used in an interrupt driven manner to transfer blocks
of data.Of course while all these external interrupts are being handled, DINK 32 continues
to run and will accept user input at the command line, while simultaneously writing status

to the terminal.

Host EPIC initialization on Sandpoint running DINK 32 in anon Host/Agent setup:

DI NK32_KAHLUA >>dev epic init
Initialize epic

EPI C: Di sable External Interrupts

EPI C: Reseting... M xed Mode. .. Direct Mode

EPI C: Configuring EPIC to default mode. ..

EPI C: | RQ1 Configure... Connect | SR... Enabl e
EPI C: | RQ2 Configure... Connect | SR... Enabl e
EPIC: TimerO Connect |SR..

EPIC: Timerl Connect |SR..

EPI C: Timer2 Connect |SR..

EPI C: Timer3 Connect |SR..

EPI C: DMAO Confi gure... Connect | SR... Enabl e
EPI C: Lower Current Task Priority

EPI C: Enable External Interrupts in MSR

DI NK32_KAHLUA >>

Host EPIC initialization on Sandpoint running DINK 32 in a Host/Agent setup:

DI NK32_KAHLUA >>dev epic init
Initialize epic

EPI C: Di sabl e External Interrupts

EPI C: Reseting... M xed Mode. .. Direct Mode

EPI C: Configuring EPIC to default mode. ..

EPI C: | RQ1 Configure... Connect | SR... Enabl e
EPI C: | RQ2 Configure... Connect | SR... Enabl e
EPI C: Agent detected on IRQ 3

EPI C: | RQ3 Confi gure... Connect | SR... Enabl e
10L-182 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

EPIC. Timer0O Connect |SR..

EPIC. Timerl Connect |SR..

EPIC. Timer2 Connect |SR..

EPIC. Timer3 Connect |SR..

EPI C. DMAO Configure... Connect | SR... Enabl e
EPI C. Lower Current Task Priority

EPI C: Enable External Interrupts in MSR

DI NK32_KAHLUA >>

Agent EPIC initialization on Sandpoint running DINK 32 in a Host/Agent setup:

DI NK32_ KAHLUA >>dev epic init
Initialize epic

EPI C: Disable External Interrupts

EPI C: Reseting... M xed Mode. .. Direct Mode

EPI C: Configuring EPIC to default mode. ..

EPI C: Host/ Agent setup detected

EPI C: Message Unit Interrupt Configure... Connect | SR... Enabl e
EPIC: Timer0O Connect | SR..

EPIC: Timerl Connect | SR..

EPIC: Timer2 Connect | SR..

EPIC: Timer3 Connect | SR..

EPI C: DMAO Configure... Connect I SR... Enabl e
EPI C: Lower Current Task Priority

EPI C: Enabl e External Interrupts in MSR

DI NK32_KAHLUA >>

L.10 Code and Documentation Updates

For the most up-to-date versions of the EPIC sample driver code and this
appendix/document please visit the following URL :

http://www.mot.com/SPS/PowerPC/teksupport/fagsol utions/code/index.html

@ MOTOROLA Appendix L. MPC8240 EPIC Interrupt Driver 10L-183

Converting Dink32 to Little Endian

Appendix M Converting Dink32 to Little
Endian

M.1 General Information

Thisinformation isbased on alittle endian version of DINK, V7.0 10/8/97 called DINKLE.
The makefile isincluded in this appendix, the other files from this version are not required
to understand this appendix, but can be requested from riscl0@email.sps.mot.com.
Following the instructions below and having access to this DINKLE version can facilitate
the conversion of any version of DINK 32 to alittle endian version.

M.1.1 Preparation

The reset vector EH100S: at 0x00000100 and Oxfff00100 is extracted from except2.s and
copiedto anew filecalled reset.s. The system_reset code, which includesthe copy DINK 32
from ROM to RAM is extracted from except2.s and copied to a new file called resetl.s.
Finally the rest of except2.sis copied to anew file called except2l.s. Thisis necessary, as
described later, because the reset vector and reset code must run in Big Endian (BE) and the
rest of the code must runin Little Endian (LE).

Thus the two files (reset.s and reset1.s) are compiled as BE and that the rest are compiled
as LE. Thelinker will then link these mixed mode files into a single executable.

These two assembly languagefiles need to be compiled as BE. Use the metaware assembl er
option -Ib, which is the default.

* reset.s
e resetl.s

These three assembly language files need to be compiled as LE. Use the metaware
assembler option -le.

o except2l.s
e reg_swap.s
e go_tr2.s

All the C language files need to be compiled as LE. Use the metaware option flag -HL for
Little Endian compilation, the default is -HB Big Endian.

The CC and two assembler commands for metaware are.

« CC =/.path.../metaware/bin/hcppc -HL -Hnocopyr -c -Hsds

e ASOPTL =-big_si-le
ASL =/...path.../metaware/bin/asppc -¢c $(ASOPTL)

10M-184 Dink32 R12 User’s Manual @ MOTOROLA

Converting Dink32 to Little Endian

« ASOPTB =-big_si-be
ASB =/...path.../metaware/bin/asppc -c $(ASOPTB)

The order of compilation and linking is.

e reset.o

« except2l.o

* resetl.o

e exceptl.o

e go_trl.o

e go_tr2.o

e reg_swap.o

» All the rest of the C files.

The makefile included in M.1.3, “DINKLE V7.0 10/8/97 makefile" is useful to understand
the linking order.

M.1.2 Explanation

It is critical to understand that the processors and peripheral logic all come out of reset in
Big Endian. Therefore, the first code that is run (this is the reset code located in reset.s and
resetl.s) will be compiled in big endian. The reason the reset vector is separated from the
other code and other exception handlers (found in except2l.s) is that we want to run the
other handlers in LE mode so we will assemble them with our Little endian assembler. The
linker will then link the files in the following order: reset.s, except2l.s, resetl.s which
are Big Endian, Little Endian and Big Endian respectively. All of the other files are
compiled as Little endian.

M.1.2.1 Two important considerations
The first involves the copy algorithm and the second involves the little endian swap code.

M.1.2.1.1 Copy algorithm

In DINK, we copy ROM contents to RAM before jumping to the RAM image. The
compiler has compiled the rest of DINK as "TRUE" little endian. Little Endian on PowerPC
is not a "TRUE" little endian but rather a munged Little Endian scheme (see our
Programming Environments Manual for more details). The fact that the PowerPC processor
really expects BIG ENDIAN data at little endian addressing is accomplished by the
unmunging of data during the copy algorithm (use of stwbr instructions). The copy
algorithm is found in except2.s, which has been copied along with all of system_reset to
except2l.s

The code is shown here.

@ MOTOROLA Appendix M. Converting Dink32 to Little Endian 10M-185

Converting Dink32 to Little Endian

/I now copy DINK in ROM to RAM. ROM i mage is compiler little endian
/1l so,we have to swap the byte and muge the address by K.O.

addi s rg8,r0,0 //use this for copy ROM to RAM

ori r8,r8,4 //use for Munge address
| pl:
| wz ri10,0(r4) //read word from eprom
| wz ri1,4(r4) //muge the address
st wbr x ri0,r8,r3 //byte swap
st wbr x ri1,r0,r3 //byte swap
/* original big endian code which is now replaced
* st wx r5,0,r3 //store word into dram
* | wzx r7,0,r3 //1load word from dram
* cmp 0,0, r7,r5 /] check to see if dram got written
* bne error_dram.init
*/
addi rd,r4,8 //go to next double word of eprom and dram
addi r3, r3,8
addi c. ré,r6,-8 //decrement word from 256k bl ock
/1-- set cr0 on this one for branching.
bgt Ipl //if count>0, then | oop

The memory, which is local to the processor, aways has BE
ordered data in its physical memory locations (just like the
values in the onboard registers and onboard caches are still in
big endian order). The byte lane swap is accomplished at the
PCI interface.

M.1.2.1.2 Little endian swap instruction sequence

The peripheral logic is switched to little endian first (before the processor) in resetl.s (ie.
the specific programming of the bridge chip to bein little endian mode). Thereis a period
of time when the processor and the peripheral logic will not be in the same endian mode.
This period should be minimized. It is interesting to note that this period is of interest
because the addresses, that you think you are executing from, may not actually beintuitive.
In the the V7.0 code this is not a problem (and is not dealt with) because the instructions
that are being accessed, when the peripheral logic has been switched to LE and the
processor is still in BE, are aready in local memory in BE format and the processor hasn't
switched yet. If, however, you were running from code out in PCI then there would be an
issue because the "unmunge” logic in the peripheral chip has just been turned "on" but the
processor is not munging addresses just yet.

There is an elegant way of handling this. Place a sequence (approximately. 30) of "ORI
R0,R0,0x60" opcodesin the code stream after switching the peripheral logic to LE and then
after these "ori" instructions begin, LE code modules which have DUPLICATE opcodes
can run until the processor can be put into LE mode (i.e. until the RFI executes).

The"ori r0,r0,0x60" opcodeisused becauseit isan opcode that

10M-186 Dink32 R12 User’s Manual @ MOTOROLA

Converting Dink32 to Little Endian

doesn't matter if the bytesareread asBE or LE (i.e. they arethe
same opcode; a relatively innocuous no-op). 0x60000060 is
still 0x60000060 in big or little endian mode.

After this assembly code (which has duplicate instructions), "regular" compiler generated
L E modules may be |l ocated.

The duplicated instructions handle the fact that the address is
temporarily "unmunged" so it is coming out as 0x04, 0x00,
0x0C, 0x08 etc. Instead of duplicating instructions you could
alternate ano-op with thereal instruction or reverse the opcode
in memory (not recommended for clarity)

M.1.3 DINKLE V7.0 10/8/97 makefile

Thismakefilewill only work with V7.0, itisincluded here only
for illustrative purposes.

DEBUG =

OPTI M =

CcC = /risc/tool s/ pkgs/ metawar e/ bi n/ hcppc -HL -Hnocopyr -c -Hsds -fsoft
#-Hlist

CCobj = $(CC) $(DEBUG) $(OPTIM

PREP = $(cc) -P

Assembl er used to build the .s files (for the board version)

ASOPTL = -big_si -le

ASOPTB = -big_si -be

ASL = /risc/tool s/ pkgs/ metaware/bin/asppc -c $(ASOPTL)

ASB = /risc/tool s/ pkgs/ metaware/bin/asppc -c $(ASOPTB)

Linker to bring .o files together into an executable.

LKOPT = - Bbase=0 -Xxm -e system_reset -Bnoheader - Bhardalign
-xo0=di nk32.src -gq -Qn -Cglobals -Csections -Csymbols -Ccrossref

L1 NK = Jrisc/tool s/ pkgs/ metaware/bin/ldppc $(LKOPT) > xref.txt

DOS Utilities

DEL
COPY
LI ST

I mnn
— 60 =
»w T 3
ll

These are the modules which have to do with DINK’s registers.
REGISTERS = reg_tb.o reg_spr.o

These are the modules which have to do with DINK’s memory access routines.
MEMORY = mem_tb.o

These are the modules which have to do with the DINK parser.
PARSER = tok_tb.o arg_tb.o rfs_tb.o par_tb.o toks.o

These are the modules which have to do with the error checking
and reporting.

@ MOTOROLA Appendix M. Converting Dink32 to Little Endian 10M-187

Converting Dink32 to Little Endian

ERRORS = errors.o err_th.o

These are the modul es which have to do with the downl oader including
DINK’s compression routines.
DOWNLOAD = downld.o dc_tb.o

#

These are the modules which have to do with the input output to the
board level stuff.

INPUTOUTPUT = duart.o board.o

These are the modules which have to do with DINK's assembler/disassembler.
ASMDSM = asm.o dsm.o

These are for the exceptions in the DINK32 system.
EXCEPTIONS = reset.o except2l.o resetl.o exceptl.o

These are for the Go and Trace routines. Please note that the EXCEPTIONS
are

very important for the Go/Tr operations.

GOTRACE = go_trl.o go_tr2.0 reg_swap.o

These are the modules which have to do with DINK’s help and breakpoints.
MISC = help.o brk_pts.o sublib.o

These are the modules which have to do with the main loop and

initialization of DINK32.

DINKMAIN = main.o print.o

DINKASM = $(EXCEPTIONS) $(GOTRACE)

DINKWORKERS =$(REGISTERS) $(MEMORY) $(DOWNLOAD) $(ASMDSM) $(MISC)
DINKINTERFACE = $(PARSER) $(ERRORS) $(INPUTOUTPUT)

DINKOBJECTS = $(DINKASM) $(DINKMAIN) $(DINKWORKERS) $(DINKINTERFACE)
DCOMPOBJECTS = dc_tb_unix.o dc_unix.o

dink32: $(DINKOBJECTS)
$(LINK) $(DINKOBJECTS) $(LIBS) -0 dink32.src

clean:
$(DEL) -f *.0 *.Ist *.map dink32.src dcomp zz.*
#.s.0:
$(PREP) $*.i
$(AS) $*.s

reset.o: $(INC_ALL) $(INC_ASM) reset.s
$(ASB) reset.s

resetl.o: $(INC_ALL) $(INC_ASM) resetl.s
$(ASB) resetl.s

except2l.o : $(INC_ALL) $(INC_ASM) except2l.s
$(ASL) except2l.s

reg_swap.o: $(INC_ALL) $(INC_ASM) reg_swap.s
$(ASL) reg_swap.s

go_tr2.0: $(INC_ALL) $(INC_ASM) go_tr2.s
$(ASL) go_tr2.s

$(CCobj) $*.c

10M-188 Dink32 R12 User’s Manual @ MOTOROLA

Converting Dink32 to Little Endian

I NC_ALL = config.h

INC_C = dink.h

INC_TOK = tok _tb.h toks.h

I NC_GEN = errors.h cpu.h

I NC_ASM = dink_asm h yell owknife.h

reg_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) reg_tb.c reg_th.h
reg_spr.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) reg_spr.c reg_tb.h

mem tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(I NC_GEN) mem tb.c

tok_tbh.o: $(INC_ALL) $(INC_C) $(INC_TOK) tok_ tb.c

arg_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) arg_tb.c rfs_tb.h
rfs_tb.o: $(I NC_ALL) $(I1NC_C) $(INC_GEN) rfs_tb.c rfs_tb.h

par _tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) par_th.c errors.h

toks.o: $(INC_ALL) $(INC_C) $(INC_TOK) toks.c errors.h

err_tb.o : $(INC_ALL) $(INC_C) $(INC_TOK) err_th.c err_tbh.h

errors.o : $(INC_ALL) $(INC_C) $(INC_GEN) errors.c

help.o : $(INC_ALL) $(INC_C) $(INC_TOK) help.c arg_tb.h rfs_tb.h errors.h
brk_pts.o : $(I NC_ALL) $(INC_C) $(INC_GEN) brk_pts.c brk_pts.h

sublib.o : $(I NC_ALL) $(INC_C) $(INC_GEN) sublib.c

netrixl.o : $(INC_ALL) netrixl.c
netrix.o : $(I1NC_ALL) netrix.c
exceptl.o : $(INC_ALL) $(INC_C) exceptl.c
#except2.0 : $(INC_ALL) $(I NC_ASM) except2.s
#go_tr2.0 : $(INC_ALL) $(I NC_ASM go_tr2.s
go_trl.o0 : $(INC_ALL) $(INC_C) go_tril.c

#reg_swap.o : $(I NC_ALL) $(I1 NC_ASWM) reg_swap.s

dc_th.o : $(INC_ALL) $(INC_C) $(INC_GEN) dc_tb.c

downl d.o : $(INC_ALL) $(INC_C) $(INC_GEN) downld.c

duart.o: $(I NC_ALL) $(INC_C) $(INC_GEN) duart.c duart.h

print.o : $(INC_ALL) $(INC_C) $(INC_GEN) print.c

board.o : $(INC_ALL) $(INC_C) $(INC_GEN) board.c duart.h

asm o : $(INC_ALL) $(INC_C) $(INC_GEN) asmc asm.dsmh

dsmo : $(INC_ALL) $(INC_C) $(INC_GEN) dsm c asm.dsm h

main.o : $(1 NC_ALL) $(INC_C) $(INC_TOK) main.c errors.h arg_tb.h reg_tbh.h
duart.h

@ MOTOROLA Appendix M. Converting Dink32 to Little Endian 10M-189

	Chapter�1 DINK32 User’s Guide Index
	Chapter�2 Introduction
	Chapter�3 MDINK32/DINK32 Features
	3.1 MDINK32 Overview
	3.2 New features for MDINK32 V12.1
	3.3 MDINK32 Design Methodology
	3.4 Hardware Configuration Requirements
	3.5 MDINK32 Software Build Process
	3.6 MDINK32 Memory Model
	3.7 New features for DINK32 V12.1
	3.8 DINK32 Design Methodology
	3.9 DINK Software Build Process
	3.10 DINK32 Memory Model

	Chapter�4 MDINK32/DINK32 Commands
	4.1 Commands
	4.1.1 .(period) .
	4.1.2 about about
	4.1.3 assemble as
	4.1.4 bkpt bp
	4.1.5 defalias da
	4.1.6 devdisp dd
	4.1.7 devmod dm
	4.1.8 devtest dev
	4.1.9 disassem ds
	4.1.10 download dl
	4.1.11 env env
	4.1.12 flash fl
	4.1.13 fupdate fu
	4.1.14 fw fw -e
	4.1.15 go go
	4.1.16 help he
	4.1.17 Identify id
	4.1.18 log log
	4.1.19 memcompare mc
	4.1.20 memdisp md
	4.1.21 memfill mf
	4.1.22 meminfo mi
	4.1.23 memod mm
	4.1.24 memove mv
	4.1.25 memsrch ms
	4.1.26 memtest mt
	4.1.27 menu me
	4.1.28 pciconf pcf
	4.1.29 pcidisp pd
	4.1.30 pcimod pm
	4.1.31 pciprobe ppr
	4.1.32 regdisp rd
	4.1.33 regmod rm
	4.1.34 rtc rtc
	4.1.35 runalias ra
	4.1.36 setbaud sb
	4.1.36.1 Host versus Keyboard.

	4.1.37 symtab st
	4.1.38 tau tau
	4.1.39 transpar tm
	4.1.40 trace tr

	Chapter�5 DINK32 Command Form Summary
	Chapter�6 Utilities
	6.1 S-Record Compression/Decompression
	6.1.1 Overview
	6.1.2 Building
	6.1.2.1 Files
	6.1.2.2 Modification of header file
	6.1.2.3 Build command

	6.1.3 Command syntax

	6.2 bat_decoder
	6.2.1 Overview
	6.2.2 Building
	6.2.2.1 Using unix commands
	6.2.2.2 Using makefile supplied

	6.2.3 Command syntax

	6.3 l2_decoder
	6.3.1 Overview
	6.3.2 Building
	6.3.2.1 Using unix commands
	6.3.2.2 Using makefile supplied

	6.3.3 Command syntax

	6.4 config_decoder
	6.4.1 Overview
	6.4.2 Building
	6.4.2.1 Using unix commands
	6.4.2.2 Using makefile supplied

	6.4.3 Command syntax

	6.5 Memory Test

	Chapter�7 User Program Execution
	7.1 Execution Steps

	Chapter�8 Errors and Exceptions
	8.1 Error Codes
	8.1.1 Parser Errors
	8.1.2 Errors from Error Checking Toolbox
	8.1.3 addresses
	8.1.4 Get Argument Errors
	8.1.5 Tokenizer Toolbox Errors
	8.1.6 Screen Toolbox Errors
	8.1.7 Breakpoint Errors
	8.1.8 Download Errors
	8.1.9 Compression and Decompression Errors
	8.1.10 DUART Handling Errors
	8.1.11 Register Errors
	8.1.12 Flash Errors

	8.2 Exceptions

	Chapter�9 Restrictions
	9.1 Special Purpose Registers

	Chapter�10 Known Bugs
	10.1 Known Bugs

	Appendix�A Adding Commands and Arguments
	A.1 Help
	A.1.1 Help Menus

	A.2 Input Arguments
	A.2.1 Input Token Facility

	Appendix�B Adding ERROR Groups to MDINK/DINK32
	B.1 Error Group Files
	B.1.1 err_tb.h
	B.1.2 errors.h

	Appendix�C History of MDINK32/DINK32 changes
	C.1 Version 12.1 August 30, 1999.
	C.2 Version 12.0 November 30, 1999.
	C.3 Version 11.0.2 June 1, 1999
	C.4 Version 11.0.1 May 1, 1999 Not Released
	C.5 Version 11.0 March 29, 1999
	C.6 Version 10.7 February 25, 1999
	C.7 Version 10.6 January 25, 1999
	C.8 Version 10.5 November 24, 1998
	C.9 Version 10.4 November 11, 1998
	C.10 Version 10.3 no date
	C.11 Version 10.2 September 11, 1998
	C.12 Version 10.1 September 10, 1999
	C.13 Version 9.5 August 5, 1998
	C.14 Version 9.4 May 22, 1998
	C.15 Prior to Version 9.4 Approximately October 10, 1997

	Appendix�D S-Record Format Description
	D.1 General Format
	D.2 Specific Formats
	D.3 Examples
	D.4 Summary of Formats

	Appendix�E Example Code
	E.1 General Information
	E.2 agentboot
	E.2.1 Background
	E.2.2 In This Directory
	E.2.3 Assumptions
	E.2.4 Usage
	E.2.5 Notes

	E.3 Demo
	E.3.1 Building
	E.3.2 Function Addresses

	E.4 Dhrystone
	E.4.1 Building
	E.4.2 Function Addresses

	E.5 L1test
	E.5.1 Building
	E.5.2 Function Addresses
	E.5.3 Excimer versus Yellowknife

	E.6 l2sizing
	E.6.1 In This Directory
	E.6.2 Assumptions
	E.6.3 Usage
	E.6.4 To Build
	E.6.5 Notes

	E.7 L2test
	E.7.1 Building
	E.7.2 Function Addresses
	E.7.3 Excimer versus Yellowknife

	E.8 lab4
	E.8.1 Building
	E.8.2 Function Addresses

	E.9 memspeed
	E.9.1 Building
	E.9.2 Function Addresses

	E.10 printtest
	E.10.1 Building
	E.10.2 Function Addresses

	E.11 testfile
	E.11.1 Building
	E.11.2 Function Addresses

	Appendix�F Updating DINK32 from the Web
	F.1 General Information
	F.1.1 For YellowKnife and Sandpoint:
	F.1.2 For Excimer and Maximer:

	F.2 Makeing a DINK32 or MDINK32 from the Release
	F.3 Settings for terminal emulators
	F.3.1 Hyperterm on NT
	F.3.2 Zterm on Mac

	Appendix�G Dynamic functions such as printf and variables such as memSpeed
	G.1 General Information
	G.2 Methodology and implementation.
	G.3 Setting up the static locations.
	G.4 Using the Dynamic Functions.
	G.5 Error Conditions.
	G.6 Alternative method for Metaware only.

	Appendix�H MPC8240 (Kahlua) Drivers
	H.1 Drivers directory.

	Appendix�I MPC8240 DMA Memory Controller.
	I.1 Background
	I.2 Overview
	I.3 DMA Application Program Interface (API)
	I.3.1 API Example Usage

	I.4 DMA Driver Library Internals (DLI)
	I.4.1 Common Data Structures and Values

	I.5 Kahlua DMA Driver Library Internals: function descriptions

	Appendix�J MPC8240 I2C Driver Library.
	J.1 Background
	J.2 Overview
	J.3 I2C Application Program Interface (API)
	J.3.1 API functions description
	J.3.2 API Example Usage

	J.4 I2C Driver Library Internals (DLI)
	J.4.1 Common Data Structures and Values

	J.5 Kahlua I2C Driver Library Internals: function descriptions
	J.5.1 DLI Functions Written but not Used and not Tested:

	J.6 I2C support functions

	Appendix�K MPC8240 I2O Doorbell Driver
	K.1 I2O Description of Doorbell Communication between Agent and Host
	K.1.1 System startup and memory map initialization
	K.1.2 Interrupt Service Routines: I2O_ISR_host() and I2O_ISR_agent()
	K.1.3 Enable Doorbell Interrupts:
	K.1.4 Writing and Reading Doorbell Registers:
	K.1.4.1 Host Rings an Agent via Agent’s Inbound Doorbell
	K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell
	K.1.4.3 Descriptions of the I2O library functions

	K.2 I2C Driver Library
	K.2.1 Background
	K.2.2 Overview
	K.2.3 I2C Application Program Interface (API)
	K.2.3.1 API functions description
	K.2.3.2 API Example Usage

	K.2.4 I2C Driver Library Internals (DLI)
	K.2.4.1 Common Data Structures and Values
	K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions
	K.2.4.3 The following DLI functions were written but not used and not tested:
	K.2.4.4 I2C support functions

	Appendix�L MPC8240 EPIC Interrupt Driver
	L.1 General Description
	L.2 EPIC Specifics
	L.2.1 Embedded Utilities Memory Block (EUMB)
	L.2.2 EPIC Register Summary
	L.2.3 EPIC Modes

	L.3 Directory Structure
	L.4 EPIC Cross-Reference Table Structure
	L.5 EPIC Sample Routines
	L.5.1 Low Level Routines
	L.5.2 High Level Routines
	L.5.2.1 EPIC Initialization Routines:
	L.5.2.2 High Level Exception Handler:
	L.5.2.3 Direct/Serial Register Control Routines:
	L.5.2.4 Global Timer Register Control Routines:

	L.6 EPIC Commands in DINK32
	L.7 EPIC Unit Startup
	L.8 External Interrupt Exception Path in DINK32
	L.9 Example Usage on Sandpoint Reference Platform
	L.9.1 L.9.1 Sandpoint Reference Platform
	L.9.2 Demo Code Snippet
	L.9.3 Running the Interactive Demo

	L.10 Code and Documentation Updates

	Appendix�M Converting Dink32 to Little Endian
	M.1 General Information
	M.1.1 Preparation
	M.1.2 Explanation
	M.1.2.1 Two important considerations
	M.1.2.1.1 Copy algorithm
	M.1.2.1.2 Little endian swap instruction sequence

	M.1.3 DINKLE V7.0 10/8/97 makefile

