
MDINK32/DINK32 User’s
Guide

Interactive Debugger for PowerPC Microprocessors

Motorola
RISC Applications

Release Date: August 30, 2000
Updated: August 31, 2000

Version 12.0
Revision 1.0

Altivec Enabled
. -1

xtent

BE

OF
E
te-
MOTOROLA MDINK32/DINK32 Version 12.1
User’s Guide

© Copyright Motorola, Inc. 1993-2000
ALL RIGHTS RESERVED

You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so
long as this entire notice is retained without alteration in any modified and/or redistributed ver-
sions, and that such modified versions are clearly identified as such. No licenses are granted by
implication or otherwise under any patents or trademarks of Motorola, Inc.

The SOFTWARE is provided on an “AS IS” basis and without warranty. To the maximum e
permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER
EXPRESSED OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY AGAINST
INFRINGEMENT WITH REGARD TO THE SOFTWARE (INCLUDING ANY MODIFIED
VERSIONS THEREOF) AND ANY ACCOMPANYING WRITTEN MATERIALS.

To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE US
OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the main
nance and support of the SOFTWARE.
-2 Dink32 R12 User’s Manual

Chapter 1 DINK32 User’s Guide Index

Chapter 1, “DINK32 User’s Guide Index"

Chapter 2, “Introduction"

Chapter 3, “MDINK32/DINK32 Features"

Chapter 4, “MDINK32/DINK32 Commands"

Chapter 5, “DINK32 Command Form Summary"

Chapter 6, “Utilities"

Chapter 7, “User Program Execution"

Chapter 8, “Errors and Exceptions"

Chapter 9, “Restrictions"

Chapter 10, “Known Bugs"

Appendix A, “Adding Commands and Arguments"

Appendix B, “Adding ERROR Groups to MDINK/DINK32"

Appendix C, “History of MDINK32/DINK32 changes"

Appendix D, “S-Record Format Description"

Appendix E, “Example Code"

Appendix F, “Updating DINK32 from the Web"

Appendix G, “Dynamic functions such as printf and variables such as memSpeed"

Appendix H, “MPC8240 (Kahlua) Drivers"

Appendix I, “MPC8240 DMA Memory Controller."

Appendix J, “MPC8240 I2C Driver Library."

Appendix K, “MPC8240 I2O Doorbell Driver"

Appendix L, “MPC8240 EPIC Interrupt Driver"

Appendix M, “Converting Dink32 to Little Endian"
Chapter 1. DINK32 User’s Guide Index 1-3

o
 on
ector
m the
New
 an
Chapter 2
Introduction
DINK is an acronym for Demonstrative Interactive Nano Kernel.

DINK32 is a flexible software tool enabling evaluation and debugging of the PowerPC
32-bit microprocessors. The introduction of the PowerPC microprocessor architecture
provided an opportunity to create an interactive debugger independent from previous debug
monitors. Since the family of PowerPC microprocessors spans a wide market range,
DINK32 has to be extensible and portable, as well as being specific enough to be useful for
a wide variety of applications. It is designed to be both a hardware and software debugging
tool. DINK32 was written in ANSI C and built with modular routines around a central core.
Only a few necessary functions were written in PowerPC assembly. This document
describes the DINK32 software, the DINK32 command set, utilities, user program
execution, errors and exceptions, and restrictions.

MDINK32 (Minimal DINK32) is a limited version of DINK32. It’s major purpose is t
download versions of DINK32 to the board. Currently, MDINK32 is only available
Excimer and Maximer boards. MDINK32 is supplied with the board. It is burned into s
A15, which is protected. The user can obtain new executable versions of DINK32 fro
web site and download them onto the Excimer and Maximer board via MDINK32.
versions of MDINK32 are only available by returning the board to Motorola for
MDINK32 upgrade or building it from the source code.
2-4 Dink32 R12 User’s Manual

l

y of

 or
ons.

oad

 to see
bling

i.e.

tect
y the
Chapter 3 MDINK32/DINK32 Features
The MDINK32/DINK32 software package provides:

• Supports the MPC601, MPC603, MPC603e, MPC604, MPC604e, MPC740,
MPC750, and the MPC7400.

• Modification and display of general purpose, floating point, altivec, and specia
purpose registers.

• Assembly and disassembly of PowerPC instructions for modification and displa
code.

• Modification, display, and movement of system memory.

• A simplified breakpoint command, allowing setting, displaying, and removing
breakpoints.

• Single-step trace and continued execution from a specified address.

• Automatic decompression of compressed s-record files while downloading

• Extensive on-line help.

• Ability to execute user-assembled and/or downloaded software in a controlled
environment.

• Logging function for generating a transcript of a debugging session.

• Register set includes all of the PowerPC implementation specific registers.

• Modification of memory at byte, half-word, word and double-word lengths.

• Extensive support for the MPC 60x, MPC 740, MPC750, MPC7400 simplified
extended mnemonics during assembly and disassembly of PowerPC instructi

• Ability to input immediate values to the assembler as binary, decimal, or
hexadecimal.

• Command line download functionality that allows the user to select the downl
port and then send the data.

• An assembler and disassembler that understands branch labels and the ability
and clear the branch table that DINK32 is using while assembling and disassem
PowerPC instructions.

• Ability to read and write MPC106 configuration registers. (Not supported on
Excimer and Maximer).

• Support for PCI with new “pci-” commands. (Not supported in minimal builds,
Excimer and Maximer).

• Support for Excimer and Maximer flash, fl –dsi and –se, and automatically de
flash on Revision 2 versus 3 of the board. fl -dsi has been expanded to displa
memory range for each sector.
Chapter 3. MDINK32/DINK32 Features 3-5

MDINK32 Overview

d

., the
only
2 is

 is
et is
OM

inal

ew

rds that
ory
• Support for Excimer and Maximer flash, fl -sp and -su.

• Support for Max chip and altivec registers and instructions.

• Support for Kalua chip.

• Support for MPC107 Memory bridge.

• Support for dynamically assigned dink function addresses and variables for
downloaded programs, see Appendix G, “Dynamic functions such as printf an
variables such as memSpeed".

• Support for Yellowknife and Sandpoint flash ROMs, fu command.

3.1 MDINK32 Overview
The following sections describe the MDINK32 methodology and limited command set
minimum required hardware configuration, and the memory model. MDINK32 is
available with the Excimer and Maximer platform. The current release of MDINK3
Version 10.7.

3.2 New features for MDINK32 V12.1
No new functionality.

There is a problem with this release, it may not jump correctly to ffc00000 and fails to start dink32.

3.3 MDINK32 Design Methodology
The MDINK32 program’s only purpose is to download DINK32 programs. MDINK32
loaded at 0xfff00000 and begins execution at 0xfff00100. It’s limited command s
designed to allow easy loading of DINK32 or other programs into FLASH or R
memory and starting those programs.

See F.3, “Settings for terminal emulators" for instructions in connecting to a term
emulator.

See Appendix F, “Updating DINK32 from the Web" for information on obtaining n
versions of DINK32.

3.4 Hardware Configuration Requirements
This MDINK32 software package can be executed on the same microprocessor boa
support DINK32, which include the following devices and minimum mem
configuration:

• PowerPC™ 601, 603(e), 604(e), 740/750, MPC7400 microprocessors
3-6 Dink32 R12 User’s Manual

MDINK32 Software Build Process

nce

 is
mer

uired
rsion

esign
es a

inal
• National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Refere
Design).or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

• 512 K-byte EPROM or Flash

• 512 K-byte RAM

3.5 MDINK32 Software Build Process
MDINK32 can be built from the dink source base. Information for building MDINK32
given in the DINK32 build section. There is only one version of mdink32 for all Exci
and Maximer boards. Flash memory is automatically detected.

3.6 MDINK32 Memory Model
See Figure 3-3., “MDINK32/DINK32 Memory Model - Excimer and Maximer".

The following sections describe the DINK32 design methodology, the minimum req
hardware configuration, and the memory model. The current release of DINK32 is Ve
12.0.

3.7 New features for DINK32 V12.1
1. Support for Yellowknife and Sandpoint flash ROM devices.

2. Reorganized all demos into one demos directory..

3. All User SPRs are now initialized during booting.

4. Application programs can now always safely return to DINK at completion.

5. dev epic has been enhanced.

6. Two dink variables, memSpeed and processor_type have been added to the
dink_transfer_table for dynamic access.

7. dl now supports the binary download facility.

8. Support for the MPC755 I/D bats 4:7

9. New commands, id and mc.

3.8 DINK32 Design Methodology
The modular design of the DINK32 program, its extensive commenting, and its d
methodology enable efficient user modification of the code. Thus, DINK32 provid
flexible and powerful framework for users who desire additional functionality.

See F.3, “Settings for terminal emulators" for instructions in connecting to a term
emulator.
Chapter 3. MDINK32/DINK32 Features 3-7

DINK Software Build Process

nce

ch as
. are
 to
n of

4
imer

 Chip
sy as

cimer
). It is
e this
ain
ides
Hardware Configuration Requirements

This DINK32 software package can be executed on microprocessor boards that include the
following devices and minimum memory configuration:

• PowerPC™ 601, 603(e), 604(e), 740/750, 7400 microprocessors

• National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Refere
Design). or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

• 512 K-byte EPROM or Flash

• 32 M-byte RAM

3.9 DINK Software Build Process
There are two types of platforms.

1. YellowKnife and Sandpoint. DINK32 is loaded at 0xfff00000. The config.h file
must set the RESET_BASE macro to RESET_BASE_OTHERS as shown in
Table 3-1., “RESET_BASE value"

2. Excimer and Maximer. The config.h file must set the RESET_BASE macro to
RESET_BASE_EXCIMER as shown in Table 3-1., “RESET_BASE value"

DINK32 is a sophisticated debug ROM program. Most hardware specific features su
the specific PowerPC processor, the memory map, the target platforms, etc
automatically detected at run time. This flexibility allows a single version of DINK32
run on different platforms with different processors; for example the same versio
DINK32 will boot the Yellowknife X2 platform with memory map A, the Yellowknife X
platform with memory Map B, the Sandpoint, as well as the Excimer and Max
platforms with all the supported PowerPC processors.

The ROM device on the Yellowknife and Sandpoint system is the Plastic Leaded
Carrier (PLCC) device. Upgrading the firmware on such system could be as ea
removing and replacing the old ROM with the new one. The ROM devices on the Ex
and Maximer platform however are the thin small surface mount packages (TSSOP
not easy to remove such devices on the target hardware for upgrading. To solv
problem, Motorola provides a smaller version of DINK32 called MDINK. The m
purpose of mdink is to download DINK32 or other boot program to ROM, thus it prov
a robust way for upgrading the firmware.

Table 3-1. RESET_BASE value

Macro Name Value

RESET_BASE_OTHERS 0xFFF0 (default)

RESET_BASE_EXCIMER 0xFFC0
3-8 Dink32 R12 User’s Manual

DINK Software Build Process

IX
gram
 line

 files
with
elp.c

 on a

ctory
rsion
_dir"
dir".

ry is

, and
There are two different versions of DINK:

1. DINK32 provides the capability to download and debug application programs,

2. MDINK32 provides the capability to download and upgrade firmware.

Only DINK32 is available in executable form. It is delivered in the following eight file
formats as shown in Table 3-2., “DINK32 File Formats"

The source files can be used to build DINK32 or MDINK32.

The source files are *.c, *.s, and *.h.

Other files are makefile and READ_ME

Motorola uses the Metaware tool set to build MDINK32 and DINK32 in a UN
environment. The syntax of the makefile, therefore, complies with the make pro
available on UNIX machines. The command to build DINK32 on a UNIX command
is "make dink", and the command to build MDINK32 is "make mdink".

MDINK32 is a subset of DINK32. Both versions share many source files. Of all the
that contribute to the making of MDINK32, the files that MDINK32 does not share
DINK32 is mpar_tb.c and mhelp.c. DINK32's version of mpar_tb.c is par_tb.c and mh
is help.c.

Both can also be build on UNIX with the GNU gcc tool set using makefile_gcc, and
PC/NT with the Metaware tool set using makefile_pc.

The source files and the makefile of DINK32 and MDINK32 reside in the same dire
structure. However, the object files (*.o), the ELF file and S-record file of each ve
reside on a different directory. When the "make dink" command is executed, the "dink
directory is created, and the output files produced by "make" are put in "dink_
Likewise, when the "make mdink" command is executed, the "mdink_dir" directo
created, and the output files are put in "mdink_dir" (see Figure 3-1).

In addition, the makefile, makefile_pc, is used to build on the PC (windowns) platform
the makefile_gcc is used to build on UNIX with a GNU gcc compiler.

Table 3-2. DINK32 File Formats

Board S record S Record (-g) elf elf/dwarf (-g)

Yellowknife and Sandpoint dinkyk.src dinkyk_g.src dinkyk dinkyk_g

Excimer dinkex.src dinkex_g.src dinkex dinkex_g
Chapter 3. MDINK32/DINK32 Features 3-9

DINK32 Memory Model

uld
ash. See

l -
Figure 3-1. DINK32/MDINK32 Directory Organization

When compiling a version of DINK32 to upgrade an Excimer and Maximer board it is
important to realize that this module, while relocatable, has a dependency that must be
accounted for during compilation. Since, MDINK32 and DINK32 both copy themselves to
RAM (and then execute from RAM) it is important to know which address range to copy
from FLASH to RAM. If you are building an image which will be located at the reset vector
(0xFFF00100) then the #define RESET_BASE (which is located in the config.h file) must
be set to 0xFFF0. If, however, you are upgrading a version of DINK32 on an Excimer or
Maximer board RESET_BASE should be changed to 0xFFC0 before building your new
image. This S-record would then be loaded at address 0xFFC00000. This is the original
configuration that came with the Excimer and Maximer board. The command to download
a new version of DINK32 on an Excimer and Maximer board would be "dl -fl -o ffc00000"
if there is nothing at location 0xffc00000. If replacing an older version then “fw -e” wo
be used to erase the version (and everything else that was not sector protected) in Fl
Table 3-1., “RESET_BASE value".

3.10 DINK32 Memory Model

The memory model for DINK32 is shown in Figure 3-2., “DINK32 Memory Mode

.../DINK32

 board.h *.o dink32.src dink32 board.h *.o mdink32.src mdink32

dink_dir *.h *.c *.s mdink_dir drivers

epic dma i2o i2c
3-10 Dink32 R12 User’s Manual

DINK32 Memory Model

ithin
m the
le, the
odify”

g of the
0000000

ill be
 RAM’s

ode.
d with
onflict
Yellowknife and Sandpoint" or Figure 3-3., “MDINK32/DINK32 Memory Model -
Excimer and Maximer". The exception vectors and exception code are located w
address offsets 0x0000 - 0x2100. The DINK32 code through 0x80000 is copied fro
EPROM to RAM so that the data structures can be modified at run time. For examp
data structures for the chip registers need to be modified when the “register m
command is executed.

The EPROM must be located at address 0xFFF00000 because this is the beginnin
exception address space at system reset. The RAM must be located at address 0x0
since that is the low-memory exception address space, where the DINK32 code w
copied. Available user memory space begins at address 0x90000 and ends at the
upper boundary; address space below 0x90000 is reserved for DINK32.

DINK32 sets the stack pointer, r1, to 0x80000 for the C portion of the DINK32 c
DINK32 sets the user’s stack pointer, r1, to 0x8fff0. As long as the user, once starte
a go or trace command, does not use more than 0xfff0 bytes for it’s stack there is no c
with the stack used by DINK32.

Please reference Figure 3-2 and Figure 3-3 on the following page.
Chapter 3. MDINK32/DINK32 Features 3-11

DINK32 Memory Model
Note: The .text and .data sections are approximates depending
on each build version. Actual locations can be ascertained from
the xref.txt file in the dink_dir directory.

Figure 3-2. DINK32 Memory Model - Yellowknife and Sandpoint

0xFFFFFFFF - End of ROM space
512 K-byte EPROM 0xFFF8FFFF - End of DINK32 Code

0xFFF00100 - Reset Vector

User Memory

Top of User Memory (depending on the amount of
RAM installed); 1M = 0x000FFFFF, Typical size is
32M = 0x00200000

0x00090000 - Start of User Memory
DINK32 stack 0x0008FFFF - Top of Stack for user

0x00080000 - Top of Stack for DINK32

0x00070000 - Bottom of stack
.data 0x0006FFFF - Top of.data section

0x00040000 - Bottom of.data section

0x000303FF - Top of RODATA

0x0002FD00 - Bottom of RODATA
.text 0x0002FFFF - Top of.text section

0x00003000 - Bottom of.text section

Exception table

0x00002FFF - Top of Exception table

0x00000000 - Bottom of Exception Table
3-12 Dink32 R12 User’s Manual

DINK32 Memory Model
System ROM

System RAM

Note: The .text and .data sections are approximates depending
on each build version.

Figure 3-3. MDINK32/DINK32 Memory Model - Excimer and Maximer

4 Meg Flash ROM 0xFFFFFFFF - End of ROM space

MDINK32

0xFFF60000 - End of MDINK32 Code

0xFFF00100 - Reset Vector (MDINK32)
User Flash Space 0xFFEFFFFF - Top of User Flash Space

0xFFC90000 - Bottom of User Flash Space
DINK32 0xFFC8FFFF - End of DINK32 Code

0xFFC00100 - Start of DINK32 Code

0xFFC00000 - Beginning of Flash space

User Memory

Top of User Memory - 0x000FFFFF (1 Meg)

0x00090000 - Start of User Memory

DINK32 stack 0x0008FFFF - Top of Stack for user

0x00080000 - Top of Stack for DINK32

0x00070000 - Bottom of stack
.data 0x0006FFFF - Top of .data section

0x00040000 - Bottom of .data section

0x00030000 - Top of RODATA

0x0002FD00 - Bottom of RODATA
.text 0x0002FFFF - Top of .text section

0x00003000 - Bottom of .text section

Exception table

0x00002FFF - Top of Exception table

0x00000000 - Bottom of Exception Table
Chapter 3. MDINK32/DINK32 Features 3-13

Commands

ween

tinue

ry that

y two
-two
8-bit
ily due

lar
Chapter 4 MDINK32/DINK32
Commands
This chapter describes the DINK32 user commands. The full command mnemonic is listed
in the upper left-hand corner and the short command (abbreviation) is listed next in smaller
type. All commands listed (except fw -e) are available to DINK32, those commands
available to MDINK32 are marked as MDINK32 Compatible.

Commands appear in boldface throughout this chapter.

Note: All addresses entered must be in hexadecimal but not preceded by “0x”.

 Leading zeros will be added as needed.

Definitions

“MDINK32 Compatible”

This command is also available in MDINK32. Where commands are different bet
MDINK32 and DINK32, the DINK32 format will be shown first.

“plus”

Usually implies that the command form includes “+”. This allows the command to con
to the next stopping place appropriate for its functionality.

“range”

Indicates a two-address form, and usually signifies an inclusive area of code or memo
will be operated on by the command.

“entire family”

Refers to a family of registers. The general purpose registers are a family of thirt
32-bit registers, numbered 0 to 31. The floating point registers are a family of thirty
64-bit registers, numbered 0 to 31. The altivec registers are a family of thirty-two 12
registers, numbered 0 to 31.The special purpose registers are not classified as a fam
to their architectural design.

“x”

Typing “x” will exit a command if DINK32 is in an interactive mode when a particu
command form is used.

4.1 Commands
4-14 Dink32 R12 User’s Manual

Commands
4.1.1 .(period) .

repeat last command MDINK32 Compatible

Typing a period will repeat the last command entered.

Example:

DINK32_750 >> trace 2100
A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x00002104 stw r13, 0xfff8(r01)

DINK32_750 >> trace +
A Run Mode or Trace exception has occurred.
Current instruction Pointer: 0x00002108 add r03, r00, r01

DINK32_750 >> .
A Run Mode or Trace exception has occurred.
Current instruction Pointer: 0x0000210c mfspr r04, s0274

DINK32_750 >>
Chapter 4. MDINK32/DINK32 Commands 4-15

Commands
4.1.2 about about

(M)DINK32 version information MDINK32 Compatible

The version information for the current implementation of the DINK32 monitor will be
displayed on the terminal.

DINK32 Example:

DINK32_MPC603ev >>about

A Reset Exception ’0x100’ initiated this restart
Caches Enabled: [L1-ICache L1-DCache]

DDD III N N K K 333 222
D D I NN N K K 3 3 2 2
D D I N N N KK 33 22
D D I N NN K K 3 3 22
DDD III N N K K 333 22222 for MPC603ev

Metaware Build

Version 12, Revision 0

Written by : Motorola’s RISC Applications, Austin, TX
 Released : November 30, 1999:
 System : Welcome to Excimer. A Minimum System PowerPC Design!
 Processor : MPC603ev V12.1 @ 133 MHz, Memory @ 66 MHz

Copyright Motorola, Inc. 1993, 1994, 1995, 1996, 1997, 1998, 1999

Changes for each release, Errata for dink, Future Enhancements
and bug fixes are documented in the file history.c

DINK32_MPC603ev >>

MDINK32 Example:

MDINK32_603e >>about

Data Cache has been enabled...
Instruction Cache has been enabled...

M M DDD III N N K K 333 222
MM MM D D I NN N K K 3 3 2 2
M M M D D I N N N KK 33 22
M M D D I N NN K K 3 3 22
4-16 Dink32 R12 User’s Manual

Commands
M M DDD III N N K K 333 22222 for the MPC603

Version 10, Revision 7

Written by : Motorola’s RISC Applications, Austin, TX
Released : March 1, 1999
Welcome to Excimer. A Minimum System PowerPC Design!

Copyright Motorola, Inc. 1993, 1994, 1995, 1996, 1997, 1998
Chapter 4. MDINK32/DINK32 Commands 4-17

Commands

t the
onics
emory

 start
t the

rn the

 at the
current
ctions.

nch
r if the
ch table

 “.dc”
s them.
e. In
to be

eneral
gister

s not
e the
lways
 the
the
4.1.3 assemble as

DINK32 mini-assembler

• assemble address

• assemble start +

• assemble start - end

The mini-assembler for the DINK32 system will display the contents of memory a
given location and enter interactive mode. The user will be queried for a valid mnem
and operands which will be assembled into a valid opcode and stored at that m
location. A location can be left unmodified by typing <return> to pass over it.

The “plus” form of the command will allow the user to start assembling code at a given
location and will be terminated at the end of memory. The “range” version will start a
first address location and automatically terminate at the given end address.

At any point “x” can be entered as a mnemonic and assemble will terminate and retu
user to the DINK32 prompt.

Branch labels are recognized by the assembler as a word followed by a colon (:)
address currently being displayed by the assembler. The assembler tracks the
branch labels and automatically calculates the address to be entered into future instru
The symtab,st instruction is available for manipulating the branch table in DINK32. Bra
labels within PowerPC assembly instructions will not be recognized by the assemble
branch label has not yet been entered into the table. The user may display the bran
list with the st instruction.

The DINK32 assembler ignores any comments preceded by a ‘#’ and any “.org” and
commands. The assembler does not interpret these lines as anything. It only ignore
The simplified mnemonics that DINK32 Version 10.5 understands is quite extensiv
general, immediate values, including condition register bit offsets, are assumed
hexadecimal unless preceded by 0b (binary) or 0d (decimal). Floating point and g
purpose registers are recognized just like previous versions of DINK32 where the re
number may be preceded by an “r” (general purpose) or an “f” (floating point) but i
necessary. Simplified branch mnemonics involving the condition registers may hav
condition register number preceded by “cr” but isn’t necessary. The assembler a
expects a “cr” field for compare and branch instructions where, according to
architecture, cr0 is implied if a “cr” field is not given. DINK32 does not implement
implied cr0 functionality of the simplified mnemonics.

Examples:
4-18 Dink32 R12 User’s Manual

Commands
DINK32_603e >>as 60100+
0x00060100 0x85ffffc4 lwzu r15, 0xffc4(r31) rlmi
r00,r02,r05,0,0
0x00060104 0x00ffffa0 WORD 0x00ffffa0 lfd f0,0x0ec5(r1)
0x00060108 0xff0040ef fsel. f24, f00, f08, f03 rlwnm
r0,r13,r23,0x1,0xa
0x0006010c 0xfe4004ff fnmadd. f18, f00, f19, f00
0x00060110 0x00ffff01 WORD 0x00ffff01 loop: #branch label
0x00060110 0x00ffff01 BRANCH LABEL loop:
0x00060110 0x00ffff01 WORD 0x00ffff01 ori r26,r2,0xfff
0x00060114 0x00ffff00 WORD 0x00ffff00 lfd f00,0x0503(r0)
0x00060118 0xef0040fd fnmsubs. f24, f00, f03, f08 cmpw
cr3,r26,r0
0x0006011c 0x7f0000ff WORD 0x7f0000ff bne cr3,loop
0x00060120 0x22ffbf80 subfic r23, r31, 0xbf80 x

VERIFYING BRANCH LABELS.....

DONE VERIFYING BRANCH LABELS!
DINK32_603e >>st
Current list of DINK branch labels:
 KEYBOARD: 0x0
 get_char: 0x1e5e4
 write_char: 0x5fac
 TBaseInit: 0x39c4
 TBaseReadLower: 0x39e8
 TBaseReadUpper: 0x3a04
 CacheInhibit: 0x3a20
 InvEnL1Dcache: 0x3a40
 DisL1Dcache: 0x3a88
 InvEnL1Icache: 0x3aac
 DisL1Icache: 0x3b00
 BurstMode: 0x3bfc
 RamInCBk: 0x3c3c
 RamInWThru: 0x3c7c
 dink_loop: 0x5660
 dink_printf: 0x6368

Current list of USER branch labels:
 loop: 0x60110

DINK32_603e >>assemble 60300-60310
0x00060300 0x82ffff00 lwz r23, 0xff00(r31) fadd 1 2 3
0x00060304 0x00ffff00 WORD 0x00ffff00 stw 1 2
0x00060308 0xef0080ff fnmadds. f24, f00, f03, f16 sc
0x0006030c 0xff0000ff fnmadd. f24, f00, f03, f00 bdnz
0x60010
0x00060310 0x04ffff00 WORD 0x04ffff00 #Comment
0x00060310 0x04ffff00 WORD 0x04ffff00 nop
DINK32_603e >>

DINK32_MAX >>as 70010
Chapter 4. MDINK32/DINK32 Commands 4-19

Commands
0x00070010 0xff8000ff fnmadd. f28, f00, f03, f00 mfvscr v3
DINK32_MAX >>as 70014+
0x00070014 0xff0000ff fnmadd. f24, f00, f03, f00 mtvscr v12
0x00070018 0x00fbff00 WORD 0x00fbff00 vmhaddshs
v3,v19,v3,v31
0x0007001c 0x00ffff00 WORD 0x00ffff00 vsldoi
v30,v16,v17,7
0x00070020 0xff0000ff fnmadd. f24, f00, f03, f00 x
DINK32_MAX >>ds 70010+
0x00070010 0x10600604 mfvscr V3
0x00070014 0x10006644 mtvscr V12
0x00070018 0x10731fe0 vmhaddshs V3,V19,V3,V31
0x0007001c 0x13d089ec vsldoi V30,V16,V17,0x7
0x00070020 0xff0000ff fnmadd. f24, f00, f03, f00
4-20 Dink32 R12 User’s Manual

Commands

ete a
index

ode at
kpoint

lready
an be
 of 20
4.1.4 bkpt bp

set, delete, list breakpoints

bkpt

• bkpt address

• bkpt -d index

The bkpt command allows the user to set a breakpoint at a given address, del
breakpoint at a given index in the breakpoint list, and list the current breakpoints by
and address.

Breakpoints allow the user to run an application program and stop execution when c
the specified address is encountered. This command will set or delete only one brea
at a time, and must be repeated for each breakpoint.

Setting a breakpoint will not remove a breakpoint from an address if a breakpoint a
exists there. Deleting a breakpoint from an invalid index has no effect. Breakpoints c
set or deleted one at a time and all are displayed during a breakpoint list. A maximum
breakpoints can be set in the system.

Examples:

DINK32_750 >> bkpt 60100
Breakpoint set at 0x00060100

DINK32_750 >> bkpt
Current breakpoint list:
1. 0x00060100

DINK32_750 >> bkpt -d 1
Breakpoint deleted

DINK32_750 >> bkpt
Current Breakpoint List:
Chapter 4. MDINK32/DINK32 Commands 4-21

Commands
4.1.5 defalias da

define alias

The runalias, ra, command is the companion to this command. While these commands, da
and ra, are still available, the env command is more flexible.

• defalias

This command will allow the user to define an alias to a list of commands (separated by a
semicolon). Once the alias has been defined, runalias can be used instead of retyping the
list of commands. Only one alias may be set at a time, and using defalias a second time will
overwrite the previously aliased command list. Below is an example of using an alias to
single step and display registers.

Example:

DINK32_750 >> trace 2100
A Run Mode or Trace exception has occurred.
Current Instruction Pointer: 0x00002104 lwz r03, 0x0000(r02)

DINK32_750 >> defalias
Current alias definition:
New alias : tr +; rd r
Alias defined as : tr +; rd r

DINK32 will now single step and display the register set each time
runalias is entered.

DINK32_750 >> runalias
A Run Mode or Trace exception has occurred.
Current Instruction Pointer: 0x00002108 add r03, r00, r01
gpr00: 0x00000000 gpr01: 0x00060000
gpr02: 0x00000000 gpr03: 0x0002bc00
gpr04: 0x00000000 gpr05: 0x00000000
gpr06: 0x00000000 gpr07: 0x00000000
gpr08: 0x00000000 gpr09: 0x00000000
gpr10: 0x00000000 gpr11: 0x00000000
gpr12: 0x00000000 gpr13: 0x00000000
gpr14: 0x00000000 gpr15: 0x00000000
gpr16: 0x00000000 gpr17: 0x00000000
gpr18: 0x00000000 gpr19: 0x00000000
gpr20: 0x00000000 gpr21: 0x00000000
gpr22: 0x00000000 gpr23: 0x00000000
gpr24: 0x00000000 gpr25: 0x00000000
gpr26: 0x00000000 gpr27: 0x00000000
gpr28: 0x00000000 gpr29: 0x00000000
gpr30: 0x00000000 gpr31: 0x00000000
4-22 Dink32 R12 User’s Manual

Commands

 to that

es

 bytes

s.
4.1.6 devdisp dd

DINK32 Peripheral device display

dd,devdisp

• dd [device [-b|-h|-w] addr1-addr2]

The devdisp command displays the contents of device registers in a manner similar
of the memory display command.

• device Is the name of the device. If not entered display all known devic

• -b, -h, -w Set size of device accesses. If not specified, the default size is
for devices.

• addr1 Is the starting address to display.

• addr2 Is the optional ending address.

• The dd command with no parameters will display a list of all the known device

Example:

DINK32_ARTHUR >> dd
 Device Start End Sizes
 ======== ======== ======== =====
 mem 00000000 FFFFFFFF [BHW]
 nvram 00000000 00000FFF [B]
 i2c 00000000 0000007F [B]
 rtc 00000000 0000000D [B]
 rtcram 0000000E 000000FF [B]
 apc 00000040 00000048 [B]
 DINK32_ARTHUR >> dd nvram 40
 0x0040 14 3E 27 9C EE FA E9 C0 04 6B 2A 87 08 9C 66 7E
................
 0x0050 ...
 ...
 dd>x
DINK32_ARTHUR >>
Chapter 4. MDINK32/DINK32 Commands 4-23

Commands

ces

 bytes

dify

e. The
emory.

aults

e
4.1.7 devmod dm

DINK32 Peripheral device modify

devmod,dm

dm [device [-b|-h|-w] addr1-addr2]

The device modify command allows interactive modification of device data in registers
and/or indirect memory. The dd command operates similar to the mm command, with
some additional flexibility.

• device Is the name of the device. If not entered display all known devi

• -b, -h, -w Set size of device accesses. If not specified, the default size is
for devices.

• addr1 Is the starting address to display.

• addr2 Is the optional ending address or if not specified then display/mo
until user types x or ESC.

While examining data, the contents may be modified by entering a hexadecimal valu
value entered is truncated to the specified size and is then written to the device or m

When prompted for location, any of the following may be entered:

• <enter> go to the next location using the current selected direction (def
to forward)

• ’v’ set the direction to forward.

• ’̂ ’ set the direction to reverse.

• ’=’ set the direction to 0. dm will keep examining and modifying th
same location until 'v' or '^' is entered.

• hex a value to write.

• ’?’ help
 DINK32_ARTHUR >> dm nvram 40
 0x0040 : 14 ? <enter> -- skip
 0x0041 : 3E ? 47 -- new value
 0x0042 : 27 ? ^ -- go back
 0x0041 : 47 ? 48 -- right value
 0x0040 : 14 ? v -- go forward
 0x0041 : 48 ? =<enter>
 0x0041 : 48 ? <enter>
 0x0041 : 48 ? <enter>
 0x0041 : 4A ? <enter> -- erratic bit?

4-24 Dink32 R12 User’s Manual

Commands
4.1.8 devtest dev

DINK32 Peripheral device test <Kahlua only>

dev,devtest

• dev epic

• dev [+] [-r] i2c <addr> <-n> [<timeout>]

• dev [+] -w i2c <addr> <-n> <str> [<timeout>]

• dev [+] DMA [<type>] <src> <dest> [<chn>] [<n>]

• dev i2o <mode> [<bit>]

Perform a given I/O test on Kahlua.

DINK32_KAHLUA>> devtest -r i2c

0x40: FE FE FE FE 47 4A 4E 4F FE FE FE FE 47 4A 4E 4F
....GJMN....GJMN
Chapter 4. MDINK32/DINK32 Commands 4-25

Commands

t the
l as in

tinue
s “x”.

 each

with a
mory

bly. In
before
4.1.9 disassem ds

DINK32 mini-disassembler

• disassem address

• disassem start +

• disassem start - end

The mini-disassembler for the DINK32 system displays the contents of memory a
given address. The contents are shown in hexadecimal opcode format as wel
PowerPC assembly instruction format.

If the “plus” form is used, the command goes into interactive mode and will con
reading and disassembling until the end of memory is reached or until the user type

If the “range” form is used, the command will continue reading and disassembling for
inclusive address in the range specified.

Note that the above parameter forms can be combined by separating the forms
comma or white space. This will display multiple disassembled portions of the me
space with one command.

Branch labels entered during an assemble session are displayed during disassem
order for branch labels to be calculated correctly, branch labels must be entered
instructions refer to that label.

Examples:

DINK32_750 >> ds 60100
0x00060100 0x58402800 rlmi r00, r02, 0x05, 0x00, 0x00

DINK32_750 >> ds 60118-60120
0x00060118 0xc8000503 lfd f00, 0x0503(r00)
0x0006011c 0x243f002c dozi r01, r31, 0x002c
0x00060120 0x00000000 WORD 0x00000000

DINK32_750 >> ds 60100+
0x00060100 0x58402800 rlmi r00, r02, 0x05, 0x00, 0x00
0x00060104 0xc8010ec5 lfd f00, 0x0ec5(r01)
0x00060108 0x5da0b854 rlwnm r00, r13, r23, 0x01, 0x0a
0x0006010c 0x00000000 WORD 0x00000000
0x00060110 0x00000000 WORD 0x00000000
0x00060114 0x605affff ori r26, r02, 0xffff
0x00060118 0xc8000503 lfd f00, 0x0503(r00)
0x0006011c 0x243f002c dozi r01, r31, 0x002c
0x00060120 0x00000000 WORD 0x00000000
0x00060124 0x00000000 WORD 0x00000000
x to quit, anything else to continue >
4-26 Dink32 R12 User’s Manual

Commands

board
nd are
in the
lash

cords

ory,
must

t

ch

 lines

er is
4.1.10 download dl

download data from the host MDINK32 Compatible

RAM download Syntax:

• download -k (keyboard port - duart channel A)

• download -h (host port - duart channel B)

• download {-k|-h} [-q] [-fx] [-v] [-o offset]

FLASH download Syntax:

• download -fl [-e] -o address (download directly to flash memory)

The download command captures data from S-record files taken from either the key
or host serial ports. The S-record files can optionally be compressed on the host, a
automatically decompressed while received. The received S-record file is placed
memory locations specified by the input file (for RAM download) or as specified (for f
downloads).

There are two separate forms for RAM and FLASH downloads. Information on S-Re
can be found in the DINK32 User's Guide in Appendix D.

RAM download options:

• The "-k" option copies the data stream from the keyboard serial port into mem
while "-h" option copies data from the host serial port. One of these two options
be supplied.

• The "-q" option is quiet mode, no indication of download progress is supplied.

• The "-fx" option enables XON/XOFF (software) flow control for downloading a
higher speeds.

• The "-v" option verifies a previous download, printing an error message for ea
difference found.

• The "-o offset" option adds a hexadecimal offset to the address of the S-Record
to relocate code.

• The '-b' option uses 8-bit binary data in lieu of S-records.

FLASH download options:

• The “-fl” option indicates a load to FLASH memory.

• The “-e” option indicates to erase all of flash memory before the load.

• The -o address specifies the offset address, default is 0xfff00000.

Default download baud rate is 9600. Maximum baud rate on Excimer and Maxim
Chapter 4. MDINK32/DINK32 Commands 4-27

Commands
57600 and Yellowknife and Sandpoint is 38400.

See Section 4.1.36, “setbaud sb".

Examples:

DINK32_750 >> dl -k

Set Input Port: set to Keyboard Port
Download Complete.

...

Use the following example when upgrading DINK on Excimer
with a s-record from the PowerPC website:

MDINK32_603e >> dl -fl -o ffc00000
Offset: 0xffc00000
Writing new data to flash.
Line: 50

NOTE: The complete sequence for upgrading DINK on Excimer would be:
MDINK32_603e >> fw -e
Reboot the Excimer board
MDINK32_603e >> sb -k 57600
MDINK32_603e >> dl -fl -o ffc00000

MDINK32_603e >>
4-28 Dink32 R12 User’s Manual

Commands

mer
on't
sets.

cked:

rial

r to

lain'

,'

d

.
4.1.11 env env
Syntax: env [-c][-d][-s][var[=value]]

Description: This command displays or sets environment variables stored in the NVRAM
(if available). If no argument is given, the current settings are displayed. Note: quotes (")
are usually required.

The ENV command manipulates environment variables, which are of the form VAR=DEF
or VAR="def def def". Quotes are needed if non-alphanumeric characters are included.

• For YK/SP, NVRAM is used and preserved, and 4K is available.

• For Excimer and Maximer, the uppermost 1K of SRAM is used. Currently, Exci
and Maximer don't save/restore SRAM->Flash. Since Excimer and Maximer d
wipe the SRAM it can be somewhat useful since it will be preserved between re

Using ENV, the system can be configured on startup. The following variables are che

• IO -- sets I/O type and modes

— IO=COM1 Use standard COM port

— IO="COM1:[9600|19200|..." Use standard COM port and optionally set se
port.

— IO="PMC:[9600|19200|..." Use serial port on PMC8240/etc.

— IO=XIO Use VGA card in first slot with a VGA-class code.

— IO=XIO:USE=nn Use VGA card on slot #nn even if it doesn't appea
be a video card (old cards w/out CLASS codes).

• MEMOPT -- if defined, the equivalent of "meminfo -c -c" is run,which tunes
memory using SDRAM I2C info and bus speed.

• ALIAS -- stores last defined alias (da/ra).

• MDMODE -- if set to 1, use the dm/dd commands in place of the mm/md
commands. If set to 3, do that and also enable denser output for 'md'.

• RDMODE -- if set to 'q', 'quieten' the register display for SPR's. If set to 'e', 'exp
the fields of SPRs.

• TAUCAL -- saves/restores the TAU calibration field (32-bit ULONG).

• L2CACHE -- sets L2 cache parameters. Options are:

— L2CACHE={256K|512K|1M|2M} ',' {/1|/1.5|/2|/2.5|/3|/3.5} ',' [late] ',' [do] '
{0.5ns|1.0ns|1.5ns|2.0ns} ',' [wt] ',' [diff]

• BOOT -- forces DINK32 to jump to the specified address after initialization an
instead of jumping to the command processor.

— example: env BOOT=”ffe00000”

If any key is pressed on startup (recommendation is Backspace), the ENV is ignored
Chapter 4. MDINK32/DINK32 Commands 4-29

Commands

 yet.

 only.

".

sults.
ENV allows for multiple command aliases

Example:

ENV R="rd"
ENV X="tr; rd msr; md 90000-90100"

 You can enter ’r’ to do ’rd’ (or ’r r3’ to do ’rd r3’) or ’x’ to do all the above def’s. Aliases
cannot be nested. Note that the ENV does not distinguish between ENV vars and ALIAS
vars -- they’re lumped together.

ENV allows changing the prompt dynamically. If the string PROMPT is defined in the
ENV, it is expanded and displayed using the following rules:

• $d -- dink name, either DINK or MDINK

• $P -- formal processor name, e.g. "MPC7400"

• $p -- informal processor name, e.g. "MAX"

• $T -- current time, "12:34:56PM"

• $t -- TAU temperature, e.g. "26" if 26 deg. C or "26u" if not calibrated

• $! -- history index

• $_ -- CRLF

• All other characters are copied as-is.

Flags:

• -c Clear/Initialize the NVRAM.

• -d Delete named variable.

• -s Saves environment to permanent storage, used for excimer and maximer

Most of the SPR’s can suppress the verbose mode, see Section 4.1.32, “regdisp rd

Example:

This example sets the non verbose mode for certain commands.

DINK32_ARTHUR >>env -c
DINK32_ARTHUR >>env rdmode=e

After the non verbose mode is set, the following command gives non verbose re
Contrast this with the verbose display in Section 4.1.32, “regdisp rd".

DINK32_ARTHUR >>rd msr
MSR : 0x00003930
 POW=0 EE=0 PR=0 FP=1 ME=1 FE0=1 SE=0
 BE=0 FE1=1 IP=0 IR=1 DR=1 RI=0 LE=0
 TLB/GPR=0 VMX=0 PM=0
4-30 Dink32 R12 User’s Manual

Commands

 NVD
4.1.12 flash fl

flash memory commands; mdink32 limited compatibility

flash

This command will perform a variety of flash memory operations.

Syntax: fl -flags -o value -s sector number

Description: This command performs actions to the flash memory

• -dsi display sector information (dink32/mdink32)

• -e erase all of flash (dink32/mdink32)

• -cp copy MDINK from RAM to Flash (dink32 only)
Required Flags: -o <value> copy address in flash
Optional Flags: -e erase flash first

• -sp protect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

• -su unprotect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

• -se erase indicated sector (mdink32/dink32)
Required Flags: -n <value> sector number 0-18

For Version 12.1: -cp is not implemented.

Sector Protect/Unprotect commands require a 12V power supply. See AMD Bulletin,
Flash, Sector Protection, available on the www.amd.com web site.

Example:

DINK32_603e >>fl -se -n 6
Erasing sector 6

DINK32_603e >>fl -dsi
Display Sector Information 0.7 Excimer Rev 2 and prior
Description value
Manufacturer ID is 0x1, Device ID is 0x225b
Sector SA0 UNPROTECTED
Sector SA1 UNPROTECTED
Sector SA2 UNPROTECTED
Sector SA3 UNPROTECTED
Sector SA4 UNPROTECTED
Sector SA5 UNPROTECTED
Sector SA6 UNPROTECTED
Sector SA7 UNPROTECTED
Sector SA8 UNPROTECTED
Sector SA9 UNPROTECTED
Chapter 4. MDINK32/DINK32 Commands 4-31

Commands
Sector SA10 UNPROTECTED
Sector SA11 UNPROTECTED
Sector SA12 UNPROTECTED
Sector SA13 UNPROTECTED
Sector SA14 UNPROTECTED
Sector SA15 UNPROTECTED
Sector SA16 UNPROTECTED
Sector SA17 UNPROTECTED
Sector SA18 UNPROTECTED
4-32 Dink32 R12 User’s Manual

Commands

DE

 and
4.1.13 fupdate fu

FLASH update to arbitrary memory addresses.

fupdate, fu {-l|-h} [-eno] src_addr dest_addr length

Description: fupdate updates various flash devices for Sandpoint and Yellowknife
PCI-based boot FLASH devices, and local-bus ROMs on PMC cards. PPMC ROM
Initialization

Options:

• -l : program a local bus flash (on PPMC cards only). NOTE: The PROGMO
switch must be enabled.

• -h : program a host flash on the PCI bus (YK/SP systems).

• -e : erase flash, do not program

• -n : do not check manufacturer ID's

• -o : overwrite flash without erasing

• src_addr : address of data to copy to flash

• dest_addr: address of data to store flash data; typically FFF00000 for PCI ROM
FF000000 for PMC ROM (when in PROGMODE).

• length : length of data to copy (in hex!)

Typical local flash commands:

• fu -l 1000000 ff000000 100000

• fu -h 1000000 fff00000 80000

Examples

1. Update DINK:

dl -k -o 100000 -- download DINK to 100000
...
fu -h 100000 fff00000 80000 -- reprogram DINK with new DINK.

2. Program DINK and a linux loader in the 1MB PPMC flash:

fu -l 100000 ff700000 80000 -- erase & program DINK at
reset vector

dl -k -o 100000 -- download linux loader to 100000
...
fu -l -o 100000 ff600000 80000 -- program linux loader

 at lower addresses
env BOOT="ffe00000" -- setup autoboot

Note: Once the environment is set to boot from ffe00000, it is
Chapter 4. MDINK32/DINK32 Commands 4-33

Commands

int or
necessary to hold the backspace key at reset time to regain the
DINK32 command processor. Once DINK32 is in control the
environment for BOOT can be deleted with this command: env
-d BOOT, see 4.1.11, “env env"

Use the following example to store a program in the PCI-based ROM of a Sandpo
Yellowknife (for example, a DINK upgrade).

DINK32_750 >> dl -k -o 100000
Download from Keyboard Port
Offset Srecords by 0x00100000
 ...
Download Complete.

DINK32_750 >> fu -h 100000 fff00000 80000
YK/SP PCI Flash Programmer
Are you sure? Y
Check flash type: AMD Am29F040
Erasing flash : OK
Program flash : OK
Verifying flash : OK
DINK32_750 >>

Use the following example to copy DINK32 into a local-bus Flash on a PPMCcard:

DINK32_750 >> fu -l 100000 ff600000 80000
PPMC Local Flash Programmer\
Are you sure? Y
Check flash type: AMD Am29LV800BB
Erasing flash : OK
Program flash : OK
Verifying flash : OK
DINK32_750 >>
4-34 Dink32 R12 User’s Manual

Commands

sh
ss. (I.e.
4.1.14 fw fw -e

Specific FLASH download MDINK32 Only

fw –e [-o <flash address>]

This command copies the contents of the entire 512K of RAM to FLASH starting at flash
address 0xFFF00000. The parameter -e is required. The optional parameter –o <fla
address> can be used to specify a specific address to copy from ram to rom addre
replacing flash address 0xfff00000 with the flash address of the user’s choosing.

Examples:

MDINK32_603e >>fw -e
Chip erase set.
Erasing entire flash memory...
Entering verify erase loop ...
Flash erased!!!
Done erasing flash memory.
Copying 512K ram to flash address fff00000...
Chapter 4. MDINK32/DINK32 Commands 4-35

Commands

e “plus”
store)
break

. The
ill be
oint in

ce the
4.1.15 go go

execute user code MDINK32 Compatible

go address

go +

This command allows the user to execute user code starting at the given address. Th
form will allow execution at the address in the SRR0 (Machine Status Save / Re
register - bits 0-29. This is useful for continuing where a breakpoint or a user
(<ctrl>-c) had previously stopped execution.

A program exception occurs when a breakpoint or illegal opcode is encountered
breakpoint address will be displayed and the instruction at that address w
disassembled. Note: If a breakpoint is encountered, the user must clear the breakp
order for execution to continue.

When the user program begins execution, the stack pointer, r1, is set to 0x8fff0. Hen
user stack begins at 0x8fff0.

Examples:

DINK32_750 >> ds 181dc-181f8
0x000181dc 0x3c600000 addis r03, r00, 0x0000
0x000181e0 0x60631234 ori r03, r03, 0x1234
0x000181e4 0x3c800000 addis r04, r00, 0x0000
0x000181e8 0x60845678 ori r04, r04, 0x5678
0x000181ec 0x7c632214 add r03, r03, r04
0x000181f0 0x38841234 addi r04, r04, 0x1234
0x000181f4 0x7c032000 cmp 0, 0, r03, r04
0x000181f8 0x4182ffe4 bc 0x0c, 0x02, 0xffe4

DINK32_750 >> bkpt 181f4
breakpoint set at 0x000181f4

DINK32_750 >> go 181dc
A Program exception has occurred.
Breakpoint Encountered:
Current Instruction Pointer: 0x000181f4 cmp 0, 0, r03, r04

DINK32_750 >> go +
A Run Mode or Trace exception has occurred.
A Program exception has occurred.
Breakpoint Encountered:
Current Instruction Pointer: 0x000181f4 cmp 0, 0, r03, r04
4-36 Dink32 R12 User’s Manual

Commands
4.1.16 help he

help on DINK32 commands MDINK32 Compatible

help <command>

This provides information on the commands implemented by DINK32. Since MDINK32
only has a subset of commands, the help command displays different information.

Examples:

DINK32_KAHLUA >>help
Sandpoint/MPC8240 DINK COMMAND LIST
Command Mnemonic Command Mnemonic
======= ======== ======= ========
About... about, ab Assemble assemble, as
Benchmark benchmark, bm Breakpoint ops bkpt, bp
Define Alias defalias, da Device Display devdisp, dd
Device Modify devmod, dm Device Tests devtest, dev
Disassemble disassem, ds Download download, dl
Environment env Flash commands flash, fl
Flash update fu Go go
Help help, he History history,hist
Info info, in Log session log
Memory Compare memcomp, mc Memory Display memdisp, md
Memory Modify memod, mm Memory Fill memfill, mf
Memory Info meminfo, mi Memory Move memove, mv
Memory Search memsrch, ms Memory Test memtest, mt
Menu menu, me PCI Bus Probe pciprobe, ppr
PCI Slot Display pcidisp, pd PCI Reg Modify pcimod, pm
PCI Config Regs pciconf, pcf Register Display regdisp, rd
Register Modify regmod, rm Real-Time Clock time, rtc
Reset reset, rst Run Alias runalias, ra
Set Baud Rate setbaud, sb Set Input setinput, si
Show SPRs spr_name, sx Symbol table symtab, st
Tau tau Transparent Mode transpar, tm
Trace trace, tr . (repeat last command)

For additional details about a command, please type "help <mnemonic>"

DINK32_MPC603ev >>help
 Excimer DINK COMMAND LIST
Excimer DINK COMMAND LIST
Command Mnemonic Command Mnemonic
======= ======== ======= ========
About... about, ab Assemble assemble, as
Benchmark benchmark, bm Breakpoint ops bkpt, bp
Define Alias defalias, da Disassemble disassem, ds
Download download, dl Flash commands flash, fl
Go go Help help, he
History history,hist Info info, in
Log session log Memory Compare memcomp, mc
Memory Display memdisp, md Memory Modify memod, mm
Chapter 4. MDINK32/DINK32 Commands 4-37

Commands
Memory Fill memfill, mf Memory Info meminfo, mi
Memory Move memove, mv Memory Search memsrch, ms
Memory Test memtest, mt Menu menu, me
Register Display regdisp, rd Register Modify regmod, rm
Reset reset, rst Run Alias runalias, ra
Set Baud Rate setbaud, sb Set Input setinput, si
Show SPRs spr_name, sx Symbol table symtab, st
Tau tau Transparent Mode transpar, tm
Trace trace, tr . (repeat last command)
For additional details about a command, please type "help <mnemonic>"
DINK32_MPC603ev >>

MDINK
 MINIMUM DINK COMMAND LIST
Command Mnemonic
======= ========
About... about, ab
Download download, dl
Help help,he
Go go
Menu menu, me

DINK32_750 >> help go

Individual Commands

DINK32_MPC603ev >>help go
GO
==
Mnemonic: go
Syntax: go [<address>|+]
Description: This command allows the user to execute user code
starting at
 the specified address. Execution will continue until a
breakpoint or
 an exception occurs.
 If the "+" form is used, then execution will start at the address
 defined by the contents of bits 0-29 of SRR0.

 The user should terminate their code with an illegal opcode or
with a
 breakpoint. The value of dink_loop() is initially placed in
the User
 Programming Model link register. If you terminate your code
 with a blr to that location you will re-enter DINK. In the
process,
 however, you will perform the prolog of the dink_loop function
which
 will save registers (ex. lr) off onto the currently defined
stack (ie.
 the value in r1). This may be an unexpected side-effect.

 Note: If a breakpoint is encountered, the user must clear the
 breakpoint in order for execution to continue.
4-38 Dink32 R12 User’s Manual

Commands
DINK32_MPC603ev >>
Chapter 4. MDINK32/DINK32 Commands 4-39

Commands
4.1.17 Identify id
Mnemonic: identify, id

Syntax: id

Description: This command shows information about the PPMC card.

The ’id’ command stores board ID in the I2C EEPROM. Of particular interest is the
L2CACHE field, which is copied on reset. This allows cache settings to be associated with
a PPMC card instead of the Sandpoint motherboard.
4-40 Dink32 R12 User’s Manual

Commands

les the
ill be
m. On

1.36,
4.1.18 log log

Toggles logging

Only available on yellowknife and sandpoint.

• log

This command provides the capability to log a debug session. The command togg
logging function. When logging is enabled, all characters sent to the terminal w
echoed to the host port, the second com port, com2 (duart channel B) in the syste
Yellowknife, this will be the alternate com port to the terminal port. See Section 4.
“setbaud sb".

Example:

DINK32_750 >> log

You are enabling logging! After this message all input and output to
your terminal will be mirrored out to the host port. Now would be a
time to open an editor on the host and get into insert mode

DINK32_750 >> log
Logging disabled!
Chapter 4. MDINK32/DINK32 Commands 4-41

Commands
4.1.19 memcompare mc

Compare memory

• Syntax: mc <address> <address> <address>

Description: This command compares two blocks of memory.

Example:

mc 100000 100100c 200000

compares 100000 to 200000, 100004 to 200004, etc.
4-42 Dink32 R12 User’s Manual

Commands

y will
ed. In
yed on
 at the

user
 enters
ts of
r lines

the end

ending
ss was
 If the
uld be
4.1.20 memdisp md

display memory

• memdisp address

• memdisp start +

• memdisp start - end

This command displays data stored in the specified memory locations. The displa
always be aligned on a 16-byte boundary in which the address given will be includ
order to keep from saturating the screen, a maximum of four lines of data are displa
the screen, followed by a prompt. To continue viewing data, the user enters <return>
prompt. Multiple parameters may be entered.

If the \"+\" form is used, the command will continue to display blocks of memory if the
enters <return> at the prompts, until the end of memory is reached or until the user
an \"x\". If the two-address version is used, the command will display the conten
memory between and including each address specified in the range. If more than fou
of data are requested, the user can then enter an \"x\" at the prompt to quit before
of the display range.

The start address is normalized to the previous quad-word boundary. Likewise, the
address is normalized to the next quad-word boundary. For example, if the start addre
0x00000104 then the first memory address to be displayed would be 0x00000100.
end address was 0x00000104 then the last memory location to be displayed wo
0x0000010C.

Examples:
DINK32_750 >> memdisp 60100,60200
0x00060100 00000041 00000042 00000043 00000044
0x00060200 00000000 00000000 00000000 00000000

DINK32_750 >> memdisp 60100-60130
0x00060100 00000041 00000042 00000043 00000044
0x00060110 00000045 00000046 00000047 00000048
0x00060120 00000000 00000000 00000000 00000000
0x00060130 00000000 00000000 00000000 00000000

DINK32_750 >> memdisp 60260+
0x00060260 00000000 00000000 00000000 00000000
0x00060270 00000000 00000000 00000000 00000000
0x00060280 00000000 00000000 00000000 24002400
Chapter 4. MDINK32/DINK32 Commands 4-43

Commands
4.1.21 memfill mf

memory fill

memfill start end data

The range of memory spanning from the starting address to the ending address is filled in
with the given 32-bit data pattern. The fill is inclusive of the end point.

Examples:

DINK32_750 >> memfill 60100 60200 89898989
DINK32_750 >> memfill 60140 6015c 00000000
DINK32_750 >> memdisp 60120-60160
0x00060120 89898989 89898989 89898989 89898989
0x00060130 89898989 89898989 89898989 89898989
0x00060140 00000000 00000000 00000000 00000000
0x00060150 00000000 00000000 00000000 00000000
0x00060160 89898989 89898989 89898989 89898989

DINK32_750 >> memfill 60144 60144 44444444
DINK32_750 >> memdisp 60120-60160
0x00060120 89898989 89898989 89898989 89898989
0x00060130 89898989 89898989 89898989 89898989
0x00060140 00000000 44444444 00000000 00000000
0x00060150 00000000 00000000 00000000 00000000
0x00060160 89898989 89898989 89898989 89898989
4-44 Dink32 R12 User’s Manual

Commands

red
le is
4.1.22 meminfo mi
mi [-s][-c][-c]

 mi displays information about the memory settings. If no option is selected, the current
memory controller settings are decoded.

Options (for SODIMM/DIMM-based systems only):

• -s -- show I2C ROM info.

• -c -- compare I2C info to memory controller settings for errors. If -c is ente
a second time, the settings will be corrected. Setting the MEMOPT ENV variab
equivalent to entering mi -c -c at startup.

Example:

DINK32_ARTHUR >>mi
Memory settings:
 ROM Speed: 30 ns (2 clocks)
 SDRAM Bank 0: Disabled
 SDRAM Bank 1: Disabled
 SDRAM Bank 2: Enabled
 Range: [00000000 -> 000fffff] 1 MBytes
 Speed: 0/1/1/1
 SDRAM Bank 3: Enabled
 Range: [08000000 -> 080fffff] 1 MBytes
 Speed: 0/1/1/1
 SDRAM Bank 4: Enabled
 Range: [08400000 -> 094fffff] 17 MBytes
 Speed: 0/1/1/1
 SDRAM Bank 5: Enabled
 Range: [00000000 -> 000fffff] 1 MBytes
 Speed: 0/1/1/1
 SDRAM Bank 6: Enabled
 Range: [00000000 -> 000fffff] 1 MBytes
 Speed: 0/1/1/1
 SDRAM Bank 7: Disabled
Chapter 4. MDINK32/DINK32 Commands 4-45

Commands

iven
sidered

he end

n the
n type
4.1.23 memod mm

memory modify

• memod address

• memod start +

• memod start - end

Memory modify is an interactive command. It will display the contents of the g
memory address and allow the user to change the value stored there. Memory is con
to be a contiguous set of 32-bit integers.

The “plus” form causes the command to start at a given address and continue until t
of memory or until the user types “x” to exit the memory modify loop.

The “range” form allows modifications for the inclusive range from start to end. Whe
end address is reached the memory modify loop is automatically exited. The user ca
“x” at any time to exit the memory modify loop.

• -b for byte

• - h for halfword

• -w for word (default))

Examples:

DINK32_750 >> memod 60100
0x00060100 : 0x89898989 : ? 44444444

DINK32_750 >> memod -b 60100
0x00060100 : 0x44444444 : ? 66

DINK32_750 >> memod -h 60100
0x00060100 : 0x66444444 : ? 3333

DINK32_750 >> memod -w 60100
0x00060100 : 0x33334444 : ? 22222222

DINK32_750 >> memod 60110-60118
0x00060110 : 0x89898989 : ? 11111111
0x00060114 : 0x89898989 : ? 22222222
0x00060118 : 0x89898989 : ? 33333333

DINK32_750 >> memod 60200+
0x00060200 : 0x89898989 : ? 12341234
0x00060204 : 0x00000000 : ? 12341234
0x00060208 : 0x00000000 : ? x
4-46 Dink32 R12 User’s Manual

Commands

t two
mand

two
4.1.24 memove mv

memory move

• memove <start addr> <end addrs> <dest addr>

This command copies data from a block of memory, bounded inclusively by the firs
addresses, to a block of memory starting at the third address. The result of this com
will be two identical blocks of memory. If the third address falls between the first
addresses, an error message is returned and memory will not be modified.

Examples:

DINK32_750 >> memfill 60100 60110 ffffffff
DINK32_750 >> memdisp 60100-60150
0x00060100 ffffffff ffffffff ffffffff ffffffff
0x00060110 ffffffff 00000000 00000000 00000000
0x00060120 00000000 00000000 00000000 00000000
0x00060130 00000000 00000000 00000000 00000000
0x00060140 00000000 00000000 00000000 00000000
0x00060150 00000000 00000000 00000000 00000000

DINK32_750 >> memove 60100 60110 60140
DINK32_750 >> memdisp 60100-60150
0x00060100 ffffffff ffffffff ffffffff ffffffff
0x00060110 ffffffff 00000000 00000000 00000000
0x00060120 00000000 00000000 00000000 00000000
0x00060130 00000000 00000000 00000000 00000000
0x00060140 ffffffff ffffffff ffffffff ffffffff
0x00060150 ffffffff 00000000 00000000 00000000
Chapter 4. MDINK32/DINK32 Commands 4-47

Commands
4.1.25 memsrch ms

memory search

ms <address> <address> <data>

This command searches for a 32-bit data pattern in the inclusive block specified by the
range of the two addresses. If the second address is less than the first address, an error
message is returned and no search is performed. If the pattern is found, the addresses of
matching data are printed to the screen. The command,

ms 50100 50200 fff01234
searches for the data pattern "fff01234" in memory locations 0x50100 to 0x50200
inclusive, and prints the matching addresses.

Example:

DINK32_603e >>md 60100-60120
0x00060100 10ff7f00 00ffff00 ff2023ff ff0402ff
#.....
0x00060110 00ffff00 00ffff00 ff5008ff ff1002ff
.........P......
0x00060120 00efef00 00ffff00 ff0100ff ff0030ff
..............0.

DINK32_603e >>ms 60100 60120 ff5008ff
 0x00060118
4-48 Dink32 R12 User’s Manual

Commands

evice

ices
e

ses.
t

m all
est is

und.

dding
4.1.26 memtest mt

memory test

• mt [-d dev][-b|-h|-w][-l loop][-t][-h][-a][-q] addr1-addr2

The memtest command performs various memory tests on local memory or d
registers. The basic format is:

 mt [-d dev][-b|-h|-w][-l loop][-t][-h][-a][-q] addr1-addr2

• -d device Test the indicated device instead of memory. Use the "dm"
command to get a list of devices. NOTE: testing non-volatile I2C EEPROM dev
can destroy valuable information as well as reduce the life expectancy of thos
devices.

• -b, -h, -w Test memory or device using byte, half-word or word acces
Memory can be tested in any size, while devices may be limited to bytes. If no
specified, the default size is word for memory and bytes for devices.

• -l loop-cnt Specifies the number of times the memory test should perfor
tests. If not specified, each test is performed once, while if '0’ is specified, the t
run forever.

• -x If specified, the testing halts immediately when any error is fo
This is useful for extended passes to trap on any error.

• -q Perform only a quick test.

• -a Perform all defined memory tests (can be slow).

• -n list Perform only specified memory tests. Tests are selected by a
one or more of the following letters to "list":

— -0 : walking 0's test (non-destructive, slow)

— -1 : walking 1's test (non-destructive, slow)

— -A : address=data test (destructive)

— -Q : quick pattern test (non-destructive)

— -R : random pattern test (non-destructive)

— -S : write sensitivity test (destructive, slow)

• -t Show elapsed time (only on systems with a real-time clock).
Chapter 4. MDINK32/DINK32 Commands 4-49

Commands

he
-w
 safe
• addr1-addr2 Specifies the starting and ending address, respectively. T
addresses must be aligned to the size of the access (as specified by the-b/-h/
option) Note: be careful not to test memory regions used by DINK. 0x90000 is a
starting point for DINK 11.0.2 or earlier.

Examples:

DINK32_ARTHUR >>mt -q 90000-1fffffc
 This quickly tests the default
32MB SDRAM DIMM
 on Yellowknife/Sandpoint systems.

DINK32_ARTHUR >>mt -q 90000-1fffffc
 PASS 1:
 Quick Test..PASS
Completed tests: No errors.

DINK32_ARTHUR >> mt -b -a -l 0 -x 90000-1ffffff
Use all defined test to test 32MB of memory, using only byte
accesses. Repeat the test forever unless an error occurs.

DINK32_ARTHUR >>mt -b -a -l 0 -x 90000-1fffff
 PASS 1:
 Quick Test..PASS
 Random Pattern Test...PASS
 Walking 1’s Test..PASS
 Walking 0’s Test..PASS
 Address March Test..PASS
 Write Sensitivity Test......................................PASS

DINK32_ARTHUR >> mt -n S -t 90000-1fffff
Test 32MB using only the write sensitivity test, and report the
elapsed time.

DINK32_ARTHUR >>mt -t -n S 90000-A0000
 PASS 1:
 Write Sensitivity Test......................................PASS
Completed tests: No errors.
Elapsed time: 0:00:16
DINK32_ARTHUR >>
4-50 Dink32 R12 User’s Manual

Commands

tation
4.1.27 menu me

show list of DINK32 commands MDINK32 Compatible

menu (same as “help”)

This command will list all of the commands that are available in the current implemen
of DINK32.

Examples:

DINK32_ARTHUR >>menu
 Excimer DINK COMMAND LIST
Command Mnemonic Command Mnemonic
======= ======== ======= ========
About... about, ab Assemble assemble, as
Benchmark benchmark, bm Breakpoint ops bkpt, bp
Define Alias defalias, da Disassemble disassem, ds
Download download, dl Flash commands flash, fl
Go go Help help, he
History history,hist Info info, in
Log session log Memory Display memdisp, md
Memory Modify memod, mm Memory Fill memfill, mf
Memory Info meminfo, mi Memory Move memove, mv
Memory Search memsrch, ms Memory Test memtest, mt
Menu menu, me Register Display regdisp, rd
Register Modify regmod, rm Reset reset, rst
Run Alias runalias, ra Set Baud Rate setbaud, sb
Set Input setinput, si Show SPRs spr_name, sx
Symbol table symtab, st Tau tau
Transparent Mode transpar, tm Trace trace, tr
. (repeat last command)

For additional details about a command, please type "help <mnemonic>"

MDINK32_ARTHUR >>menu
 MINIMUM DINK COMMAND LIST
Command Mnemonic
======= ========
About... about, ab
Download download, dl
Flash ram to rom fw -e
Flash display fl -dsi
Help help,he
Go go
Menu menu, me

For additional details about a command, please type "help <mnemonic>"
Chapter 4. MDINK32/DINK32 Commands 4-51

Commands
4.1.28 pciconf pcf

pci probe command (on systems with a PCI bus)

pciconf <devNum>

This command displays 26 common PCI configuration registers, and 16 additional device
specific registers of a PCI device. The devNum depends on which PCI slot the device is
attached to, and it can be found by executing the ppr (PCI Device Probe) command.

Example:

DINK32_750 >> ppr
devNo PCI ADR. DEVICE ID VENDOR ID
===== ======== ========= =========
11 0x80005800 0x0565 0x10ad

DINK32_750 >> pcf 11
ADDR. VALUE DESCRIPTION
===== ===== ===========
0x00 0x10ad Vendor ID
0x02 0x0565 Device ID
0x04 0x0007 PCI command
0x06 0x0200 PCI status
0x08 0x04 Revision ID
0x09 0x00 Standard Programming Interface
0x0a 0x01 Subclass code
0x0b 0x06 Class code
0x0c 0x00 Cache line size
0x0d 0x00 Latency timer
0x0e 0x80 Header type
0x0f 0x00 BIST control
0x10 0x00000000 Base Address Register 0
0x14 0x00000000 Base Address Register 1
0x18 0x00000000 Base Address Register 2
0x1c 0x00000000 Base Address Register 3
0x20 0x00000000 Base Address Register 4
0x24 0x00000000 Base Address Register 5
0x28 0x00000000 Cardbus CIS Pointer
0x2c 0x0000 Subsystem Vendor ID
0x2e 0x0000 Subsystem ID
0x30 0x00000000 Expansion ROM Base Address
0x3c 0x00 Interrupt line
0x3d 0x00 Interrupt pin
0x3e 0x00 MIN_GNT
Type <return> to continue or "x" to quit >>
4-52 Dink32 R12 User’s Manual

Commands
4.1.29 pcidisp pd

pci display (on systems with a PCI bus)

pcidisp <devNum> <regNum>

This command reads a configuration register (regNum) of a PCI device (devNum). The
devNum depends on the PCI slot the device)is attached, and it can be found by executing
the ppr (PCI Device Probe) command..

Example:

DINK32_750 >> pcidisp 11 10

0x10 0x12345678 Base Address Register 0
Chapter 4. MDINK32/DINK32 Commands 4-53

Commands
4.1.30 pcimod pm

pci modify (on systems with a PCI bus)

pcimod <devNum> <regNum>

This command is used to modify the content of a configuration register (regNum) of a PCI
device (devNum). The DevNum depends on the PCI slot the device is attached to, and it
can be found by executing the ppr (PCI Device Probe) command. This command first
displays the current value of the desired register, then asks the user to enter the new value.

This command does not return an error if the register requested is a read-only register.

Example:

DINK32_750 >> pcimod 11 10
0x10 0x00000000 Base Address Register 0
New Value? 12345678

DINK32_750 >> pcidisp 11 10
0x10 0x12345678 Base Address Register 0
4-54 Dink32 R12 User’s Manual

Commands
4.1.31 pciprobe ppr

pci probe command (on systems with a PCI bus; non-excimer build)

pciprobe

This command scans all legal PCI device numbers (from 10 to 31) and detects whether any
device is attached to them. If a PCI device is found, the following information is displayed:

Device number, PCI address, Device Id and Vendor Id.

Example:

DINK32_750 >> pciprobe

Dev # PCI ADDR DEVICE ID VENDOR ID CLASS
===== ========== ========= ========= =================
 11 0x80005800 0x0565 0x10ad Bridge Interface
 12 0x80006000 (cannot probe self)
 15 0x80007800 0x2000 0x1022 Network Interface
Chapter 4. MDINK32/DINK32 Commands 4-55

Commands

 user
ers or

notes
purpose
mber.

ister
tents

cial
pecial
lly.

r white
and.
o if an
g it is
4.1.32 regdisp rd

display registers

Syntax:
rd[-v][-e][r|rx|rx+|rx-ry|f|fx|fx+|fx-fy|sx|spr_name|northbridge|nb|mpc106|mpc107|mpc82
40]

• regdisp r - entire general register family

• regdisp rx - one general purpose register

• regdisp rx+ - from rx to r31

• regdisp rx-ry - from rx to ry

• regdisp f - entire floating point family

• regdisp fx - one floating point register

• regdisp fx+ - from fx to f31

• regdisp fx-fy - from fx to fy

• regdisp SPR by name- view spr by name, such as hid0, contents.

• regdisp sx - one special purpose register

• regdisp vx - one altivec vector register

• regdisp v+ - all altivec vector registers

• regdisp -v - verbose display, only valid if env -c, env rdmode=e is set.

This will display the contents of the specified registers. This command offers the
several options for viewing the registers. The whole family of general purpose regist
floating point registers can be viewed by typing “regdisp r” or “regdisp f” respectively. A
single register can be viewed by specifying rx, fx, or sx, where the first character de
the register family and the second character denotes the register number. Special
registers may be selected by their standard abbreviations as well as their register nu

The “plus” form displays the contents of the register family starting with the given reg
up to and including the last register in that family. The “range” form displays the con
of the registers from rx to ry or from fx to fy.

Note that the “entire family”, “plus”, and “range” forms are not available in the spe
purpose register family. This is due to the architectural design feature in which the s
purpose registers all have unique register numbers and are not numbered sequentia

The above parameter forms can be combined by separating them with a comma o
space. This will display multiple registers in different register families with one comm
Note that the register display is aligned on an even-numbered register boundary, s
even numbered register needs to be displayed, the odd-numbered register followin
4-56 Dink32 R12 User’s Manual

Commands

M3

x:
also displayed.

Most of the SPRs can suppress the verbose mode. This is still the default for compatibility
purposes. If suppressed you can get verbose mode by with the following commands,
rd -v and you can do rd -e to get the fields explained (where possible). Not all SPRs
are quietened, just the most interesting ones. The 601 registers are not suppressed. To
enable quiet mode use these commands: env -c, env rdmode=e, see Section 4.1.11,
“env env".

Verbosity is suppressed for:

• XER SDR1 CR IABR PMC4 LR SRR0 FPSCR MMCR0 SIA

• CTR SRR1 MSR PMC1 THRM2 DSISR SPRGx SRx PMC2 THR

• DAR EAR HID1 MMCR1 THRM1 DEC PVR PMC3 ICTC

• L2CR USIA HASH1 HID1 DBATxU

• UPMC2 UMMCR1 HASH2 SDA DBATxL

• UPMC3 UMMCR0 IMISS DABR TBU

• UPMC4 DMISS ICMP IBATxU TBL

• UPMC1 DCMP RPA IBATxL MSSCR0

• MSSCR1 UBAMR PIR UMMCR2

• VRSAVE VSCR MMCR2 BAMR

Field descriptions are interpreted for:

• DBATxU DBATxL SRx PVR IBATxU IBATxL HID1 L2CR

• CR FPSCR MSR IABR THRM1 THRM2 THRM3 L2CR DABR MPC10
PICR1/A8 and PICR2/AC

Examples:

DINK32_750 >> regdisp r1-r2,f4-f6,hid0
gpr00: 0x00000000 gpr01: 0x00060000
gpr02: 0x00000000 gpr03: 0x000068ac
fpr04: 0x0000000000000000 fpr05: 0x0000000000000000
fpr06: 0x0000000000000000 fpr07: 0x0000000000000000

DINK32_750> regdisp hid0
Hardware Implementation Dependent 0

hid0 : 0x80010080
10000000000000010000000010000000
Chapter 4. MDINK32/DINK32 Commands 4-57

Commands
+............................... === master checkstop enable
+.............................. === microcode selftest checkstop
latch
+............................. === checkstop following a machine
check
+............................ === multi-side hit in the tlb
+........................... === multi-side hit in cache directory
+.......................... === sequencer hang
+......................... === dispatch time-out
+........................ === bus address parity error
+....................... === bus data parity error
+...................... === cache parity error
+..................... === invalid microcode instruction
+.................... === pio bus protocol error
+++................. === reserved
+++++++++++++++.. === checkstop enables
+. === error in main cache (in array init)
+ === reserved

DINK32_750 >> regdisp r1 f2 r3 f4 r8 s5
gpr00: 0x00000000 gpr01: 0x00060000
fpr02: 0x0000000000000000 fpr03: 0x0200feed010cab00
gpr02: 0x00000000 gpr03: 0x000068ac
fpr04: 0x0000000000000000 fpr05: 0x0000000000000000
gpr08: 0x00000000 gpr09: 0x00000000

DINK32_750 >> regdisp r23+
gpr22: 0x2cab4dad gpr23: 0x00000000
gpr24: 0x00000000 gpr25: 0x00000000
gpr26: 0x00000000 gpr27: 0x00700007
gpr28: 0x00000000 gpr29: 0x00000000
gpr30: 0x00face00 gpr31: 0x00000000

DINK32_MAX >>rd v2
vr 2: 0x00000000 00000000 00000000 00abcdef

DINK32_MAX >>rm v2
vr 2: 0x00000000 00000000 00000000 00abcdef : ? 12345678

DINK32_MAX >>rd v2
vr 2: 0x00000000 00000000 00000000 12345678

DINK32_MAX >>rd v
vr 0: 0xffffffff ffffffff ffffffff ffffffff
vr 1: 0xffffffff ffffffff ffffffff ffffffff
vr 2: 0x00000000 00000000 00123456 78abcdef
...
vr 29: 0xffffffff ffffffff ffffffff ffffffff
vr 30: 0xffffffff ffffffff ffffffff ffffffff
vr 31: 0x00000000 12345678 abcdef00 87654321

This example contrasts the verbose mode versus the non verbose mode of display. See the
command env.
4-58 Dink32 R12 User’s Manual

Commands
DINK32_ARTHUR >>rd msr
MSR : 0x00003930
 POW=0 EE=0 PR=0 FP=1 ME=1 FE0=1 SE=0
 BE=0 FE1=1 IP=0 IR=1 DR=1 RI=0 LE=0
 TLB/GPR=0 VMX=0 PM=0

DINK32_ARTHUR >>rd -v msr
Machine State Register
--

MSR : 0x00003930
00000000000000000011100100110000
+++++++++++++................... === reserved
 +.................. === activates power management
 +................. === tlb gpr overlay enable
 +................ === reserved
 +............... === external interrupt enable
 +.............. === privilege level
 +............. === floating-point available
 +............ === machine check enable
 +........... === floating point exception point 0
 +.......... === single-step trace enable
 +......... === reserved
 +........ === floating point exception point 1
 +....... === reserved
 +...... === exception prefix
 +..... === instruction address translation
 +.... === data address translation
 +... === reserved
 +.. === performance monitor marked mode
 +. === RESET or MC exception recoverable
 + === little endian mode enable

DINK32_ARTHUR >>
Chapter 4. MDINK32/DINK32 Commands 4-59

Commands

entire
cified
e data
ne
r the
, the
ill do

and not
byte,

".
4.1.33 regmod rm

modify registers

Syntax:
rm[-v][-e][r|rx|rx+|rx-ry|f|fx|fx+|fx-fy|sx|spr_name|northbridge|nb|mpc106|mpc107|mpc82
40]

• regmod r - entire general register family

• regmod rx - one general purpose register

• regmod rx+ - from rx to r31

• regmod rx-ry - from rx to ry

• regmod f - entire floating point family

• regmod fx - one floating point register

• regmod fx+ - from fx to f31

• regmod fx-fy - from fx to fy

• regmod SPR by name- view spr by name, such as hid0, contents.

• regmod sx - one special purpose register

• regmod vx - one altivec vector register

• regmod v+ - all altivec vector registers

• regmod -v - verbose display, only valid if env -c, env rdmode=e is set.

This command modifies the contents of the specified registers. r, f will access the
general purpose or floating point family; rx, fx, sx, or spr_name will access the spe
register. Multiple parameters may be entered. The user can enter <return> to leav
unmodified, or an \"x\" to quit. If the \"+\" form is used, the command will display o
register at a time and prompt the user for a new value. It will continue to do this fo
entire family starting with the specified register. If the two-address version is used
command will display one register at a time and prompt the user for a new value. It w
this for all the registers specified in the range.

Note that special purpose, and mpc106 registers can only be accessed individually
as a family or with the \"+\" or range forms. mpc106 supports -b, -h, -w options for
halfword, and word access.

Most of the SPR’s can suppress the verbose mode, see Section 4.1.32, “regdisp rd

Examples:

DINK32_603e >>rm r6
gpr06 = 0x00000000 : ? 12345678
4-60 Dink32 R12 User’s Manual

Commands
DINK32_603e >>rd r6
gpr06: 0x12345678 gpr07: 0x00000000

DINK32_603e >>rm mpc106 70
ADDR. VALUE DESCRIPTION
===== ===== ===========
0x70 0x0000 Power management config. 1
new value ? 1234

DINK32_603e >>rd mpc106 70
ADDR. VALUE DESCRIPTION
===== ===== ===========
0x70 0x1234 Power management config. 1

DINK32_603e >> rm f4-f7, s8
"displays the contents of floating point register 4 and prompts the
user for new data, then increments through registers 5-7. Then the
contents of s8 are displayed and can be modif ied.”

DINK32_603e >> rm mpc106 -h 0xaa
" sets the contents of the mpc106 regis ter in hal fword start ing at
of fset 0xaa.”
Chapter 4. MDINK32/DINK32 Commands 4-61

Commands

essed
4.1.34 rtc rtc

modify/display real time clock <yellowknife and sandpoint only>

rtc [-s][-w]

The rtc command allows setting or displaying the real-time clock available on the
Yellowknife or Sandpoint systems.

• -s Sets the clock; you are prompted for the date and time.

• -w Watches the clock. The date and time are repeated until a key is pr
on the keyboard.

 If no option is given, the current date and time are displayed.

Example:

DINK32_KAHLUA >>rtc
2000/00/14 03:38:14
DINK32_KAHLUA >>rtc -s
Year : 99
Month : 06
Day : 21
Hour : 11
Minute : 48
Second : 00
Set to: 1999/06/21 11:48:00
1999/06/21 11:48:00
DINK32_KAHLUA >>
4-62 Dink32 R12 User’s Manual

Commands
4.1.35 runalias ra

run alias

runalias

This instruction will read in the string which the user has defined as an alias. Then, the
commands in this string will be executed sequentially. Also see the da and env commands.

Example:

DINK32_750 >> runalias

The runalias command can also be embedded within a command line. For
example, if the alias string has previously been defined as
tr +; rd r

Typing the command:

DINK32_750 >> log; trace 2100; runalias; log
is identical to typing

DINK32_750 >> log; trace 2100; tr +; rd r; log
See defalias for a complete example.
Chapter 4. MDINK32/DINK32 Commands 4-63

Commands

ort (-k)
te
te for

l",

al
s

 One
and,

tly.
4.1.36 setbaud sb

displays or changes the speed of the serial port <mdink32 compatible>

• setbaud [-h | -k]

• setbaud [-h | –k] rate

This command sets the baud rate for the host serial port (-h) or the keyboard serial p
by specifying the appropriate flag followed by a valid ra
(2400,4800,9600,19200,38400,57600). If only a flag is specified, the current baud ra
that serial port is returned.

• Example: "sb -h" would return the current baud rate for the host serial port.

• Example: "sb -k 9600" would set the host serial port baud rate to 9600.

4.1.36.1 Host versus Keyboard.
Used by log, sb,dl, and tr commands. See Section 4.1.10, “download d
Section 4.1.18, “log log", and Section 4.1.39, “transpar tm".

• The keyboard serial port (-k) indicates serial port com1, which is used for norm
communication between the terminal emulator and the evaluation board. Thusb
-k and dl -k indicate to use the current serial port. Thus for, dl -k, use the
terminal emulator, transfer send text file, feature on the terminal
emulator connected to com1.

• The host serial port (-h) indicates serial port com2, which is not normally used.
can connect another terminal emulator to this serial port and with the dl -h comm
download a file. This port is only available with the Sandpoint and Yellowknife
platforms.

NOTES:

• The maximum baud rate on the Yellowknife and Sandpoint platform is 38400.

• The Excimer and Maximer platform will not return the current baud rate correc

• The default baud rate on all platforms is 9600.

Examples:

MDINK32_603e >>setbaud -k 57600

 Baud rate changing to 57600. . .BØ

<NOTE: user must then change the baud rate on the terminal to
correspond to 57600>
4-64 Dink32 R12 User’s Manual

Commands
MDINK32_603e >>
Chapter 4. MDINK32/DINK32 Commands 4-65

Commands

 their
tion is to
cannot
ddress
4.1.37 symtab st

displays DINK32 symbol table information

• symtab -c

• symtab -d

This command shows selected DINK symbols and user defined symbols and
associated addresses. User symbols can be defined by the as command. The -c op
clear all user symbols. The -d option is to delete a single user symbol. The user
delete or clear DINK's symbols. The symbols in the table can be used as the a
(@symbol) of the branch instruction while executing the as command.

Examples:

DINK32_603e >>as 60000+
0x00060000 0xff0000ef fsel. f24, f00, f00, f03 br1:xor
r1,r2,r3
0x00060000 0xff0000ef BRANCH LABEL br1:
0x00060000 0xff0000ef fsel. f24, f00, f00, f03 xor r3,r4,r5
0x00060004 0xffc037fc fnmsub f30, f00, f31, f06 br2:xor
r1,r5,r6
0x00060004 0xffc037fc BRANCH LABEL br2:
0x00060004 0xffc037fc fnmsub f30, f00, f31, f06 x

VERIFYING BRANCH LABELS.....

DONE VERIFYING BRANCH LABELS!
DINK32_603e >>ds 60000
0x00060000 0x7c832a78 BRANCH LABEL br1:
0x00060000 0x7c832a78 xor r03, r04, r05
DINK32_603e >>as 60100
0x00060100 0x85ffffc4 lwzu r15, 0xffc4(r31) br3:xor
r5,r6,r7
0x00060100 0x85ffffc4 BRANCH LABEL br3:
0x00060100 0x85ffffc4 lwzu r15, 0xffc4(r31) x

VERIFYING BRANCH LABELS.....

DONE VERIFYING BRANCH LABELS!
DINK32_603e >>st
Current list of DINK branch labels:
 KEYBOARD: 0x0
 get_char: 0x1e5e4
 write_char: 0x5fac
 TBaseInit: 0x39c4
 TBaseReadLower: 0x39e8
 TBaseReadUpper: 0x3a04
 CacheInhibit: 0x3a20
 InvEnL1Dcache: 0x3a40
 DisL1Dcache: 0x3a88
4-66 Dink32 R12 User’s Manual

Commands
 InvEnL1Icache: 0x3aac
 DisL1Icache: 0x3b00
 BurstMode: 0x3bfc
 RamInCBk: 0x3c3c
 RamInWThru: 0x3c7c
 dink_loop: 0x5660
 dink_printf: 0x6368

Current list of USER branch labels:
 br1: 0x60000
 br2: 0x60004
 br3: 0x60100
DINK32_603e >>st -d br2
DINK32_603e >>st
Current list of DINK branch labels:
 KEYBOARD: 0x0
 get_char: 0x1e5e4
 write_char: 0x5fac
 TBaseInit: 0x39c4
 TBaseReadLower: 0x39e8
 TBaseReadUpper: 0x3a04
 CacheInhibit: 0x3a20
 InvEnL1Dcache: 0x3a40
 DisL1Dcache: 0x3a88
 InvEnL1Icache: 0x3aac
 DisL1Icache: 0x3b00
 BurstMode: 0x3bfc
 RamInCBk: 0x3c3c
 RamInWThru: 0x3c7c
 dink_loop: 0x5660
 dink_printf: 0x6368

Current list of USER branch labels:
 br1: 0x60000
 br3: 0x60100
DINK32_603e >>st -c
DINK32_603e >>st
Current list of DINK branch labels:
 KEYBOARD: 0x0
 get_char: 0x1e5e4
 write_char: 0x5fac
 TBaseInit: 0x39c4
 TBaseReadLower: 0x39e8
 TBaseReadUpper: 0x3a04
 CacheInhibit: 0x3a20
 InvEnL1Dcache: 0x3a40
 DisL1Dcache: 0x3a88
 InvEnL1Icache: 0x3aac
 DisL1Icache: 0x3b00
 BurstMode: 0x3bfc
 RamInCBk: 0x3c3c
 RamInWThru: 0x3c7c
 dink_loop: 0x5660
 dink_printf: 0x6368
Chapter 4. MDINK32/DINK32 Commands 4-67

Commands
Current list of USER branch labels:
DINK32_603e >>
4-68 Dink32 R12 User’s Manual

Commands

NV
4.1.38 tau tau

TAU Thermal Assist Unit CONTROL

tau [-c cal][-w][-fh]

Description: This command displays or calibrates the TAU (Thermal Assist Unit). If no
option is entered, the current temperature is displayed (with or without calibration). TAU
calibration values are always saved in the environment variable TAUCAL (if ENV storage
is available).

Flags:

• -c Calibrate the TAU to the actual temperature (in ^C).

• -w Watch the TAU (until a key is pressed)

• -fh Show results in Fahrenheit.

TAU calibration values are always saved in the environment variable TAUCAL, if E
storage is available.

Example:

DINK32_ARTHUR >>tau
Tjc = 58 ^C (uncalibrated)
DINK32_ARTHUR >>tau -c 18
Tjc = 18 ^C
DINK32_ARTHUR >>tau
Tjc = 18 ^C
DINK32_ARTHUR >>tau -fh
Tjc = 32 ^F
Chapter 4. MDINK32/DINK32 Commands 4-69

Commands

ss to
directly
ill be
typing
4.1.39 transpar tm

(transparent mode for com2; non-excimer build)

• transpar

This command will put DINK32 into a transparent mode, giving the user direct acce
the host. In other words, as the user types data into the keyboard, that data is sent
to the host serial port. In addition, data that comes in from the host serial port w
forwarded to the keyboard serial port. The user can exit from transparent mode by
<ctrl>-a.

See Section 4.1.10, “download dl", and Section 4.1.39, “transpar tm"

Example:

DINK32_750 >> tm

<cntr-a>
4-70 Dink32 R12 User’s Manual

Commands

xecute
ess is
 form
 SRR0
control
del or
4.1.40 trace tr

single step trace

• trace address

• trace +

This allows the user to single-step through a user program. The microprocessor will e
a single instruction, and then return control back to the firmware. If a specific addr
given, then a single instruction is executed from that address. However, if the “plus”
is used, then the address of the instruction to execute is derived from bits 0-29 of the
(Machine Status Save / Restore) register. After the instruction has been executed,
is returned to the firmware (DINK32) and the user can examine the programming mo
continue to trace through instructions.

Example:

DINK32_750 >> ds 2100

0x00002100 0x7c0802a6 mfspr r00, s0008

DINK32_750 >> trace 2100

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x00002104 stw r13, 0xfff8(r01)

DINK32_750 >> trace +

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x00002108 add r03, r00, r01

DINK32_750 >> .

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x0000210c mfspr r04, s0274
Chapter 4. MDINK32/DINK32 Commands 4-71

Commands
Chapter 5 DINK32 Command Form
Summary

1. .(period) . - repeat last command

2. about about - displays version information

3. assemble as - address- assemble at one address

4. bkpt bp - set, delete, list breakpoints

5. defalias da - command list - define alias for listed commands

6. devdisp dd list - display contents of device registers

7. devmod dm list - modify device data in device registers.

8. devtest dev list - perform an I/O test on Kahlua

9. disassem ds - address - disassemble at one address

10. download dl - download S-Record file to board RAM or flash

11. env env - Environment controls

12. flash fl - flash commands

13. fupdate fu - copy PCI boot rom to local PPMC

14. fw fw -e - erase all of Flash memory and load RAM to ROM (mdink32)

15. go go - address - execute from given address

16. help he - command - show more information on command

17. log log - record debug session to host

18. memdisp md - address - display memory at one address

19. memfill mf - start, end, data - fill memory block with data pattern

20. meminfo mi - displays information about the memory settings

21. memod mm address - modify memory at one address

22. memove mv - start, end, dest - move memory block to destination

23. memsrch ms - start, end, data - search memory block for data

24. memtest mt - perform various memory tests on local memory or device registers.

25. menu me - show list of available commands

26. pciconf pcf - display all config registers of a PCI device

27. pcidisp pd - display contents of a PCI config register

28. pcimod pm - modifies PCI device config register data

29. pciprobe ppr - scans for PCI devices

30. regdisp rd - display entire general register family
5-72 Dink32 R12 User’s Manual

Commands
31. regmod rm - modify entire general register family

32. rtc rtc - set and/or display the real time clock

33. runalias ra - execute the commands in the alias

34. setbaud sb - display or change the serial port baud rate

35. symtab st - displays DINK32 symbol table

36. tau tau display temperature from the Thermal Assist Unix

37. transpar tm - transparent mode Yellowknife only

38. trace tr -address trace from given address
Chapter 5. DINK32 Command Form Summary 5-73

S-Record Compression/Decompression

2 or

ler, cl

h
ard.
Chapter 6 Utilities

6.1 S-Record Compression/Decompression

6.1.1 Overview
To assist in the compression of S-Record files, a conversion utility is included with the
source code for DINK32. The dcomp utility is written in portable ANSI-compliant C,
which is easily compiled under UNIX or a PC. The dcomp utility performs both
compression and decompression of S-records. It is provided so that the user may compress
their S-record before downloading them to the board. They will automatically detected as
compressed S-records by DINK and decompressed before being written to the proper
memory locations.

6.1.2 Building

6.1.2.1 Files
The dcomp package consists of two c files, dc_tb.c, dc_unix.c and three header files, dink.h,
errors.h, and sublib.h. However, these header files call other header files, so dcomp must
be built in the dink32 source directory.

6.1.2.2 Modification of header file
The dink.h file uses the #define macro ON_BOARD, which is set by config.h. Since dcomp
must be built with ON_BOARD undefined, it is necessary to modify the config.h file.
Ensure that you return config.h to it’s released form before trying to build dink3
mdink32. At about line 84 of the config.h file, you will find the line, #define
ON_BOARD. Comment out this line. After the change this code will be:

/* For trying to build a version that runs under Unix,

 comment out the #define for ON_BOARD. */

/* #define ON_BOARD */

6.1.2.3 Build command
Use any available c compiler, such as UNIX cc, or gcc, or Metaware, or PC compi
(Microsoft c compiler). This description uses the generic CC for the compiler invocation.

CC dc_unix.c dc_tb.c -o dcomp

This command will build the executable dcomp. Dcomp will run on the machine on whic
it is built. It does not run on the Excimer and Maximer or Yellowknife and Sandpoint bo
6-74 Dink32 R12 User’s Manual

bat_decoder
6.1.3 Command syntax

Usage:
 dcomp -options <input_file >output_file.
Options:
 -c Compress an SRecord file.
 -e Expand a previously compressed file into an SRecord file.
Examples:
 dcomp -c <a.out.mx >a.out.cmp
 dcomp -e <a.out.cmp >a.out.mx

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

example:

Unix $ dcomp -c <dink32.src >c_dink32.src
This command will compress the file dink32.src and create the
compressed file c_dink32.src.

Unix $ dcomp -e <c_dink32.src >e_dink32.src
This command will decompress (expand) the file c_dink32.src and
create the decompressed (i.e. expanded) file e_dink32.src.

e_dink32.src is equivalent to the original dink32.src file.

UNIX $ ls -l c_dink32.src e_dink32.src dink32.src
-rw-r----- 1 maurie 361189 Jan 22 09:43 c_dink32.src
-rw-r----- 1 maurie 597181 Jan 22 09:41 dink32.src
-rw-r----- 1 maurie 597181 Jan 22 10:41 e_dink32.src

6.2 bat_decoder

6.2.1 Overview
The bat_decoder program will decode BATU and BATL hex values supplied in hex. The
value of the bats will be displayed and described. The file bat_decoder.c, bat.in, and
makefile are found in the dink32/demos/utilities bat_l2_decoder.

6.2.2 Building

6.2.2.1 Using unix commands
To compile and link the program use this command. This description uses the generic CC
for the compiler invocation.:

CC bat_decoder.c -o bat_decoder.elf
Chapter 6. Utilities 6-75

bat_decoder

 must be
riptions
6.2.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has seven targets.

• start - default - displays instructions

• all - makes bat_decoder and l2_decoder

• bat_decoder - makes the bat_decoder.elf executable

• cleanbat - clean just the bat_decoder files

• l2_decoder - makes the l2_decoder.elf executable

• cleanl2- clean just the l2_decoder files

• clean - cleans all the files

6.2.3 Command syntax

Usage:

bat_decoder.elf < inputfile > outputfile

Examples:

bat_decoder.elf < bat.in > bat.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

example:

Input description:

<an integer> How many bat pairs per line are supplied?

<some_description>: <batlower_value> <batupper_value>

where:

 <some_description> has no spaces or tabs (use underscore to connect names),
19 characters or less. The character array has only 20 characters. For bigger desc
this line can be changed.

 <batlower_value> is a hex value

 <batupper_value> is a hex value

As an example, if you wanted to decode two pairs of bats:

2

6-76 Dink32 R12 User’s Manual

bat_decoder
ibat0: 10000001 10000fff
dbat0: 1000001a 10000fff

If you want a description line you can use batlower=batupper=0 as in:

3
This_is_a_test 0 0
ibat0: 10000001 10000fff
dbat0: 1000001a 10000fff

The output is:

Bat Decoder - enter the bat values and display the meaning
 IBAT and DBAT have same meaning
 Format: description: upperbat_value lowerbat_value
 How many bat entry pairs, one pair per line
Please enter the Lower and Upper bat value in hex
This_is_a_test: Decoding the bat
Both bats are zero, Disabled

Please enter the Lower and Upper bat value in hex
ibat0: Decoding the bat
 For batu = 0x10000fff
 BEPI Logical address is = 0x10000000
 BL Block Length is = 0x3ff 128 MB
 Range is = 0x10000000 - 0x17ffffff
 VS is = 0x1 Supervisor mode access
 VP is = 0x1 User mode access
 For batl = 0x10000001
 BRPN Physical address is = 0x10000000
 WIMG = 0x0
 W off Not Write Through i.e. Write back
 I off Not Cache Inhibited, i.e. use cache
 M off Not Memory Coherent, i.e. non-coherent
 G off Not Guarded, i.e. unguarded
 PP Block Access Protection Control = 0x1
 Read Only
Please enter the Lower and Upper bat value in hex
dbat0: Decoding the bat
 For batu = 0x10000fff
 BEPI Logical address is = 0x10000000
 BL Block Length is = 0x3ff 128 MB
 Range is = 0x10000000 - 0x17ffffff
 VS is = 0x1 Supervisor mode access VP is = 0x1 User mode access
 For batl = 0x1000001a
 BRPN Physical address is = 0x10000000
 WIMG = 0x3
 W off Not Write Through i.e. Write back
 I off Not Cache Inhibited, i.e. use cache
 M on Memory Coherent
 G on Guarded
 PP Block Access Protection Control = 0x2
 Read and Write
Chapter 6. Utilities 6-77

l2_decoder
6.3 l2_decoder

6.3.1 Overview
The l2_decoder program will decode the L2CR register for L2 Cache supplied in hex. The
value of the L2CR will be displayed and described. The file l2_decoder.c, l2.in, and
makefile are found in the dink32/demos/utilities/bat_l2_decoder directory. Currently, this
program is designed only for the MPC750, the MPC7400 has some differences in the
meaning of the bit patterns.

6.3.2 Building

6.3.2.1 Using unix commands
To compile and link the program use this command. This description uses the generic CC
for the compiler invocation.:

CC l2_decoder.c -o l2_decoder.elf

6.3.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has seven targets.

• start - default - displays instructions

• all - makes bat_decoder and l2_decoder

• bat_decoder - makes the bat_decoder.elf executable

• cleanbat - clean just the bat_decoder files

• l2_decoder - makes the l2_decoder.elf executable

• cleanl2- clean just the l2_decoder files

• clean - cleans all the files

6.3.3 Command syntax

Usage:

l2_decoder.elf < inputfile > outputfile

Examples:

l2_decoder.elf < l2.in > l2.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.
6-78 Dink32 R12 User’s Manual

config_decoder

 only if

106,
egister
7.in,
the
.out,
in the
example:

Input description:

<a single char> Full Display or Set values only?

• f or F - Full Display means display all values even if they are zero

• any othe character including space - Set Values means display setable values
they are set, this makes a smaller more compact listing.

<a hex value> The full hex value of the L2CR register.

Note that less than 8 hex characters are right justified.

As an example, if you wanted to decode this L2CR register value:

l2.in

n
ad000000

The output l2.out is:
L2 Cache Register Decoder - MPC750 Only
Enter the L2CR values and display the meaning
Full Display (f) or Display only Set Values (any key)?
 Format: description: hex value (without leading 0x)
 s.a. abcdefabPlease enter the L2CR value in hex
0xDecoding the L2CR = 0xad000000
 L2E is 1, L2 cache Enabled
 L2PE is 0, Parity Disabled
 L2SIZ is 2, L2 Size 512 KByte
 L2CLK is 6, L2 Clock ratio and DLL Divide by 3.0
 L2RAM is 2, L2 RAM type Flowthrough Reg-Reg burst SRAM
 L2OH is 0, L2 Output Hold 0.5 nS

6.4 config_decoder

6.4.1 Overview
The config_decoder program will decode the configuration registers for the MPC
MPC107, MPC8240 in host and agent modes.. The value of the each configuration r
desired will be displayed and described. The files *.c, *.h, mpc106.in, mpc10
mpc8240a.in, mpc8240h.in, and makefile are found in
dink32/demos/utilities/config_decoder directory. The files mpc106.out, mpc107
mpc8240a.out, mpc8240h.out are example output files. See the file, readme,
directory for detailed information on building and using this program.
Chapter 6. Utilities 6-79

config_decoder

07,

or that
6.4.2 Building

6.4.2.1 Using unix commands
To compile and link the program use this command. This description uses the generic CC
for the compiler invocation. We use the GNU GCC compiler:

CC *.c -o config_decoder.elf

6.4.2.2 Using makefile supplied
Alternatively one can just call the makefile in this directory, which has two targets.

• all - default - builds config_decoder.elf and a.elf

• clean - cleans all the files

6.4.3 Command syntax
The makefile builds two executables, a.elf and config_decoder.elf. These are identical, and the
user can invoke the program with either name, however, a.elf is easier to type then
config_decoder.elf.

Usage:

config_decoder.elf < inputfile > outputfile

Examples:

config_decoder.elf < mpc107.in > temp.out

Note that this program uses stdin and stdout, so the < symbol and >
symbol are required.

Input description:

any value on one line - This is the description of the input file

integer value between 1 and 4 to specify which decoder you desire, MPC106, MPC1
 MPC8240A, MPC8240H.

hh:nnnnnnnn - hh is the configuration register address, nnnnnnnn is the hex value f
register. Note, do not supply a preceeding 0x.

example:

Input:

MPC107 registers from Doug
2

6-80 Dink32 R12 User’s Manual

config_decoder
0:41057
3c:100
f0:12345678

Output:

[finster:/config_decoder] a.elf
Configuration Register Decoder Version 0.4 June 20, 2000
Enter a description of this data, 60 characters or less
>>MPC107 registers from Doug
Data set: MPC107 registers from Doug
Please chose one of the following by number 1,2,3, or 4: Decode
 1. MPC106
 Decode
 2. MPC107
 Decode
 3. MPC8240 Host
 Decode
 4. MPC8240 Agent
 >>2
MPC107 Decoder
Enter all values in hex, DO NOT preceed them with 0x
 Only use word boundry addresses, e.g. 0,4,8,etc
 Values are in little endian orientation
 and will be padded with zeros on the left
 Enter address : value
 Example: 04 : a00106
 Enter "^D" i.e. EOF to exit
>> 0:41057

Reg00 Device ID and Vendor ID = 0x00041057
 0x00:Vendor ID = 0x1057
 0x02:Device ID = 0x0004
>> 3c:100
Reg3c Max Lat, Min GNT, Interrupt Pin, Interrupt Line = 0x00000100
 0x3C:Interrupt Line = 0x00
 0x3D:Interrupt Pin = 0x01
 0x3E:MIN GNT = 0x00
 0x0F:MAX LAT = 0x00
>> f0:12345678

Regf0 MCCR1 Memory Control Config Reg = 0x12345678
 Bank 0 Row = 0x0 9 or (12 x n x 4)
 Bank 1 Row = 0x2 11 or (13 x n x 4)
 Bank 2 Row = 0x3 12,13 or (11 x n x 2)
 Bank 3 Row = 0x1 10 or (13 x n x 2)
 Bank 4 Row = 0x2 11 or (13 x n x 4)
 Bank 5 Row = 0x1 10 or (13 x n x 2)
 Bank 6 Row = 0x1 10 or (13 x n x 2)
 Bank 7 Row = 0x1 10 or (13 x n x 2)
 PCKEN Memory interface parity checking = 0x0 Disabled
 RAM_TYPE = 0x0 SDRAM
 SREN Self refresh memory parity = 0x1 Enabled
 MEMGO RAM interface logic = 0x0 Disabled
 BURST Burst mode ROM timing = 0x1 burst-mode
 DBUS_SIZ[0-1] = 0x1
Chapter 6. Utilities 6-81

Memory Test
 ROMFAL access time = 0x04
 ROMNAL next access time = 0x1
>>^D (control D - eof - to terminate the program.

6.5 Memory Test

A simple memory test is included in DINK as an option. It is enabled via a #define in
config.h. If MEMORY_TEST is defined, then, before DINK is copied from ROM to RAM
a memory test will be performed from address 0x0 to the MEMORY_END || 0x0000
location. If MEMORY_END is defined as 0x7 then the test is performed between 0x0 and
0x70000. The address of the memory location is written into the memory location and then
read back. If an error is detected then the verify loop will go to an infinite loop located at
error_memory_test. The location of this loop can be found in the map file and can easily b

The following listing will show up on the flash screen:

Memory test performed from 0x00000000 - 0x70000

The user may feel free to enhance the memory test algorithm by adding additional test into
the memory_test function located in except2.s

Note: The user must ensure that the ending address (MEMORY_END) is valid or the debug
monitor may not boot.

There is also a memory test command, mt.
6-82 Dink32 R12 User’s Manual

Execution Steps
Chapter 7 User Program Execution

The DINK32 firmware includes a file transfer utility that allows the user to download
S-Record files from the host to the target board.

This download function stores the S-Records into memory starting at the address given in
the S-Record file. The user can then use the go or trace command to execute the user
program. Listed below are the steps to take to execute a user program.

7.1 Execution Steps
Download the user program to run on DINK32.

1. Create an executable S-Record file of the user program to be run on DINK32. Most
modern compiler vendors supply a facility for converting an executable or
generating an S-Record file directly. E.g. Gnu supplies an elfhex tool, Metaware
supplies an elf2hex tool. Ensure that the S-Record is a Motorola type S-Record file.

2. Download the s-record file into memory on the target board using the DINK32
download command. The same command is used for compressed s-Record files.
Using a terminal program, receive an S-Record file into the target board. The
recommeded settings are databits = 8, parity = none, stopbits = 1, flowcontrol =
hardware (although none will work), and baud rate = 57600 on excimer, 38400 for
yellowknife.

3. This optional step may be desired. The default baud rate is 9600, however, DINK32
is capable of downloading at 57600 on Excimer and Maximer and 38400 on
Yellowknife and Sandpoint. For large programs, we suggest changing the baud rate
to 57600 before the download. One can start and debug the downloaded program in
any baud rate. However before pressing the reset button restore the baud rate to
9600.

4. go 90000. One needs to build the executable program so that it starts at address
0x90000. Upon invocation, the program will use r1 as the stack pointer, which will
have been set to 0x8fff0 by DINK32.

Note: Hardware flow control is implemented on the Excimer and Maximer platform and is
required for file downloading.

Example:

DINK32_750 >> sb -k 57600
Change the baud rate to 57600. Also change the setting on your
terminal emulator.

DINK32_750 >> dl -k
Downloading in s-record format.
Chapter 7. User Program Execution 7-83

Download Complete.

DINK32_750 >>

Set breakpoints, if necessary, and execute the user program at the
location to which it was downloaded using go or trace.

DINK32_750 >> go <address>
DINK32_750 >> trace <address>
7-84 Dink32 R12 User’s Manual

ilies

lid

ing

 the
Chapter 8 Errors and Exceptions

8.1 Error Codes

8.1.1 Parser Errors
• 0xFB00 UNKNOWN_COMMAND unknown command

• 0xFB01 UNKNOWN_REGISTER unknown register

• 0xFB02 ILLEGAL_RD_STAGE cannot specify whole register family in range

• 0xFB03 ILLEGAL_REG_FAMILY cannot specify a range of special registers

• 0xFB04 RANGE_CROSS_FAMILY cannot specify a range across register fam

• 0xFB05 UNIMPLEMENTED_STAGE invalid rd or rmm parameter format

• 0xFB06 UNKNOWN_OPERATOR unknown operator in arguments

• 0xFB07 INVALID_FILENAME invalid download filename

8.1.2 Errors from Error Checking Toolbox
• 0xFD00 INVALID NOT valid

• 0xFD01 VALID valid

• 0xFD02 INVALID_SIZE the input was not 8 characters long

• 0xFD03 OUT_OF_BOUNDS_ADDRESS the address given falls outside of va
memory defined by MEM_START to MEM_END

• 0xFD04 INVALID_HEX_INPUT one of more of the characters entered are not
valid hex

• characters. Valid hex characters are 0-9, A-F, a-f

• 0xFD05 INVALID_REGISTER a given register does not exist

• 0xFD07 NOT_WORD_ALIGNED the given address is not word-aligned. A
word-aligned address ends in 0x0,0x4,0x8,0xc

• 0xFD08 REVERSED_ADDRESS the starting address is greater than the end
address.

• 0xFD09 RANGE_OVERLAP the address specified as the destination is within
source

8.1.3 addresses
• 0xFD0A ERROR an error occurred

• 0xFD0B INVALID_PARAM invalid input parameter
. 8-85

mat
8.1.4 Get Argument Errors
• 0xFE00 INVALID_NUMBER_ARGS invalid number of command arguments

• 0xFE01 UNKNOWN_PARAMETER unknown type of parameter

8.1.5 Tokenizer Toolbox Errors
• 0xFF00 ILLEGAL_CHARACTER unrecognized character in input stream

• 0xFF01 TTL_NOT_SORTED token translation list not sorted

• 0xFF02 TTL_NOT_DEFINED token translation list not assigned

• 0xFF03 INVALID_STRING unable to extract string from input stream

• 0xFF04 BUFFER_EMPTY input buffer is empty

• 0xFF05 INVALID_MODE input buffer is in an unrecognized mode

• 0xFF06 TOK_INTERNAL_ERROR internal tokenizer error

• 0xFF07 TOO_MANY_IBS too many open input buffers

• 0xFF08 NO_OPEN_IBS no open input buffers

8.1.6 Screen Toolbox Errors
• 0xFC00 RESERVED_WORD used a reserved word as an argument

8.1.7 Breakpoint Errors
• 0xFA00 FULL_BPDS breakpoint data structure is full

8.1.8 Download Errors
• 0xF900 NOT_IN_S_RECORD_FORMAT not in S-Record Format

• 0xF901 UNREC_RECORD_TYPE unrecognized record type

• 0xF902 CONVERSION_ERROR ascii to int conversion error

• 0xF903 INVALID_MEMORY bad S-Record memory address

8.1.9 Compression and Decompression Errors
• 0xF800 COMP_UNK_CHARACTER unknown compressed character

• 0xF801 COMP_UNKNOWN_STATE unknown binary state

• 0xF802 NOT_IN_COMPRESSED_FORMAT not in compressed S-Record for

8.1.10 DUART Handling Errors
• 0xF700 UNKNOWN_PORT_STATE unrecognized serial port configuration
8-86 Dink32 R12 User’s Manual

serial

e

hich
• 0xF600 TM_NEEDS_BOTH_PORTS transparent mode needs access to two
ports

8.1.11 Register Errors
• 0xF600 SPR_NOT_FOUND cannot find register in special purpose register fil

8.1.12 Flash Errors
• 0xF100 FLASH_ERROR error in flash command activity

8.2 Exceptions

There are twenty one exceptions in this version of DINK32. A message indicating w
exception has occurred is displayed for all of them except System Reset.

• 0x0100 System Reset

• 0x0200 Machine Check

• 0x0300 Data Access

• 0x0400 Instruction Access

• 0x0500 External Interrupt

• 0x0600 Alignment

• 0x0700 Program

• 0x0800 Floating-Point Unavailable

• 0x0900 Decrementer

• 0x0A00 I/O Controller Interface Error

• 0x0C00 System Call

• 0x0D00 Trace

• 0x0E00 Floating Point Assist

• 0x0F00 Performance Monitor

• 0x1000 Instruction Translation Miss

• 0x1100 Data Load Translation Miss

• 0x1200 Data Store Translation Miss

• 0x1300 Instruction Address Breakpoint

• 0x1400 System Management Interrupt

• 0x1600 Java Mode denorm detection

• 0x2000 Run Mode or Trace
. 8-87

er can
m and

anuals
System Reset occurs when the software is booted up or the evaluation board is reset. The
other exceptions occur due to interrupts or errors in the execution of the code.

When using DINK, the user is notified of exceptions by a message that appears on the
terminal. Control is returned to the firmware. If the exception was caused by the completion
of a trace or by arriving at a breakpoint during execution of the user’s code, the us
continue testing. Otherwise the user may need to modify the code to correct a proble
download the program again to resume testing.

For details on what causes each exception, see the Programming Environments M
(PEM) and the appropriate PowerPC User’s Manual for the part in question.
8-88 Dink32 R12 User’s Manual

Chapter 9 Restrictions

9.1 Special Purpose Registers

There are four Special Purpose General Registers (SPRGs), numbered 0 through 3.
DINK32 makes use of SPRG2 and SPRG3, so any user values placed into these two registers will be destroyed when-
ever control is returned to DINK32. The user is encouraged to place any values that are of interest or necessity into
only SPRG0 and SPRG1, although the user can use the other two SPRGs for calculations or temporary storage.
. 9-89

will

 it’s

k32
Chapter 10 Known Bugs

10.1 Known Bugs

• setbaud On Excimer and Maximer platform the sb –h or –k without a baud rate
always return 0.

• The assembler will silently ignore any register it doesn’t recognize, inserting 0 in
place. For example: mfspr r3,1010 will substitute mfsrp r3,0.

• mdink 12.1 may not start dink 12.1 correctly. Last verified good version of mdin
was 10.7.

• The gcc built version of DINK32 srecord and elf file

— is 50% larger than the Metaware build
10-90 Dink32 R12 User’s Manual

Adding Commands and Arguments

rs of
e. The

 the
is sent
US
tion
 with
 null
d -
Appendix A Adding Commands and
Arguments

A.1 Help
All help information is displayed by the help.c file. The help file has two types of help, the
main summary menu and the specific help information for a specific command.

A.1.1 Help Menus
There are two summary help menus, one for dink32 and the other for mdink32. They are
discriminated by the "dink_type" variable. dink_type = 0 for dink32 and dink_type = 1 for
mdink32. Simply add the summary command to the appropriate menu. The menus are
simply PRINT statements in the function menu().

There is no distinction between dink32 and mdink32 for the specific command help file.
Simply build a function called help_<command> such as help_info(). This
function consists entirely of PRINT commands describing the new command.

To make the specific help commands available, specify the help function with the command
function in the command_tb.h file. There are two steps.

1. add an extern for the command and help functions. Such as extern STATUS
par_bm() and extern void help_bm() for the benchmark command.

2. Add the command name, tag, function and help function name to the structure
cmd_struct dink_cmds.

— struct cmd_struct dink_cmds[NUM_CMD] = {

— {"ab", "about", NO_TAG, par_about, help_about},

— {"as", "assemble", MODIFY_TAG, par_asdm, help_asm},

— {"ds", "disassem", DISPLAY_TAG, par_asdm, help_disasm},

The entry in this table will "register" your command and your help file. The membe
each entry are: short_name, long_name, tag, function_name, and help_function_nam
tag is used to specify the argument list for your function and is invoked in
par_head_parser function in par_tb.c. NO_TAB indicates that no command pointer
to your function, i.e. define your function with a null argument list, as STAT
newcommand(); CMD_TAG will send you a pointer to a string with the invoca
command from the command line, but not the argument list. I.e. define your function
a string pointer, such as STATUS newcommand(char *dink_cmd), dink_cmd will be a
terminated string containing only the invocation command. Such as dink_cm
"new_command\0".
Appendix A. Adding Commands and Arguments 10A-91

Adding Commands and Arguments
Example (existing about command)

help.c

void help_about()
{
PRINT("ABOUT: \n");
PRINT("====== \n");
PRINT("Mnemonic: about, ab \n");
PRINT("Syntax: ab \n");
PRINT("Description: This command displays the general information
");
PRINT("on DINK32.\n");
PRINT("Example: \"ab\" would display the opening screen of DINK32.
\n");
}

Example (fl command)

help.c

void help_flash()
{
PRINT("FLASH COMMANDS: \n");
PRINT("====== \n");
PRINT("Mnemonic: flash, fl \n");
PRINT("Syntax: fl -flags -o value -s sector number\n");
PRINT("Description: This command performs actions to the flash
memory\n");
PRINT("Flags: -e erase erase all of flash\n");
PRINT("Flags: -cp copy copy MDINK from RAM to Flash\n");
PRINT(" Required Flags: -o <value> copy address in
flash\n");
PRINT(" Optional Flags: -e erase flash first\n");
PRINT("Flags: -sp protect indicated sector\n");
PRINT(" Required Flags: -n <value> sector number 0-18\n");
PRINT("Flags: -su unprotect indicated sector\n");
PRINT(" Required Flags: -n <value> sector number 0-18\n");
PRINT("Flags: -se erase indicated sector\n");
PRINT(" Required Flags: -n <value> sector number 0-18\n");
PRINT(" Example: fl -sp -n 5 - sector protect sector 5 \n");
}

A.2 Input Arguments
Now we are ready to specify input arguments. Arguments are effected by entries in two
tables, one is toks.h and the other is toks.c. The toks.h table is a set of lines of #define
macros. Each argument is treated as a member of a symbol table called
SYMBOL_BASE_TOK. The base of the table is defined as some value. There are several
10A-92 Dink32 R12 User’s Manual

Adding Commands and Arguments
such bases for various other symbols, such as the REG_GEN_BASE_TOK. By reading the
comments at the beginning of the file, we ascertain that this is a scheme to guarantee that
all tokens (command arguments, register names, etc.) have a unique integer value that can
be used by the tokenizer to uniquely identify any symbol desired by the dink32 code.

A.2.1 Input Token Facility
Specify the name of your token with a #define macro, and give it the value of one more than
the previous values.

Note: either do not exceed the MAX_SYMBOLS_TOKENS
size defined in toks.h, currently set at 32 or increase the value.

example:

toks.h
#define DASH_TO SYMBOL_BASE_TOK + 2 /* symbol2 - the dash(-) symbol
*/
...
#define BOTH_TOK SYMBOL_BASE_TOK + 8 /* symbol8 to select both
serial ports */
#define HOST_TOK SYMBOL_BASE_TOK + 9 /* symbol9 select only the host
port */
#define KEY_TOK SYMBOL_BASE_TOK + 10 /* symbol10 select only the
keyboard */
#define QUEST_TOK SYMBOL_BASE_TOK + 11 /* symbol11 the question
mark (?) */

This example is for the si (setinput command). It defines the dash token and the k,h,and ?
command arguments, which are invoked as:

si [-k | -h | -?].

The ADD_TOKEN macro in toks.c adds these symbols to tokenizer so that the function can
search the argument list.

example:

toks.c
ADD_TOKEN("both",BOTH_TOK, &i); /* symbol8 - to select both serial
ports */
ADD_TOKEN("host",HOST_TOK, &i); /* symbol9 - to select only the host
port */
ADD_TOKEN("key",KEY_TOK, &i); /* symbol10 - to select only the
keyboard port */
ADD_TOKEN("k",KEY_TOK, &i); /* same as above */
ADD_TOKEN("?\0",QUEST_TOK, &i); /* symbol11 - the question mark (?)
symbol */

Note that the token is a null terminated string, not a single character. In this example, we
Appendix A. Adding Commands and Arguments 10A-93

Adding Commands and Arguments
are looking for the strings "both", "host", "key", "k", and "?" and the comment tells us
which symbol it refers to in the toks.h file.

There are at least two ways to get these tokens. par_si uses the getarg_tok function as this
code fragment shows:

if((status = getarg_tok(&state))!=SUCCESS) return status;

PRINT("Set Input Port : ");
switch(state)
{
case BOTH_TOK : duart_configuration = BOTH_PORTS;

A more extensive method is to use the functions tok_is_next_token and
tok_get_next_token.

These examples are from the new flash_commands that will be in the next release.

The code shown below extracts the arguments from the command line.

This code will parse the line:

fl -sp -n 5
however, it will give an error for these lines:
fl -sp -n f1 hex value
fl -xp -n 1 -xp instead of valid -sp | -su | -se etc
fl -sp 1 missing -n
fl -sp -n missing a decimal value

toks.h:

#define SECTOR_PROTECT_TOK SYMBOL_BASE_TOK + 15 /* symbol15 - ’sp’
for sector protect */
#define SECTOR_UNPROTECT_TOK SYMBOL_BASE_TOK + 16 /* symbol16 -
’su’ for sector unprotect */
#define SECTOR_ERASE_TOK SYMBOL_BASE_TOK + 17 /* symbol17 - ’se’ for
sector erase */
#define FLASH_COPY_TOK SYMBOL_BASE_TOK + 18 /* symbol18 - ’cp’ for
flash copy */
#define SECTOR_NUMBER_TOK SYMBOL_BASE_TOK + 19 /* symbol19 - ’n’
for sector number */

toks.c

ADD_TOKEN("sp",SECTOR_PROTECT_TOK, &i);/* symbol15 - Sector Protect
*/
ADD_TOKEN("su",SECTOR_UNPROTECT_TOK, &i);/* symbol16 - Sector
Unprotect */
ADD_TOKEN("se",SECTOR_ERASE_TOK, &i);/* symbol17 - Sector Erase */
ADD_TOKEN("cp",FLASH_COPY_TOK, &i);/* symbol18 - Sector Erase */
ADD_TOKEN("n",SECTOR_NUMBER_TOK, &i);/* symbol19 - Sector Number
value */
10A-94 Dink32 R12 User’s Manual

Adding Commands and Arguments
fl.c

This code checks the first token for a dash, then the second token for one of sp, su, se, e,
cp. The function get_sector_number gets the sector number specified.

if (!(tok_is_next_token(DASH_TOK)))
{
PRINT("Must specify [-sp | -su | -se | -e | -cp]\n");

return FAILURE;
}

if ((status = tok_get_next_token(&token, temp)) != SUCCESS)
 {
PRINT("Must specify [-sp | -su | -se | -e | -cp]\n");

return status;
 }

switch (token)
{
 case SECTOR_PROTECT_TOK:
 get_sector_number(§or_number);
 PRINT("Got -sp, -n is %d\n",sector_number);
 break;
 case SECTOR_UNPROTECT_TOK:
 get_sector_number(§or_number);
 PRINT("Got -su, -n is %d\n",sector_number);
 break;

This code gets the next token, which must be a -n and then gets the next token which must
be an ascii string containing one valid decimal number, which will be converted to int by
the ascii_to_int_dec function.

if (!(tok_is_next_token(DASH_TOK)))
 {
 PRINT("Must specify [-n]\n");
 return FAILURE;
 }

 if ((status = tok_get_next_token(&token, temp))
 == SUCCESS)
 {
 if (token != SECTOR_NUMBER_TOK)
 {
 PRINT("Must specify [-n]\n");
 return FAILURE;
 }

 if ((status = tok_get_next_token(&token, temp)) != SUCCESS)
 {
 return FAILURE;
 }

 if ((status = ascii_to_int_dec(temp, sector_number,
Appendix A. Adding Commands and Arguments 10A-95

Adding Commands and Arguments
strlen(temp)))
 != SUCCESS)

 {
PRINT("Error getting decimal value.\n");
return (status);

 }
10A-96 Dink32 R12 User’s Manual

Adding ERROR Groups to MDINK/DINK32
Appendix B Adding ERROR Groups to
MDINK/DINK32

B.1 Error Group Files
The two files used for adding an ERROR grouping to dink32 and mdink32 are err_tb.h and
errors.h.

Both files contain the defined macro, NUM_ERRORS, and both must be changed whenever
a new error group is added.

B.1.1 err_tb.h
About line 30, increment NUM_ERRORS by the number of error groups you are adding.
In this case, change it from 46 to 47.

#define NUM_ERRORS 47

Now add the new entry to the structure err_element. This structure has two parts, the code
and a string constant for the error message. Add the message

{FLASH_ERROR, "FLASH error") /* 46 */

It is a good idea to add a comment to the end of any added lines for the struct entries with
the error number.

B.1.2 errors.h
About line 51 increment the defined macro NUM_ERRORS as in err_tb.h. It is important to
do this as err_tb.h includes this file. However, it then defines NUM_ERRORS again as
we saw above. In effect, overwriting the NUM_ERRORS value in this file, errors.h.

This file is used to define the code for each error message. This code is printed out along
with the string for the error. About line 215, add the value for the FLASH_ERROR code.

#define FLASH_ERROR 0xf100.

0xF100 was chosen, because it appears that the grouping is determined by the first two hex
characters and the last two hex characters are just sequential increments for errors in that
category. So codes 0xf5xx through 0xffxx were already in use. So chose 0xf1xx randomly
from the available ones of 0xf0xx through 0xf4xx.

These are the only files that need to be changed. The actual work is performed by err_tb.c.
When a dink32 function returns to the main dink32 loop it can return one of these error
messages. As in return(FLASH_ERROR);. Then the function err_print_error (about line 35)
searches this structure, err_list, comparing the error number with the err_list[i].code. When
Appendix B. Adding ERROR Groups to MDINK/DINK32 10B-97

Adding ERROR Groups to MDINK/DINK32
it finds the code, it prints the code value and the error message. If it can’t find the code, then
it prints the message, UNKNOWN ERROR.
10B-98 Dink32 R12 User’s Manual

History of MDINK32/DINK32 changes
Appendix C History of MDINK32/DINK32
changes

C.1 Version 12.1 August 30, 1999.
1. Improved the flash capability for Yellowknife and Sandpoint in the fu command.

2. Reorganized all the demo directories into one highlevel directory demos and added
makefile_gcc

3. User spr registers are now initialized during bootup. No need to perform a ’go’
command to initialize register table. Added a return path through the exception
handler for user code to safely return to DINK. The routine is called user_return and
is sort of a dummy exception vector that allows the exception handler to take care of
all context switching between DINK and USER code.

4. Added "dev epic ISRCnt" to "dev epic" command list. This command allows the
user to connect a downloaded Interrupt Service Routine to an epic interrupt vector.

5. PMC ROM support.

6. Add memSpeed (memory bus speed) and processor_type (type of processor
MPC603, etc) to the dink_transfer_table.

C.2 Version 12.0 November 30, 1999.
1. Implement a dink transfer table to dynamically assign dink functions such as printf,

dinkloop, getchar, in a table so that it is no longer necessary to statically determine
the function address and change them in demo or dhrystones or any user program.

2. Configuration (environment variables) are saved in NVRAM for yk/sp, saved in
RAM for Excimer and Maximer. New command, env, manipulates these
configurations. Also implements multiple command aliases, however, da and ra are
still available.

3. New command, tau, display and/or calibrate the Thermal Assist Unit.

4. Faster download and no need to set character delays on the serial line, implemented
by turning on the duart FIFO.

5. Turn on both banks of memory in the YellowKnife and Sandpoint, now
32Megabytes is available on dink32 startup.

6. Improved printf format facilities, including floating point.

7. Most commands can now be placed into quiet mode, and verbose mode can be used
with the -v command. Default is verbose on both, same as always, with or without
ENV. The ’-e’ mode expands fields and can be made default with env RDMODE=e.
Only Excimer and Maximer require the setup, and RDMODE can be ’Q’ (quiet), ’E’
Appendix C. History of MDINK32/DINK32 changes 10C-99

History of MDINK32/DINK32 changes
(expand fields), or anything else. On Excimer and Maximer it can be set up with
these commands:
env -c, env rdmode=0

8. The dl command can be placed in silent mode with the "-q".

9. rd or rm can use these aliases for the memory register, northbridge, nb, mpc106,
mpc107, or mpc8240.

10. Fixed command termination character, ’x’, so it will not restart if unexpected.

11. Fixed problems with double prompts printed on startup with DCACHE.

12. Implement a new makefile, makefile_gcc, and conform the dink code to build with
the gcc PowerPC eabi compatible compiler. Build and load works, all memory
features are broken. This will be fixed in the next release.

13. Implemented flash programming for PCI-hosted boot ROM on YK/SP platforms.
The command ’fl -h’ transfers 512k from a specified memory location to the flash.

14. Added share memory between host and agent targets using the Address Translation
Unit (ATU).

C.3 Version 11.0.2 June 1, 1999
1. Fixed invalid cacheing on 603. 603 does not reset the cache invalidate bits in

hardware, so added the facility in software.

2. Detects MPC107.

3. About command now reports board and processor identification.

4. Improved the help facility.

5. Added makefiles for the PC, makefile_pc in every directory.

C.4 Version 11.0.1 May 1, 1999 Not Released
1. Change the location of Stack pointer load/save. DINK code now occupies through

0x0080000. USER CODE MUST NOT START EARLIER THAN 0x0090000!

2. Fixed vector alignment.

3. Fixed VSCR register implementation issue.

4. Fixed access issue for registers VRSAVE,RSCR,FPSCR,RTCU, RTCL & RPA.

5. Fixed HID1 display for 603e, 604e.

6. Fixed breakpoint/exception problem broken in rev10.7 for 603e.

7. Fixed location of exception vectors after EH1200, they were wrong.

8. Fixed flushhead in except2.s to work correctly.
10C-100 Dink32 R12 User’s Manual

History of MDINK32/DINK32 changes
C.5 Version 11.0 March 29, 1999

1. Add AltiVec support for the MAX processor.

2. Added vector registers to register list.

3. Add assembler disassembler code for altivec mnemonics.

4. fl -dsi has been expanded to display the flash memory range for each sector.

C.6 Version 10.7 February 25, 1999
1. Add 1999 to copyright dates.

2. Add timeout to flash_write_to_memory, so an unfinished write to flash won’t last for
ever, it will timeout and issue an error message.

3. Add test all flash write for protected sector and if protected issue an error and refuse
the write.

4. Disable transpar,tm from excimer.

5. Set DCFA bit from 0 to 1 for MAX chips only

C.7 Version 10.6 January 25, 1999
1. Implement the history.c file and allow the about command to use constants for

Version, Revision, and Release.

2. Implement the fl –dsi and fl -se commands.

3. Automatically detect flash between Board Rev 2 and 3.

4. Remove the fw -e command from DINK32, it is only available in MDINK32.

C.8 Version 10.5 November 24, 1998
1. Changed default reset address to be -xfff0 for standalone dink

2. Fix bugs in trace command

C.9 Version 10.4 November 11, 1998
1. Recapture 10.3 LED post routine in MDINK

2. Add BMC_BASE_HIGH for kahlua to reach the high config registers

3. Added memory test feature during POR.

4. Corrected ending address for kahlua X4 configuartion

5. Added basic Kahlua support
Appendix C. History of MDINK32/DINK32 changes 10C-101

History of MDINK32/DINK32 changes
C.10 Version 10.3 no date

1. This was never released

C.11 Version 10.2 September 11, 1998
1. This release is the same as Version 10 Revision 1

C.12 Version 10.1 September 10, 1999
1. Enable ICACHE and DCACHE

C.13 Version 9.5 August 5, 1998
1. Implement flash commands, fw -e and basic flash erase and write support.

2. Split dink into two types, mdink - minimal dink and dink.

3. Implement support for excimer.

C.14 Version 9.4 May 22, 1998
1. Implement L2 Backside Code.

2. Turned on DCACHE and ICACHE as default at boot time.

3. Added Yellowknife X4 boot code (Map A & B)

C.15 Prior to Version 9.4 Approximately
October 10, 1997

1. Merged CHRP and PREP

2. Added W_ACCESS (Word access) H_ACCESS, and B_ACCESS

3. One version of dink works with all processors, 601, 603, 604, and ARTHUR.
10C-102 Dink32 R12 User’s Manual

S-Record Format Description
Appendix D S-Record Format
Description

D.1 General Format
An S-record is a file that consists of a sequence of specially formatted ASCII character
strings. Each line of the S-record file adheres to the same general format (with some
variation of the specific fields) and must be 78 bytes or fewer in length. A typical S-record
file might look like this:

S010000077726974656D656D2E73726563AA
S21907000074000000700000003D20DEAD6129BEEF3C60000060E0
S2190700156300003CC0004060C600007D20192E7CE0182E7C07FC
S21907002A480040820014386304007C0330004180FFE848000059
S20907003F004800000068
S804070000F4

This information is an encoding of data to be loaded into memory by a S-record loader. The
address at which the data is loaded is determined by the information in the S-record. The
data is verified through the use of a checksum located at the end of each record. Each record
in a file should be followed by a linefeed.

The general format of an S-record is as follows:

Type char[2]
Count char[2]
Address char[4,6, or 8]
Data char[0-64]
Checksum char[2]

Note that the fields are composed of characters. Depending on the field, these characters
may be interpreted as hexadecimal values or as ASCII characters. Typically, the values in
the Type field are interpreted as characters, while the values in all other fields are
interpreted as hex digits.

Type: Describes the type of S-record entry. There are S0, S1, S2, S3, S5, S7, S8, and S9
types. This information is used to determine the format of the remainder of the characters
in the entry. The specific format for each S-record type is discussed in the next section.

Count: When the two characters comprising this field are interpreted as a hex value,
indicates the number of remaining character pairs in the record.

Address: These characters are interpreted as a hex address. They indicate the address where
the data is to be loaded into memory. The address may be interpreted as a 2, 3, or 4 bytes
address, depending on the type of record. 2-byte addresses require 4 characters, 3-byte
addresses require 6 characters, and 4-byte addresses require 8 characters.
Appendix D. S-Record Format Description 10D-103

S-Record Format Description
Data: This field can have anywhere from 0 to 64 characters, representing 0-32 hexadecimal
bytes. These values will be loaded into memory at the address specified in the address field.

Checksum: These 2 characters are interpreted as a hexadecimal byte. This number is
determined as follows: Sum the byte values of each pair of hex digits in the count, address,
and data fields of the record. Take the one’s complement. The least significant byte of the
result is used as the checksum.

D.2 Specific Formats
Each of the record types has a slightly different format. These are all derived from the
general format specified above and are summarized in the following table.

TypeDescription

S0

Contains header information for the S-record. This data isn’t actually loaded into memory.
The address field of an S0 record is unused and will contain 0x0000. The data field contains
the header information, which is divided into several sub-fields:

 char[20] module name
 char[2] version number
 char[2] revision number
 char[0-36] text comment

Each subfield is composed of ASCII characters. These are paired and interpreted as one
byte hex values in the case of the revision number and version number fields. For the
module name and text comment fields these values should be interpreted as hexadecimal
values of ASCII characters.

S1

The address field is interpreted as a 2-byte address. The data in the record is loaded into
memory at the address specified.

S2

The address field is interpreted as a 3-byte address. The data in the record is loaded into
memory at the address specified.

S3

The address field is interpreted as a 4-byte address. The data in the record is loaded into
memory at the address specified.

S5

The address field is interpreted as a 2-byte value which represents a count of the number of
10D-104 Dink32 R12 User’s Manual

S-Record Format Description

hat 16
r S0 is
ed in a
thing

uld be
r pairs
mory

 have
aracter
S1, S2, and S3 records previously transmitted. The data field is unused.

S7

The address field is interpreted as a 4-byte address and contains the execution start address.
The data field is unused.

S8

The address field is interpreted as a 3-byte address and contains the execution start address.
The data field is unused.

S9

The address field is interpreted as a 2-byte address and contains the execution start address.
The data field is unused.

D.3 Examples
Following are some sample S-record entries broken into their parts with a short
explanation:

Example 1: S010000077726974656D656D2E73726563AA
Separated: S0-10-0000-77726974656D656D2E73726563-AA

•Type: S0 - this is a header record •Count: 10 - interpreted as 0x10; indicates t
character pairs follow •Address: 0000 - interpreted as 0x0000. The address field fo
always 0x0000. •Data: Since this is a header record, the information can be interpret
number of ways. It doesn't really matter since you usually don't use this field for any
interesting. •Checksum: AA - the checksum

Example 2: S21907000074000000700000003D20DEAD6129BEEF3C60000060E0
Separated:
S2-19-070000-74000000700000003D20DEAD6129BEEF3C60000060-E0

•Type: S2 - the record consists of memory-loadable data and the address sho
interpreted as 3 bytes •Count: 19 - interpreted as 0x19; indicates that 25 characte
follow •Address: 070000 - data will be loaded at address 0x00070000 •Data: Me
loadable data representing executable code •Checksum: E0 - checksum

Example 2: S804070000F4
Separated: S8-04-070000-F4

•Type: S8 - this is the record with the execution start address; also indicates we
reached the end of our s-record •Count: 04 - interpreted as 0x04; indicates that 4 ch
Appendix D. S-Record Format Description 10D-105

S-Record Format Description

 this

r the
during
pairs follow •Address: 070000 - execution will begin at 0x00070000 •Data: None -
field is unused for S8 records. •Checksum: F4 - checksum

D.4 Summary of Formats

The following table summarizes the length (in characters, bytes) of each field fo
different S-record types. It is useful as a reference when parsing records manually
debug.

Table 10-1. Summary of Formats in Bytes

Type Count Address Data Checksum

S0 2 n/a 0-60 2

S1 2 2 byte address 0-64 2

S2 2 3 byte address 0-64 2

S3 2 4 byte address 0-64 2

S5 2 2 byte count 0 2

S7 2 4 byte execution address 0 2

S8 2 3 byte execution address 0 2

S9 2 4 byte execution address 0 2
10D-106 Dink32 R12 User’s Manual

Example Code

GCC
. It

en be
ant to
mory

DINK
 PCI
ge in

s is in

dme.
Appendix E Example Code

E.1 General Information
Eight example directories are included in the DINK32 distribution. These directories
include all the source files, makefiles, and readme files(s). All these directories contain
examples of using the new dynamic dink addresses as described in Appendix G.

There are generally three makefiles for each of these demos.

• makefile - UNIX metaware

• makefile_pc - PC/DOS metaware

• makefile_gcc - UNIX GNU GCC

The metaware compiled code will complete by returning to dink with out error. The
compiled code will return to DINK32 with the 0x00000c00 system call exception
appears that GCC attempts to return by issuing the sc instruction.

E.2 agentboot
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This example program is me
demonstrate how to boot an MPC8240/MPC107 based PCI Agent from Host local me
space on the Sandpoint reference platform.

E.2.1 Background
DINK32 V12.0 and later is currently setup up so that once the Host boots up from the
image in ROM, it then configures the Agent. Once the Agent is configured, it's
Command Register is then set and it is allowed to boot up from the same DINK ima
ROM. What this example code does is force the Agent to boot up from code it think
ROM, but is actually in Host local memory space.

E.2.2 In This Directory
• README.txt - this appendix

• main.c - C code routines

• agentboot.s - ASM code routines

• makefile - UNIX makefile

• makefile_pc - PC makefile

• agentboot.txt - agentboot demo summary file including the source files and rea
Appendix E. Example Code 10E-107

Example Code

ote

le to

ce at
 777

NK
.

t up

ut
.

2.0
E.2.3 Assumptions
• Running on a Sandpoint Reference Platform.

• MPC8240/MPC107 based Agent in 32bit PCI slot #4 (Third from PMC). See N
3 below on using alternate PCI slots.

• Running DINK32 V12.0 or later.

E.2.4 Usage
• Download the modified DINK32 V12.0 (See Notes section).

• Compile/Assemble the code below and link into S-Record format downloadab
0x90000 using makefile or makefile_pc. Simply type make to use the UNIX
makefile, or type make -f makefile_pc to use the PC makefile.

• Download the S-Record to Host local memory using dl -k at the Host's DINK32
command prompt.

• Launch the program using go 90000 at the Host's DINK32 command prompt.

• The program should set up the Agent to boot from the Host’s local memory spa
0x0100. The agent boot code located there will have the Agent write the value
(0x309) to Host local memory at 0x4C04. The user can verify this by using DI
to display that memory location by typing md 4c04 at the DINK command prompt

E.2.5 Notes
• Usage of this program on the current release of DINK32 V12.0, requires the

DINK32 source code to be modified to NOT allow a detected PCI agent to boo
from ROM. This modification will NOT be necessary in the next release of
DINK32. The modification is as follows:

In the except2.s file, modify the config_kahlua_agent routine by commenting o
the store to PCI Command Register (PCICMD) instructions pointed to below..

// slave enable: enable memory access in PCI command reg.

// since we don’t need to configure the ATU, we will

// enable PCI master at this time.

ori r3,r7,PCICMD

li r4,0x0006 // set memory access bit

-->// stwbrx r3,0,r5

sync

-->// sthbrx r4,0,r6 // write

sync

• In order to use DINK's Dynamic Functions such as printf you must #include
dinkusr.h and link dinkusr.s during compilation/link time. Please see DINK32 V1
User's Guide Appendix G for more info.
10E-108 Dink32 R12 User’s Manual

Example Code

ress

 PCI

at can

d

more

n that
ory has
nosc
stone
bat1l.
 in the
• Using the other available Sandpoint PCI slots simply requires modifying the
configuration address in the pciConfigOutWord() and pciConfigOutHalfWord()
routines. Currently the routines are set for 0x800080XX, the configuration add
for slot #4 on Sandpoint with the 0xXX representing the config register offset.
Please refer to Rev 0.10 or later of the "Sandpoint Motherboard Technical
Summary" white paper, Section 1.8 PCI Slot Information. The Configuration
Address column of Table 1-1 shows the correct configuration address for each
slot.

E.3 Demo
The demo directory contains source files that can be built to build an application th
then be downloaded into dink at address 0x90000 and run.

E.3.1 Building
The demo can be built with the UNIX or PC command, make -f makedemo. The
demo.src file can be downloaded with the DINK32 command dl -k. It can be executed
with the DINK32 command, go 90000. Demo will run continuously. It can be stoppe
by a reset, or by setting the flow control to none before the go 90000.

E.3.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.

E.4 Dhrystone
The dhrystone directory contains source files that can be built to build an applicatio
can then be downloaded into dink at address 0x90000 and run. The dhrystone direct
two subdirectories ties, MWnosc and watch. The makefile is contained in the MW
directory. This directory contains all the code necessary to build and run a Dhry
benchmark program. Before starting execution, change the value of hid0 and d
DINK32 by default starts the downloaded program with caches off and cache inabled
dbats. Change hid0 to 0000cc00 and dbat1l to 12. Use these commands:
rm hid0 | 0000cc00, rm dbat1l | 12.

E.4.1 Building
The demo can be built with the UNIX or PC command, make. After making the
dhrystone src, download the file, dhry.src with the DINK32 command dl -k. Then change
the hid0 register to 8000C000 and change the dbat1L to 12.
Appendix E. Example Code 10E-109

Example Code

more

en be
ache.

more

,0 and
ister 2,
dpoint
ers for

en be
ant to
There are two makefiles:

• makefile - use the UNIX PowerPC cross tools.

• makefile_pc - use the PC PowerPC cross tools.

 It can be executed with the DINK32 command, go 90000.

E.4.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.

E.5 L1test
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This application will test the L1 c
Read the l1test.readme for more information.

E.5.1 Building
The l1test program can be built with the UNIX or PC command, make. There are two
targets

• l1testdink - target that runs under the control of dink - l1testdink.src

• l1teststdalone - target that can run standalone - l1teststd.src

The l1testdink.src file can be downloaded with the DINK32 command dl -k. It can be
executed with the DINK32 command, go 90000.

E.5.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.

E.5.3 Excimer versus Yellowknife
The default code is designed to run on the Yellowknife/Sandpoint. The Bat registers
1, are the same for these platforms and the Excimer/Maximer. However, the bat reg
ibat2 and dbat2 are the IO space bats. The IO space is different for Yellowknife/San
The user can look at the code in L2test to determine how to set up the bat2 regist
Excimer, see E.7.3, “Excimer versus Yellowknife".

E.6 l2sizing
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This example program is me
10E-110 Dink32 R12 User’s Manual

Example Code

le to

2.0

en be
cache
demonstrate how to detect whether a processor is a MPC740 or MPC750. It also detects the
size of the L2 Backside Cache.

E.6.1 In This Directory
• README.txt - this appendix

• l2sizing1.c - C code routines

• l2sizing2.s - ASM code routines

• l2sizing.h - Header file

• l2sizing.src - Downloadable S-Record

• makefile - UNIX makefile

• makefile_pc - PC makefile

E.6.2 Assumptions
• Running DINK32 V12.0 or later.

E.6.3 Usage
• Download the modified DINK32 V12.0 (See Notes section).

• Compile/Assemble the code below and link into S-Record format downloadab
0x90000 using makefile or makefile_pc. Simply type make to use the UNIX
makefile, or type make -f makefile_pc to use the PC makefile.

• Download the S-Record to Host local memory using dl -k at the Host's DINK32
command prompt.

• Launch the program using go 90000 at the Host's DINK32 command prompt.

E.6.4 To Build
• UNIX: make [clean]

• PC: make -f makefile_pc [clean]

E.6.5 Notes
• In order to use DINK's Dynamic Functions such as printf you must #include

dinkusr.h and link dinkusr.s during compilation/link time. Please see DINK32 V1
User's Guide Appendix G for more info.

E.7 L2test
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This application will test the L2
Appendix E. Example Code 10E-111

Example Code

more

,0 and
ister 2,
dpoint
the

r it is
e for
t out
 l2test

blink
0 and

th the

more
and exercise the performance monitor. Read the l2test.readme for more information.

E.7.1 Building
The demo can be built with the UNIX or PC command, make. There are seven targets,
composed of a UNIX PowerPC target, a UNIX native target, and a PC target. The l2test.src
file can be downloaded with the DINK32 command dl -k. It can be executed with the
DINK32 command, go 90000. There are two makefiles:

• makefile - used for this release of DINK32 R12 and beyond.

• makefile_dink11 - used for previous releases of dDINK32.

E.7.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.

E.7.3 Excimer versus Yellowknife
The default code is designed to run on the Yellowknife/Sandpoint. The Bat registers
1, are the same for these platforms and the Excimer/Maximer. However, the bat reg
ibat2 and dbat2 are the IO space bats. The IO space is different for Yellowknife/San
than for Excimer/Maximer. Therefore, this code will make and run only on
Yellowknife/Sandpoint systems. In order to make and run it on the Excimer/Maxime
necessary to modify l2testutils.s. In the BATInit function about line 267 is the bat2 cod
Yellowknife/Sandpoint, about line 276 is the Excimer/Maximer code. Ifdef or commen
the Yellowknife code, and remove the ifdef around the Excimer code. Then make the
executable and run it on the Excimer/Maximer platform.

E.8 lab4
The directory contains source files that can be built to build an application that will
the lights on the Excimer platform when it is downloaded into dink at address 0x9000
run. This test will only work on Excimer.

E.8.1 Building
The lab4 can be built with the any of the three makefiles. It can be executed wi
DINK32 command, go 90000. Demo will run continuously.

E.8.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.
10E-112 Dink32 R12 User’s Manual

Example Code

h as

h it is

n

mined

en be
rious

more
E.9 memspeed
The directory contains source files that can be built to build an application that can then be
downloaded into dink at address 0x90000 and run. This application will demonstrates using
the dynamic variable (and dynamic function) capability. The two variables, memSpeed
(bus speed), and process_type (Processor type) are available via the dink_transfer_table as
described in Appendix G, “Dynamic functions such as printf and variables suc
memSpeed".

It prints out the memory bus speed and processor name of the board on whic
executing.

E.9.1 Building
The demo can be built with the UNIX or PC command, make. The memspeed.src file ca
be downloaded with the DINK32 command dl -k.

It can be executed with the DINK32 command, go 90000.

E.9.2 Function Addresses
All dink function addresses and the two dink variable addresses are deter
dynamically, see Appendix G for more information.

E.10 printtest
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This application will test the va
printf features.

E.10.1 Building
The demo can be built with the UNIX or PC command, make. The printtest.src file can be
downloaded with the DINK32 command dl -k.

It can be executed with the DINK32 command, go 90000.

E.10.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for
information.
Appendix E. Example Code 10E-113

Example Code
E.11 testfile
This directory contains source files that can be built to build an application, which is an
endless loop, that can then be downloaded into dink at address 0x90000 and run.

E.11.1 Building
The testfile can be built with the UNIX or PC command, makefiles. The demo.src file can
be downloaded with the DINK32 command dl -k. It can be executed with the DINK32
command, go 90000. testfile will run continuously. It can be used to try out the
breakpoint and other features of DINK32.

E.11.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for more
information.
10E-114 Dink32 R12 User’s Manual

Updating DINK32 from the Web

 new
load
.10,

 from

 the
ase
h
Appendix F Updating DINK32 from the
Web

F.1 General Information
The DINK32 web site is part of the motorola non-confidential web site. The URL is:

http://www.mot.com/SPS/PowerPC/tecsupport/tools/DINK32/index.html

The format in general includes elf and sfiles for DINK32 both debug and non-debug on.

F.1.1 For YellowKnife and Sandpoint:
Using a ROM burner or in line ROM emulator load the dink32.src srecord file or the dink32
executable.

See Section 4.1.13, “fupdate fu".

F.1.2 For Excimer and Maximer:
Using the mdink32 facility running on an Excimer and Maximer board, download the
dink32 with the command dl -fl -o ffc00000, then using your terminals ascii down
facility, download the dink32 sfile. See Section 4.1.14, “fw fw -e" and Section 4.1
“download dl".

The steps for downloading a new DINK32 into excimer or maximer:

1. Connect the board to the computer by using a null-serial cable to connect port1
excimer or maximer board to com1 on the host computer PC.

2. Start Hyperterminal on a Windows NT PC see F.3.1, “Hyperterm on NT" or a
terminal emulator on a Mac see F.3.2, “Zterm on Mac".

3. Reset the excimer or maximer board and stop MDINK32 by hitting any key on
keyboard during MDINK32 startup. Perform the command, fw -e, which will er
all of flash memory and recopy MDINK32 to flash. Normally, the MDINK32 flas
sector is protected and the copy will be a no operation.

4. When mdink prompt returns, reset board.

5. Reset the baud rate by doing the following:

— sb -k 57600

— Press enter

— Select Disconnect icon

— Select Properties icon
Appendix F. Updating DINK32 from the Web 10F-115

Updating DINK32 from the Web

de is
nk32.
using

 form,
built.

l site

 here as
tion.
ary to
 and
— Press Configure button

— Change bits per second (baud rate) to 57600

— Press Okay button

— Select connect button

— Press enter

6. Type fl -dsi (Only required on mdink32 V10.6)

7. Type dl -fl -o ffc00000

8. Select pull down menu “transfer” use option “send text file” and select the
dink32.src file from the list of files. (DO NOT use the option “send file”.)

MDINK32 is not supplied as elf or sfiles on this site. However, all the code (some co
purposefully removed and the object files are substituted) is available to build mdi
Loading MDINK32 requires unprotecting sector 15 on the Excimer and Maximer and
some type of emulator to download the code.

Selected DINK32 code is available at this site. Some files are not released in source
however, the object code for the removed files are supplied so that DINK32 can be

All the source, including the removed code, is available from the Motorola confidentia
and can be obtained from you Motorola Salesperson.

F.2 Makeing a DINK32 or MDINK32 from the Release
This release does not include several source files. These source files are included
empty files. None of the dink_dir or mdink_dir directories are included in this distribu
In order to modify any of the source files and remake a dink or mdink, it is necess
copy the appropriate directory from the "objects" directory to this source directory
name it dink_dir or mdink_dir.

The objects directories are:

• dink_excimer_met/

• dink_yk_met/

• mdink_excimer_met/

• dink_excimer_met_g/

• dink_yk_met_g/

• mdink_excimer_met_g/

• dink_excimer_pc/

• dink_yk_pc/

• mdink_excimer_pc/
10F-116 Dink32 R12 User’s Manual

Updating DINK32 from the Web

es,
• dink_excimer_pc_g/

• dink_yk_pc_g/

• mdink_excimer_pc_g/:

• dink_excimer_gcc/

• dink_yk_gcc/

• mdink_excimer_gcc/

The naming convention is:

• dink - dink

• mdink - mdink

• excimer - excimer or maximer

• met - metaware compiler on unix

• gcc - gnu gcc compiler on unix

• pc - metaware compiler on an NT/PC.

The steps to make a succesful compile are:

1. copy one of the sfile directories to the source directory and call it dink_dir or
mdink_dir

2. make tch This will touch all the object files in the dink_dir or mdink_dir directori
so that none of the empty *.c files will replace the associated object file.

3. make your source file changes.

4. make dink or make mdink.

If you forget the "make tch", then remove the dink_dir or
mdink_dir directory, and recopy it.

example:

• unzip the dink32_12_0.zip file, it will unzip to readable.

• unzip the dink32_12_0_objects.file it will unzip to objects.

• copy one of the objects to the unzipped readable file.

— e.g.
cp -r objects/dink_yk_met readable
make tch
make dink
Appendix F. Updating DINK32 from the Web 10F-117

Updating DINK32 from the Web

 find
end is

F.3 Settings for terminal emulators

F.3.1 Hyperterm on NT
Connect the NT and Excimer with a standard 9 pin null modem cable.

Start Hyperterminal.

Use these properties

• Function - Terminal Keys checked

• Emulation - ANSI

• Backscrool Buffer lines - 500

Use this ASCII setup

• ASCII Sending

— Send line ends with line feeds - unchecked

— Echo typed character locally - unchecked

• Line delay - 0

• Character delay - 0

• ASCII Receiving

— Wrap lines that exceed teminal width - checked

— all others unchecked

Use these settings:

• baud - 9600

• data bits - 8

• parity - none

• stop bits - 1

• flow control - hardware

F.3.2 Zterm on Mac

1. Connect Mac and Excimer with a null modem cable. It may not be possible to
a standard cable for this connection, so one can build a cable as follows. One
a female PC DB9 (9 pin) connector, the other end is a Mac DIN8 (8 pin) male
connector. The pinout is listed below.

.

10F-118 Dink32 R12 User’s Manual

Updating DINK32 from the Web
2. Install Z-term 0.9 or equivalent, terminal emulator.It can be downloaded over the
internet from the url: (http://www.sendit.nodak.edu/sendit/software/zterm09.hqx).

Z-Term settings :
• Under Settings, goto Connection and set only the following:

• Service Name: SENDIT

• Data Rate: 9600

• Data Bits: 8

• Parity: None

• Stop Bits: 1

Under Settings, goto Terminal and set only the following:
• Don't drop DTR on exit

• PC ANSI-BBS

Under Settings, goto TextPacking and only set the following:
• Delay between chars: 0

• Delay between lines: 1

Under Settings, goto Modem preferences and make sure there is nothing set in this win-
dow.

All other settings should be the default.

To use Z-Term connect excimer and power it on. Z-Term should automatically detect it

1
2
3
4
5
6
7
8

6
1,7,8
2
5
3
NC
NC
5

Mac Pins PC Pins

12345

6789

Female DB9 PC Cable

1 2

3

4

6
7

8

5

Male DIN8 Mac Cable

Notice the gap between
Pin 4 and 5
Appendix F. Updating DINK32 from the Web 10F-119

Updating DINK32 from the Web
and display the bootup output on the screen.

3. Install Fetch 2.02 or equivalent. This enables downloading and uploading files from
a unix to/from a Mac account. It can be found at he url:
(http://www.dartmouth.edu/pages/softdev/fetch.html).

After installing set up the preferences. Goto Customize and select Preferences. Then select
the tab named Firewall. Check off the Use Proxy FTP server box and enter frpgate0 in the
text box provided. In the text box below that enter w3-aus. For the text box that goes with
’Don’t Use proxy or socks for" It you are using a proxy server ensure all the proxy settings
are correct. For our Motorola site, enter the following:
www,webman,sps.mot.com,w3-phx,w3-aus,w3-muc, w3-hkg, w3-tky

Close Fetch and reopen it. Now it will ask you to enter a Host, User ID, Password, Direc-
tory…. Enter all these and then say O.K.
It is advisable to always use binary when downloading a file.

4. Install NCSA Telnet 2.6 or above from url:
(http://www.ncsa.uiuc.edu/SDG/Software/MacTelnet/HowToGetIt.html). This is a
simple telnet session for a Macintosh. It Enables the user to connect to the unix
server. No adjustment to the setting are required. Just enter the server name, user
name , and password when prompted.
10F-120 Dink32 R12 User’s Manual

Dynamic functions such as printf and variables such as memSpeed
Appendix G Dynamic functions such as
printf and variables such as memSpeed

G.1 General Information
Many library functions such as printf are available via the DINK32 debugger. In the past,
it has been necessary to ascertain the address of these functions, which change with each
compile, from the cross reference listing, and statically set these addresses in the programs
that used these features. The demo and dhrystone directories included with the DINK32
distribution contained examples of how to set these static function addresses. With the
release of DINK32 V11.1 and V12.0, these addresses are now dynamically ascertained and
the user only need call a few functions and set up some #defines. This technique is
described in this appendix. Users with access to the entire DINK32 source base can modify
or add DINK32 functions. DINK32 global variables can also be ascertained from this table.
R12.1 includes the two global variables, memSpeed, and process_type.

G.2 Methodology and implementation.
This method is implemented with a static structure that is filled with the current functions
address during link time. The table is allocated in the file par_tb.c. Only users with access
to this file can change the contents of the table, thereby, determining which DINK32
functions are available. par_tb.c is only available via the motorola sales office, it is not
included on the web site. However, all users can use the technique for linking their code
with the these DINK32 functions.

The structure is defined in dink.h as dink_exports

typedef struct {
 int version; /* 0 */
 unsigned long *keyboard; /* 4 */
 int (*printf)(const char*,...); /* 8 */
 unsigned int (*dink_loop)(); /* 12 */
 int (*is_char_in_duart)(); /* 16 */
 unsigned int (*menu)(); /* 20 */
 unsigned int (*par_about)(); /* 24 */
 unsigned int (*disassemble)(/*long, long*/); /* 28 */
 char (*get_char)(unsigned long); /* 32 */
 char (*write_char)(char); /* 36 */

unsigned long *memSpeed; /* 40 */
 char *process_type; /* 46 */
 } dink_exports;

and populated in par_tb.c as dink_transfer_table.

dink_exports dink_transfer_table = {
 1,
Appendix G. Dynamic functions such as printf and variables such as mem-
Speed 10G-121

Dynamic functions such as printf and variables such as memSpeed
 &KEYBOARD,
 (int (*)(const char*,...))dink_printf,
 dink_loop,
 is_char_in_duart,
 menu,
 par_about,
 disassemble,
 get_char,
 write_char,

 &memSpeed,
 &process_type
 };

As you can see, at this time, these are the only functions and variables that are supported.
Additional or replacement DINK32 functions and global variables can be added to the
table.

This table is allocated and linked into the DINK32 binaries. The user typically downloads
his/her program into the starting location of free memory, at this release, address 0x90000.
Unfortunately, the user program has no way of determining where the dink_transfer_table
is located. Therefore when DINK32 transfers control to the user program, it sets the address
of the dink_transfer_table in general purpose register 21 in go_tr2.s. This register appears
to be immune from being used by the compiler prior to the invocation of the user programs
start address, usually, main(). Therefore the user must call the supplied function,
set_up_transfer_base, or equivalent, which is described below in G.4. After this call the
address of the dink_transfer_table is available to the user program.

G.3 Setting up the static locations.
The table below shows all the functions that are currently supported.

Table 1: DINK32 dynamic names

DINK32 name Common name

Version of table 1

&KEYBOARD com port for Keyboard support

dink_printf printf

dink_loop DINK32 idle function

is_char_in_duart has DINK32 detected a character

menu entry point for DINK32 menu function

par_about entry point for DINK32 about function

disassemble entry point for DINK32 disassemble function
10G-122 Dink32 R12 User’s Manual

Dynamic functions such as printf and variables such as memSpeed

 The
To change or add any new DINK32 functions or variables, one must change the
dink_transfer_table.

To use any of these functions in user code, define the user code function name to be the dink
function name. For example, to link the user code printf to the DINK32 printf function,
#define printf dink_printf, to link the user code put_char to DINK32
write_char, #define put_char writechar. See the directories demo and dhrystone
for examples of setting up these #define statements. See the directory memspeed for an
example of how to use dynamic global variables.

G.4 Using the Dynamic Functions.
Using these functions is implemented via the assembly language file, dinkusr.s, and the
include file dinkusr.h. The user #includes dinkusr.h and links in dinkusr.s during
compilation/link time. All of the functions in this table except
set_up_transfer_base, transfer control to the DINK32 function while leaving the
link register, lr, unchanged. This effectively transfers control to the DINK32 function and
the DINK32 function on completion returns directly to the caller in the user’s code.
functions supplied in dinkusr.s are shown in the table below.

get_char get_char - get next character from com port

write_char put_char - send character to com port

memSpeed address of global variable memSpeed

process_type address of global variable process_type

Table 2: dinkusr.s Functions

Function name Function definition

set_up_transfer_base Capture the dink_transfer_table address
from r21 and store it into a local memory
cell for future use. You must call this func-
tion before using any of the functions
below, and it should be called immediately
after entry, such as the first statement in
main().

dink_printf DINK32 entry into printf.

dink_loop DINK32 idle loop

Table 1: DINK32 dynamic names

DINK32 name Common name
Appendix G. Dynamic functions such as printf and variables such as mem-
Speed 10G-123

Dynamic functions such as printf and variables such as memSpeed
The simple steps for using these dynamic addresses are:

1. Use DINK32 V11.1 or later.

2. Use #define for local functions that you wish to connect to the DINK32 functions
example: #define printf dink_printf

3. The first executable statement in your C code must be: set_up_transfer_base();

4. Now whenever your program calls one of these functions, such as printf, it will
transfer control to the equivalent DINK32 function.

5. Or, whenver your program needs the value of a DINK32 global value defined in the
table, call the associated get function in dinkusr.s.

is_char_in_duart DINK32 function to determine if a character
has been received.

menu DINK32 display menu function.

par_about DINK32 display about function.

disassemble DINK32 disassemble instruction

get_KEYBOARD Return address of keyboard com port

get_char DINK32 get next character from the duart
buffer, essentially the keyboard for the user.
This function requires the KEYBOARD
value, obtained from get_KEYBOARD, as
an argument. See G.6 example program
_getcannon for an example of the correct
way to obtain this value.

write_char DINK32 put character to the output buffer.

get_memSpeed returns the integer value of memSpeed
example:
int val;
val=get_memSpeed();

get_process_type returns the character value of process_type
example:
char type;
type=get_process_type();

Table 2: dinkusr.s Functions

Function name Function definition
10G-124 Dink32 R12 User’s Manual

Dynamic functions such as printf and variables such as memSpeed
G.5 Error Conditions.
The only error condition is a trapword exception, which indicates that the
dink_transfer_table address is zero. This is caused by one of the following conditions:

1. The user has not called set_up_transfer_base()

2. R21 is getting trashed before set_up_transfer_base() is called.

3. The DINK32 version does not support dynamic functions. DINK32 V11.0.2 was the
last version that DID NOT support this feature. Ensure that you are using DINK32
V12.0 or greater.

G.6 Alternative method for Metaware only.
While printf is fairly straightforward, scanf is more complex. In the drystone directory, a
local copy of scanf is supplied in the file, support.c. Scanf and printf can also be
emulated in a simpler program when using the metaware compiler. Two metaware
functions are supplied to the user to give control to characters that are scanned into and out
of the program buffers. Refer to the metaware documentation for more information than is
given here.

When the user compiles and links with the -Hsds flag, two functions, int
_putcanon(int a), and int _getcanon() are called whenever the user gets or
receives a character. Thus, the user can write the simple functions shown below, and scanf
and printf will use the DINK32 functions for printf and scanf. In this case, it is not necessary
to use #define to change the name of the printf or scanf functions or write your own printf
or scanf function. It is still necessary to call set_up_transfer_base() as the first
statement in your program.

/***
**
 * Functions to capture characters from printf and scanf using
 * the -Hsds hooks in the metaware compiler
 * mlo 7/22/99
**
*/

#include "dinkusr.h"

int _putcanon(int a)
{
/* grab the character sent by printf in -Hsds and
 * use it in dink putchar
*/
char c;
 c=a;
 write_char(c);
 return 1;
Appendix G. Dynamic functions such as printf and variables such as mem-
Speed 10G-125

Dynamic functions such as printf and variables such as memSpeed
}

int _getcanon()
{
/* extract the character received by scanf in -Hsds and use
 * it in dink putchar
 */
unsigned long key;
 key = get_KEYBOARD();
 return (get_char(key));
}
10G-126 Dink32 R12 User’s Manual

MPC8240 (Kahlua) Drivers

der the
wing
 of the
Appendix H MPC8240 (Kahlua) Drivers

H.1 Drivers directory.
There are four drivers for the MPC8240 integrated peripheral devices.

• DMA - memory controller

• I2C - serial controller

• I2O - doorbell controller

• EPIC - interrupt controller

Sample code for each of these drivers are in the directory, drivers, under dink32. Un
drivers directory are four directories, one for each controller see Figure 3-1. The follo
sections describe the driver and the sample code. Each driver is discussed in one
following four appendices.

• Appendix I, “MPC8240 DMA Memory Controller."

• Appendix J, “MPC8240 I2C Driver Library."

• Appendix K, “MPC8240 I2O Doorbell Driver"

• Appendix L, “MPC8240 EPIC Interrupt Driver"
Appendix H. MPC8240 (Kahlua) Drivers 10H-127

MPC8240 DMA Memory Controller.

c",
ll
ster,
the
tions
ver,
n the

Appendix I MPC8240 DMA Memory
Controller.
This section provides information about the generic Application Program Interface (API)
to the DMA Driver Library as well as information about the implementation of the
Kahlua-specific DMA Driver Library Internals (DLI).

I.1 Background
The intended audience for this document is assumed to be familiar with the DMA protocol.
It is a companion document to the Kahlua specification and other documentation which
collectively give details of the DMA protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua DMA
interface. This software is intended to assist in the development of higher level applications
software that uses the DMA interface.

Note: The DMA driver software is currently under
development. The only mode that is functional is a direct
transfer (chaining is not yet implemented). Only transfers to
and from local memory has been tested. Controlling a remote
agent processor is not yet implemented. Of the various DMA
transfer control options implemented in Kahlua, the only ones
currently available in this release of the DMA library are
source address, destination address, length, channel, interrupt
steering and snoop enable.

I.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, "generi
application level programmatic interface to the DMA driver library that hides a
details of the Kahlua-specific implementation of the interface (i.e., control regi
status register, embedded utilities memory block, etc.). Features provided by
Kahlua implementation that may or may not be common with other implementa
(i.e., not "generic" DMA operations) are made available to the application; howe
the interface is controlled by passing parameters defined in the API rather tha
application having to have any knowledge of the Kahlua implementation (i.e.,
registers, embedded utilities memory block, etc.) The API will be expanded to
include chaining mode and additional DMA transfer control features in future
releases.

• DMA API functions showing the following:
10I-128 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

ible

r
A

meter

n,

.

dard
ore)

ns to
 the
case
— how the function is called (i.e., function prototype) parameter definition poss
return values brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• A DMA Driver Library Internals (DLI) which provides information about the lowe
level software that is accessing the Kahlua-specific implementation of the DM
interface.

• DMA DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition possible

— return values

— brief description of what the function does

I.3 DMA Application Program Interface (API)
API functions description

The DMA API function prototypes, defined return values, and enumerated input para
values are declared in drivers/dma/dma_export.h.

The functions are defined in the source file drivers/dma/dma1.c.

DMA_Status
DMA_Initialize(int(*app_print_function)(char*,...));

• app_print_function is the address of the optional application's print functio
otherwise NULL if not available

• Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR

Description:

Configure the DMA driver prior to use, as follows:

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the library functio
report error and status condition information. If no print function is supplied by
application, the application must provide a NULL value for this parameter, in which
the library will not attempt to access a print function.

NOTE: Each DMA transfer will be configured individually by
the function call that initiates the transfer. If it is desirable to
establish a default configuration, these could be added as
Appendix I. MPC8240 DMA Memory Controller. 10I-129

MPC8240 DMA Memory Controller.

llows:

.

tus of
ust
parameters. Alternately, the first (or most recent) transfer
configuration values could also be used to establish defaults.

NOTE: This function call triggers the DMA library to read the
eumbbar so that it is available to the driver, so it is a
requirement that the application first call DMA_Initialize
before starting any DMA transfers. This could be eliminated if
the other functions read the eumbbar if it has not already been
done.

DMA_Status DMA_direct_transfer(DMA_INTERRUPT_STEER int_steer,
DMA_TRANSFER_TYPE type,
unsigned int source,
unsigned int dest,
unsigned int len,
DMA_CHANNEL channel,
DMA_SNOOP_MODE snoop);

• int_steer controls interrupt steering, use defined constants as follows:
DMA_INT_STEER_LOCAL to steer to local processor
DMA_INT_STEER_PCI to steer to PCI bus through INTA_

• type is the type of transfer, use defined constants as follows:
DMA_M2M local memory to local memory (note, this is currently the only one
tested)
DMA_M2P local memory to PCI
DMA_P2M PCI to local memory
DMA_P2P PCI to PCI

• source is the source address of the data to transfer

• dest is the destination address, the target of the transfer

• len is the length in bytes of the data

• channel is the DMA channel to use for the transfer, use defined constants as fo
DMA_CHN_0 Kahlua has two channels, zero and one
DMA_CHN_1

• snoop controls processor snooping of the DMA channel buffer, use defined
constants a follows:
DMA_SNOOP_DISABLE
DMA_SNOOP_ENABLE

• Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR

Description:

Initiate the DMA transfer.

This function does not implement any validation of the transfer. It does check the sta
the DMA channel to determine if it is OK to initiate a transfer, but the application m
10I-130 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.
handle verification and error conditions via the interrupt mechanisms.

I.3.1 API Example Usage
The ROM monitor program DINK32 currently uses the DMA API to initiate a direct data
transfer in local memory only. The DINK32 program runs interactively to allow the user to
transfer a block of data in local memory. DINK32 obtains information from the user as
follows: interrupt steering, transfer type, source address of the data, destination (target)
address, length of the data to transfer, DMA channel, and snoop control.

Note that the initialization call to configure the DMA interface is made once: the first time
the user requests a DMA transfer operation. Each transmit or receive operation is initiated
by a single call to a DMA API function. The DINK32 program is an interactive application,
so it gives the DMA library access to its own print output function. DINK32 does not
currently implement any handling of interrupts for error handling or completion of transfer
verification.

These are the steps DINK32 takes to perform a DMA transfer:

1. Call DMA_Initialize (if first transfer) to identify the optional print function.

2. Call DMA_direct_transfer to transmit the buffer of data.

The following code samples have been excerpted from the DINK32 application to illustrate
the use of the DMA API:

#define PRINT dink_printf
int dink_printf(unsigned char *fmt, ...)
{
/* body of application print output function, */
}
/* In the function par_devtest, for testing the DMA device interface
*/
{
/* initialize the DMA handler, if needed */
if (DMAInited == 0)
{
DMA_Status status;
if ((status = DMA_Initialize(PRINT)) != DMA_SUCCESS)
{
PRINT("devtest DMA: error in initiation\n");
return ERROR;
} else {
DMAInited = 1;
}
}
return test_dma(en_int); /* en_int is the steering control option
*/
}
/***
* function: test_dma
Appendix I. MPC8240 DMA Memory Controller. 10I-131

MPC8240 DMA Memory Controller.
*
* description: run dma test
*
* note:
* test local dma channel
**/
static STATUS test_dma(int en_int)
{
int len = 0, chn = 0;
long src = 0, dest = 0;
int mode = 0;
DMA_SNOOP_MODE snoop = DMA_SNOOP_DISABLE;
DMA_CHANNEL channel;
DMA_INTERRUPT_STEER steer;
/* The default for is en_int = 0 for DMA, this steers the DMA
interrupt to the local processor. If the DINK user puts a ’+’ on the
command line, en_int = 1 and the steering for the DMA interrupt is
to the PCI bus through INTA_. */

steer = (en_int == 0 ? DMA_INT_STEER_LOCAL : DMA_INT_STEER_PCI);

/* read source and destination addresses, length, type, snoop and
channel */
...

/* validate and translate to API defined parameter values */
...

/* call the DMA library to initiate the transfer */
if (DMA_direct_transfer (steer, type, (unsigned int)src,
(unsigned int)dest, (unsigned int)len, channel, snoop) !=
DMA_SUCCESS)
{
PRINT("dev DMA: error in DMA transfer test\n");
return ERROR;
}
return SUCCESS;
}

I.4 DMA Driver Library Internals (DLI)
This information is provided to assist in further development of the DMA library.

All of these functions are defined as static in the source file drivers/dma/dma1.c.

I.4.1 Common Data Structures and Values
The following data structures, tables and status values are defined (see drivers/dma/dma.h
unless otherwise noted) for the Kahlua DMA driver library functions.

These are the register offsets in a table of the Embedded Utilities
Memory Block addresses for the DMA registers.
#define NUM_DMA_REG 7
10I-132 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.
#define DMA_MR_REG 0
#define DMA_SR_REG 1
#define DMA_CDAR_REG 2
#define DMA_SAR_REG 3
#define DMA_DAR_REG 4
#define DMA_BCR_REG 5
#define DMA_NDAR_REG 6

The table that contains the addresses of the local and remote registers for both DMA
channels (defined in drivers/dma/dma1.c):

unsigned int dma_reg_tb[][14] = {
/* local DMA registers */
{
/* DMA_0_MR */ 0x00001100,
/* DMA_0_SR */ 0x00001104,
/* DMA_0_CDAR */ 0x00001108,
/* DMA_0_SAR */ 0x00001110,
/* DMA_0_DAR */ 0x00001118,
/* DMA_0_BCR */ 0x00001120,
/* DMA_0_NDAR */ 0x00001124,
/* DMA_1_MR */ 0x00001200,
/* DMA_1_SR */ 0x00001204,
/* DMA_1_CDAR */ 0x00001208,
/* DMA_1_SAR */ 0x00001210,
/* DMA_1_DAR */ 0x00001218,
/* DMA_1_BCR */ 0x00001220,
/* DMA_1_NDAR */ 0x00001224,
},
/* remote DMA registers */
{
/* DMA_0_MR */ 0x00000100,
/* DMA_0_SR */ 0x00000104,
/* DMA_0_CDAR */ 0x00000108,
/* DMA_0_SAR */ 0x00000110,
/* DMA_0_DAR */ 0x00000118,
/* DMA_0_BCR */ 0x00000120,
/* DMA_0_NDAR */ 0x00000124,
/* DMA_1_MR */ 0x00000200,
/* DMA_1_SR */ 0x00000204,
/* DMA_1_CDAR */ 0x00000208,
/* DMA_1_SAR */ 0x00000210,
/* DMA_1_DAR */ 0x00000218,
/* DMA_1_BCR */ 0x00000220,
/* DMA_1_NDAR */ 0x00000224,
},
};

These values are the function status return values:
typedef enum _dmastatus
{
DMASUCCESS = 0x1000,
DMALMERROR,
DMAPERROR,
DMACHNBUSY,
Appendix I. MPC8240 DMA Memory Controller. 10I-133

MPC8240 DMA Memory Controller.
DMAEOSINT,
DMAEOCAINT,
DMAINVALID,
DMANOEVENT,
} DMAStatus;

These structures reflect the bit assignments of the DMA registers.

typedef enum dma_mr_bit
{
IRQS = 0x00080000,
PDE = 0x00040000,
DAHTS = 0x00030000,
SAHTS = 0x0000c000,
DAHE = 0x00002000,
SAHE = 0x00001000,
PRC = 0x00000c00,
EIE = 0x00000080,
EOTIE = 0x00000040,
DL = 0x00000008,
CTM = 0x00000004,
CC = 0x00000002,
CS = 0x00000001,
} DMA_MR_BIT;
typedef enum dma_sr_bit
{
LME = 0x00000080,
PE = 0x00000010,
CB = 0x00000004,
EOSI = 0x00000002,
EOCAI = 0x00000001,
} DMA_SR_BIT;
/* structure for DMA Mode Register */
typedef struct _dma_mr
{
unsigned int reserved0 : 12;
unsigned int irqs : 1;
unsigned int pde : 1;
unsigned int dahts : 2;
unsigned int sahts : 2;
unsigned int dahe : 1;
unsigned int sahe : 1;
unsigned int prc : 2;
unsigned int reserved1 : 1;
unsigned int eie : 1;
unsigned int eotie : 1;
unsigned int reserved2 : 3;
unsigned int dl : 1;
unsigned int ctm : 1;
/* if chaining mode is enabled, any time, user can modify the
* descriptor and does not need to halt the current DMA transaction.
* Set CC bit, enable DMA to process the modified descriptors
* Hardware will clear this bit each time, DMA starts.
*/
unsigned int cc : 1;
10I-134 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.
/* cs bit has dua role, halt the current DMA transaction and
* (re)start DMA transaction. In chaining mode, if the descriptor
* needs modification, cs bit shall be used not the cc bit.
* Hardware will not set/clear this bit each time DMA transaction
* stops or starts. Software shall do it.
*
* cs bit shall not be used to halt chaining DMA transaction for
* modifying the descriptor. That is the role of CC bit.
*/
unsigned int cs : 1;
} DMA_MR;
/* structure for DMA Status register */
typedef struct _dma_sr
{
unsigned int reserved0 : 24;
unsigned int lme : 1;
unsigned int reserved1 : 2;
unsigned int pe : 1;
unsigned int reserved2 : 1;
unsigned int cb : 1;
unsigned int eosi : 1;
unsigned int eocai : 1;
} DMA_SR;
/* structure for DMA current descriptor address register */
typedef struct _dma_cdar
{
unsigned int cda : 27;
unsigned int snen : 1;
unsigned int eosie : 1;
unsigned int ctt : 2;
unsigned int eotd : 1;
} DMA_CDAR;
/* structure for DMA byte count register */
typedef struct _dma_bcr
{
unsigned int reserved : 6;
unsigned int bcr : 26;
} DMA_BCR;
/* structure for DMA Next Descriptor Address register */
typedef struct _dma_ndar
{
unsigned int nda : 27;
unsigned int ndsnen : 1;
unsigned int ndeosie: 1;
unsigned int ndctt : 2;
unsigned int eotd : 1;
} DMA_NDAR;
/* structure for DMA current transaction info */
typedef struct _dma_curr
{
unsigned int src_addr;
unsigned int dest_addr;
unsigned int byte_cnt;
} DMA_CURR;
Appendix I. MPC8240 DMA Memory Controller. 10I-135

MPC8240 DMA Memory Controller.
I.5 Kahlua DMA Driver Library Internals: function
descriptions

The API function DMA_direct_transfer (described above) accepts predefined parameter
values to initialize a DMA transfer. These parameters are used by the DMA driver library
functions to set up the Kahlua DMA status and mode registers so that the application does
not have to interface to the Kahlua processor on such a low level. A description of the
processing performed in the DMA_direct_transfer function and descriptions of the lower
level DMA driver library functions follow.

This is a description of the DMA_direct_transfer processing, which initiates a simple direct
transfer:

1. Read the mode register (MR) by calling DMA_Get_Mode

2. Set the values in the mode register as follows:
IRSQ is set from the int_steer parameter
if steering DMA interrupts to PCI, set EIE and EOTIE
the other mode controls are currently hard coded:
PDE cleared
DAHS = 3; however this is ignored because DAHE is cleared
SAHS = 3; however this is ignored because SAHE is cleared
PRC is cleared
DL is cleared
CTM is set (direct mode)
CC is cleared

3. Validate the length of transfer value, report error and return if too large

4. Read the current descriptor address register by calling DMA_Poke_Desp

5. Set the values in the CDAR as follows:
SNEN is set from the snoop parameter
CTT is set from the type parameter

6. Write the CDAR by calling DMA_Bld_Desp, which checks the channel status to
ensure it is free

7. Write the source and destination address registers (SAR and DAR) and the byte
count register (BCR) by calling DMA_Bld_Curr, which maps them according to
channel and host and ensure the channel is free

8. Write the mode register by calling DMA_Set_Mode

9. Begin the DMA transfer by calling DMA_Start, which ensures the channel is free
and then clears and sets the mode register channel start (CS) bit

10. The proceeding steps 6 through 9 are done in a sequence so that each call must return
a successful status prior to executing the following step. The status is checked and
error conditions are reported at this point if all did not execute successfully.
10I-136 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

tents

.

11. If this point is reached, the DMA transfer was initiated successfully, return success
status

These are descriptions of the DMA library functions reference above in the
DMA_direct_transfer processing steps.

DMAStatus DMA_Get_Mode(LOCATION host,
unsigned eumbbar,
unsigned int channel,
DMA_MR *mode);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• mode is a pointer to the structure (DMA_MR) to receive the mode register con

• Return value is DMASUCCESS or DMAINVALID

Description:

Read the DMA mode register.

DMAStatus DMA_Poke_Desp(LOCATION host,
unsigned eumbbar,
unsigned int channel,
DMA_CDAR *desp);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CDAR) to receive the CDAR contents

• Return value is DMASUCCESS or DMAINVALID

Description:

Read the current descriptor address register (CDAR) specified by host and channel

DMAStatus DMA_Bld_Desp(LOCATION host,
unsigned eumbbar,
unsigned int channel,
DMA_CDAR *mode);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CDAR) holding the CDAR control bits

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID
Appendix I. MPC8240 DMA Memory Controller. 10I-137

MPC8240 DMA Memory Controller.

 and

e count

e, then
nsfer.
Description:

Set the current descriptor address register (CDAR) specified by host and channel to the
given values.

DMAStatus DMA_Bld_Curr(LOCATION host,
unsigned eumbbar,
unsigned int channel,
DMA_CURR *desp);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CURR) holding the source, destination
byte count

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Set the source address register (SAR), destination address register (DAR) and byt
register (BCR) specified by host and channel to the given values.

DMAStatus DMA_Start(LOCATION host,
unsigned eumbbar,
unsigned int channel);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Start the DMA transfer on the specified host and channel. Ensure the channel is fre
clear and set the CS bit in the mode register. That 0 to 1 transition triggers the DMA tra
10I-138 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

,

er

Appendix J MPC8240 I2C Driver Library.
This section provides information about the generic Application Program Interface (API)
to the I2C Driver Library as well as information about the implementation of the
Kahlua-specific I2C Driver Library Internals (DLI).

J.1 Background
The intended audience for this document is assumed to be familiar with the I2C bus
protocol. It is a companion document to the Kahlua specification and other documentation
which collectively give details of the I2C protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua I2C
interface. This software is intended to assist in the development of higher level applications
software that uses the I2C interface.

Note: The I2C driver software is currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

J.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, generic
application level programmatic interface to the I2C driver library that hides all
details of the Kahlua-specific implementation of the I2C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

• I2C API functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition

— possible return values

— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• An I2C Driver Library Internals (DLI) which provides information about the low
level software that is accessing the Kahlua-specific implementation of the I2C
interface.

— I2C DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition
Appendix J. MPC8240 I2C Driver Library. 10J-139

MPC8240 I2C Driver Library.

meter

only

ing the
nding

dard
ore)

ns to
 the
r, in
— possible return values

— brief description of what the function does

J.3 I2C Application Program Interface (API)

J.3.1 API functions description
The I2C API function prototypes, defined return values, and enumerated input para
values are declared in drivers/i2c/i2c_export.h.

The functions are defined in the source file drivers/i2c/i2c1.c.

I2C_Status I2C_Initialize(unsigned char addr,
I2C_INTERRUPT_MODE en_int,
int (*app_print_function)(char *,...));

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

• app_print_function is the address of the optional application's print function,
otherwise NULL if not available

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Configure the I2C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the I2C library currently
supports polling mode.

The slave address can be set to the I2C listening address of the device runn
application program, but the DLI does not yet support the application's device respo
as an I2C slave to another I2C master device.

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the I2C library functio
report error and status condition information. If no print function is supplied by
application, the call to I2C_Initialize must provide a NULL value for this paramete
which case the I2C library will not attempt to access a print function.

I2C_Status I2C_do_transaction(I2C_INTERRUPT_MODE en_int,
I2C_TRANSACTION_MODE act,
unsigned char i2c_addr,
unsigned char data_addr,
int len,
char *buffer,
I2C_STOP_MODE stop,
10J-140 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

LE

 data

TOP

slave

ceive
tween

ted
ely to
x50 on

rite
ice, not
ta (if

at the
time
eration
ctive

d
int retry,
I2C_RESTART_MODE rsta);

• en_int controls the I2C interrupt enable status (currently use I2C_INT_DISAB
only, polling mode)

• act is the type of transaction: I2C_MASTER_RCV or I2C_MASTER_XMIT

• i2c_addr is the I2C address of the slave device

• data_addr is the address of the data on the slave device

• len is the length in bytes of the data

• buffer is a pointer to the buffer that contains the data (xmit mode) or receives the
(rcv mode)

• stop controls sending an I2C STOP signal after completion (curently use I2C_S
only)

• retry is the timeout retry value (currently ignored)
rsta controls I2C restart (currently use I2C_NO_RESTART only)

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Act as the I2C master to transmit (or receive) a buffer of data to (or from) an I2C
device.

This function currently only implements a simple master-transmit or a master-re
transaction. It does not yet support the application retaining I2C bus ownership be
transactions, operating in interrupt mode, or acting as an I2C slave device.

J.3.2 API Example Usage
The ROM monitor program DINK32 uses the I2C API in both currently implemen
modes: master-transmit and master-receive. The DINK32 program runs interactiv
allow the user to transmit or receive a buffer of data from an I2C device at address 0
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/w
mode, I2C device address for the data (this is the address of the data on the I2C dev
the I2C bus address of the device itself, which is hard-coded in DINK32), the raw da
in write mode), and the length of the data to transfer to or from the device. Note th
initialization call to configure the I2C interface is actually made only once, the first
the user requests an I2C transmit or receive operation. Each transmit or receive op
is performed by a single call to an I2C API function. The DINK32 program is an intera
application, so it gives the I2C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, an
identify the optional print function.
Appendix J. MPC8240 I2C Driver Library. 10J-141

MPC8240 I2C Driver Library.
2. Call I2C_do_transaction to transmit the buffer of data.

These are the steps DINK32 takes to perform a master-receive transaction in polling mode:

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.

2. Call I2C_do_transaction to receive the buffer of data.

The following code samples have been excerpted from the DINK32 application to illustrate
the use of the I2C API:

#define PRINT dink_printf
int dink_printf(unsigned char *fmt, ...)
{
/* body of application print output function, see Appendix ??? */
}
/* In the function par_devtest, for testing the I2C device interface
*/
{
/* initialize the I2C handler to I2C address 48, if needed */
if (I2CInited == 0)
{
I2C_Status status;
if ((status = I2C_Initialize(48, en_int, PRINT)) != I2C_SUCCESS)
{
PRINT("devtest I2C: error in initiation\n");
return ERROR;
} else {
I2CInited = 1;
}
}
return test_i2c(action, en_int);
}
static unsigned char rcv_buffer[BUFFER_LENGTH] = { 0 };
static unsigned char xmit_buffer[BUFFER_LENGTH] = { 0 };
/***
* function: test_i2c
*
* description: run i2c test by polling the device
*
* note:
* Test i2c device on PMC card, 0x50 serial EPROM.
* The device test data is currently only printable characters.
*
* This function gets some data from the command line, validates it,
* and calls the I2C library function to perform the task.
**/
static STATUS test_i2c(int act, int en_int)
{
int retry = 800, len = 0, rsta = 0, addr = 0;
unsigned char eprom_addr = 0x50;
/* read transaction address */
... addr ...
/* read # of bytes to transfer */
10J-142 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.
... len ...

/* validate the data address, length, etc. */
...
/* If transmitting, get the raw data into the transmit buffer */
... xmit_buffer[] ...
/* read built-in I2C device on Kahlua PMC card */
if (act == DISPLAY_TAG)
{
if (I2C_do_transaction (en_int, I2C_MASTER_RCV, eprom_addr, addr,
len, rcv_buffer, I2C_STOP, retry, I2C_NO_RESTART) != I2C_SUCCESS)
{
PRINT("dev I2C: error in master receive test\n");
return ERROR;
} else {
rcv_buffer[len] = 0; /* ensure NULL terminated string */
PRINT("%s",rcv_buffer); /* expecting only printable data */
PRINT("\n");
}
}
/* write to built-in I2C device on Kahlua PMC card */
if (act == MODIFY_TAG)
{
if (I2C_do_transaction (en_int, I2C_MASTER_XMIT, eprom_addr, addr,
len, xmit_buffer, I2C_STOP, retry, I2C_NO_RESTART) != I2C_SUCCESS)
{
PRINT("dev I2C: error in master transmit test\n");
return ERROR;
}
}
return SUCCESS;
}

J.4 I2C Driver Library Internals (DLI)
This information is provided to assist in further development of the I2C library to enable
the application to operate as an I2C slave device, interrupt enabled mode, bus retention
between consecutive transactions, correct handling of device time out, no slave device
response, no acknowledgment, I2C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2c1.c.

J.4.1 Common Data Structures and Values
These data structures and status values are defined (see drivers/i2c/i2c.h) for the Kahlua
I2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the I2C registers.

#define I2CADR 0x00003000
#define I2CFDR 0x00003004
#define I2CCR 0x00003008
Appendix J. MPC8240 I2C Driver Library. 10J-143

MPC8240 I2C Driver Library.
#define I2CSR 0x0000300C
#define I2CDR 0x00003010
typedef enum _i2cstatus
{
I2CSUCCESS = 0x3000,
I2CADDRESS,
I2CERROR,
I2CBUFFFULL,
I2CBUFFEMPTY,
I2CXMITERROR,
I2CRCVERROR,
I2CBUSBUSY,
I2CALOSS,
I2CNOEVENT,
} I2CStatus;

These structures reflect the bit assignments of the I2C registers.

typedef struct _i2c_ctrl
{
unsigned int reserved0 : 24;
unsigned int men : 1;
unsigned int mien : 1;
unsigned int msta : 1;
unsigned int mtx : 1;
unsigned int txak : 1;
unsigned int rsta : 1;
unsigned int reserved1 : 2;
} I2C_CTRL;
typedef struct _i2c_stat
{
unsigned int rsrv0 : 24;
unsigned int mcf : 1;
unsigned int maas : 1;
unsigned int mbb : 1;
unsigned int mal : 1;
unsigned int rsrv1 : 1;
unsigned int srw : 1;
unsigned int mif : 1;
unsigned int rxak : 1;
} I2C_STAT;
Values to indicate receive or transmit mode.
typedef enum _i2c_mode
{
RCV = 0,
XMIT = 1,
} I2C_MODE;

J.5 Kahlua I2C Driver Library Internals: function
descriptions

I2CStatus I2C_Init(unsigned int eumbbar,
unsigned char fdr,
unsigned char addr,
10J-144 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

rrupt
unsigned int en_int);

• eumbbar is the address of the Embedded Utilities Memory Block

• fdr is the frequency divider value used to set the I2C clock rate

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: 1 = enable, 0 = disable

• Return: I2CStatus return value is always I2CSUCCESS.

Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and inte
enable mode (I2CCR:MIEN).

I2C_CTRL I2C_Get_Ctrl(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Return: I2C_CTRL is the contents of the I2C control register (I2CCR)

Description:

Read the I2C control register.

void I2C_Set_Ctrl(unsigned int eumbbar, I2C_CTRL ctrl);

• eumbbar is the address of the Embedded Utilities Memory Block

• ctrl is the contents of the I2C control register (I2CCR)

• Return: none

Description:

Set the I2C control register.

I2CStatus I2C_put(unsigned int eumbbar,
unsigned char rcv_addr,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block

• rcv_addr is the receiver's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator
Appendix J. MPC8240 I2C Driver Library. 10J-145

MPC8240 I2C Driver Library.

en the
r is the
erate a
Description:

Set up to send a buffer of data to the intended rcv_addr. If stop_flag is set, after the whole
buffer is sent, generate a STOP signal provided that the receiver doesn’t signal the STOP in
the middle. Caller is the master performing transmitting. If no STOP signal is generated at
the end of current transaction, the master can generate a START signal to another slave
address.

The function does not actually perform the data buffer transmit,
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CStatus I2C_get(unsigned int eumbbar,
unsigned char sender_addr,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block

• sender_addr is the sender's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, wh
buffer is full and the sender does not signal STOP, generate a STOP signal. Calle
master performing receiving. If no STOP signal is generated, the master can gen
START signal to another slave address.

The function does not actually perform the data buffer receive,
10J-146 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

t set
d

 given

addr is
or 1
d by
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CStatus I2C_Timer_Event(unsigned int eumbbar, I2CStatus
(*handler)(unsigned int));

• eumbbar is the address of the Embedded Utilities Memory Block

• handler is a pointer to the function to call to handle any existing status event,

• Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is no
results from call to the handler function if there was a pending event complete

Description:

In polling mode, I2C_Timer_Event can be called to check the I2C status and call the
(or the default: I2C_ISR) handler function if the I2CSR MIF bit is set.

I2CStatus I2C_Start(unsigned int eumbbar,
unsigned char slave_addr,
I2C_MODE mode,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block

• slave_addr is the I2C address of the receiver

• mode: XMIT(1) - put (write)

• RCV(0) - get (read)

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Generate a START signal in the desired mode. Caller is the master. The slave_
written to bits 7:1 of the I2CDR and bit 0 of the I2CDR is set to 0 for mode = XMIT
for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (use
I2C_ISR function).

I2CStatus I2C_Stop(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:
Appendix J. MPC8240 I2C Driver Library. 10J-147

MPC8240 I2C Driver Library.

Xmit,
P, to
alled
K =

ables
a byte
 the
 1

Xmit,
tion
F =
Generate a STOP signal to terminate the master transaction.

I2CStatus I2C_Master_Xmit(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master sends one byte of data to slave receiver. The DLI global variables ByteTo
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STO
transmit. If a data byte is sent, it is written to the I2CDR. This function may only be c
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXA
0 I2CCR.MSTA = 1 I2CCR.MTX = 1

I2CStatus I2C_Master_Rcv(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master receives one byte of data from slave transmitter. The DLI global vari
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the dat
or sending of a STOP if the buffer is full. This function may only be called when
following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =
I2CCR.MTX = 0

I2CStatus I2C_Slave_Xmit(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte sent
I2CBUFFEMPTY if no data in sending buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteTo
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This func
may only be called when the following conditions are met: I2CSR.MIF = 1 I2CSR.MC
1 I2CSR.RXAK = 0 I2CCR.MSTA = 0 I2CCR.MTX = 1

I2CStatus I2C_Slave_Rcv(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte received
I2CBUFFFULL if buffer is full or no more data expected

Description:
10J-148 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

 when

)

)

)

ed this
nction
. It is

tested
 when
Slave receives one byte of data from master transmitter. The DLI global variables
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data byte
or setting the acknowledge bit (I2CCR.TXAK) if the expected number of bytes have been
received. This function may only be called when the following conditions are met:
I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA = 0 I2CCR.MTX = 0

I2CStatus I2C_Slave_Addr(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CADDRESS if asked to receive data
results from call to I2C_Slave_Xmit if asked to transmit data

Description:

Process slave address phase. Called from I2C_ISR. This function may only be called
the following conditions are met: I2CSR.MIF = 1 I2CSR.MAAS = 1

I2CStatus I2C_ISR(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns:

— I2CADDRESS if address phase for master receive

— results from call to I2C_Slave_Addr if being addressed as slave (untested

— results from call to I2C_Master_Xmit if master transmit data mode

— results from call to I2C_Master_Rcv if master receive data mode

— results from call to I2C_Slave_Xmit if slave transmit data mode (untested

— results from call to I2C_Slave_Rcv if slave receive data mode (untested)

— I2CSUCCESS if slave has not acknowledged, generated STOP (untested

— I2CSUCCESS if master has not acknowledged, wait for STOP (untested)

— I2CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which caus
function to be called. Handle condition, see above in possible return values. This fu
is called in polling mode as the handler function when an I2C event has occurred
intended to be a model for an interrupt service routine for polling mode, but this is un
and the design has not been reviewed or confirmed. This function may only be called
the following condition is met: I2CSR.MIF = 1

This function is tested only for the master-transmit and
master-receive in polling mode. I don't think it is tested even in
those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc.
Appendix J. MPC8240 I2C Driver Library. 10J-149

MPC8240 I2C Driver Library.

ffer is
 STOP

 is full
rforming

 for
This
J.5.1 DLI Functions Written but not Used and not Tested:
I2CStatus I2C_write(unsigned int eumbbar,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag);

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Send a buffer of data to the requiring master. If stop_flag is set, after the whole bu
sent, generate a STOP signal provided that the requiring receiver doesn't signal the
in the middle. Caller is the slave performing transmitting.

I2CStatus I2C_read(unsigned int eumbbar,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag);

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Receive a buffer of data from the sending master. If stop_flag is set, when the buffer
and the sender does not signal STOP, generate a STOP signal. Caller is the slave pe
receiving.

J.6 I2C support functions
unsigned int get_eumbbar();

• Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary
information about the Embedded Utilities Memory Block Base Address Register.
function is defined in kahlua.s.
10J-150 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

 in

c2.s
unsigned int load_runtime_reg(unsigned int eumbbar,
& nbsp; unsigned int reg);

• eumbbar is the address of the Embedded Utilities Memory Block

• reg specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• Returns: register content

Description:

The content of the specified register is returned. This function is defined
drivers/i2c/i2c2.s.

unsigned int store_runtime_reg(unsigned int eumbbar,
& nbsp; unsigned int reg,
& nbsp; unsigned int val);

• eumbbar is the address of the Embedded Utilities Memory Block

• offset specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• val is the value to be written to the register

• Return: No return value used, it should be declared void.

Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2
Appendix J. MPC8240 I2C Driver Library. 10J-151

MPC8240 I2O Doorbell Driver

gister
gister
nt use
 control
e agent
uch as
gisters,
d via one
 the

and a
ed to
methods
ific, but
 chip
ffsets
 the

 host
gent’s
own
 and
 in the
Appendix K MPC8240 I2O Doorbell
Driver

K.1 I2O Description of Doorbell Communication
between Agent and Host

The sequence of events that transpire during communication via the I2O doorbell registers
between host and agent applications running on Kahlua are described. This implementation
enables basic doorbell communication. It can be expanded to include other Kahlua message
unit activity via the message registers and the I2O message queue.

K.1.1 System startup and memory map initialization
An understanding of the agent’s Embedded Utilities Memory Block Base Address Re
(EUMBBAR) and Peripheral Control and Status Registers Base Address Re
(PCSRBAR) is important for I2O doorbell communication because both host and age
the agent’s inbound and outbound doorbell registers and message unit status and
registers. The host accesses the agent’s registers via the agent’s PCSR and th
accesses its own registers via its own EUMB. It is worth noting that some registers, s
the doorbell registers, can be accessed via either the PCSR or the EUMB. Other re
such as the message unit’s status and interrupt mask registers, can only be accesse
or the other of the PCSR or EUMB, but not both. The I2O library functions require
caller to provide the base address (which will be either the PCSR or the EUMB)
parameter indicating which is used. In the DINK32 environment, functions are provid
obtain both of these base addresses: get_kahlua_pcsrbar() and get_eumbbar(). The
of setting and obtaining the PCSR and EUMB base addresses are application-spec
the register offsets and bit definitions of the registers are specified for the Kahlua
memory map B and will be the same for all applications. Details about the register o
within the EUMB and PCSR as well as bit definitions within registers are found in
Kahlua or Kahlua User’s Manual.

When the Kahlua host and agent come up running the DINK32 application, the
application assigns the agent’s PCI address for the PCSR and writes it in the a
PCSRBAR by calling config_kahlua_agent(). The agent application initializes its
EUMBBAR [this actually happens in the KahluaInit() function, defined in .../kahlua.s]
inbound and outbound address translation windows. This is done during initialization
main() function, main.c.

/*
 ** Try to enable a Kahlua slave device. This is only
enabled for Map B.
 */
 if (address_map[0] == ’B’)
10K-152 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

ck for
sage
e, the
t. The

SR) to
 occur

inguish
rbell

 the
 Mask
t() is
y, the
egister
 if (target_mode == 0)

 /* probe PCI to see if we have a kahlua */
 if (pciKahluaProbe(KAHLUA_ID_LO, VENDOR_ID_HI,
&target_add
r)==1)

 PRINT("Host\n");
 config_kahlua_agent();
 }
 }
 else if (target_type == ((KAHLUA_ID_LO << 16) |
VENDOR_ID_HI))
PRINT("Agent\n");
 /* Inbound address translation */
 sysEUMBBARWrite(L_ATU_ITWR, ATU_BASE|ATU_IW_64K);
 pciRegSet(PCI_REG_BASE, PCI_LMBAR_REG,
PCI_MEM_ADR);
 /* Outbound address translation */
 sysEUMBBARWrite(L_ATU_OTWR, 0x100000|ATU_IW_64K);
 sysEUMBBARWrite(L_ATU_OMBAR, 0x81000000);
 }
 }

K.1.2 Interrupt Service Routines: I2O_ISR_host() and
I2O_ISR_agent()

There is a fundamental difference in the interrupt service routine (ISR) for the host and
agent: the I2O_ISR_agent function only has to handle inbound message unit interrupts, but
the I2O_ISR_host must handle any possible interrupt from a Kahlua agent, not limited to
the agent’s outbound message unit. The ISRs implemented at present just che
doorbell activity. If a doorbell event occurred, the ISR prints out a simple mes
including the doorbell register content and the doorbell register is cleared. Otherwis
ISR prints a message that it was unable to determine the cause of the interrup
I2O_ISR_agent function checks the Inbound Message Interrupt Status Register (IMI
determine the cause of the message unit interrupt. The Message Unit interrupt can
because of doorbell, message register, or message queue activity. The ISR will dist
and handle the interrupt accordingly; but at first stage implementation, only doo
interrupts will be handled.

The I2O library function I2OInMsgStatGet() is used to read the IMISR. It returns
content of the IMISR after applying the mask value in the Inbound Message Interrupt
Register (IMIMR) and clears the status register. The I2O library function I2ODBGe
used to read the IDBR. It returns the content and clears the register. Similarl
I2O_ISR_host function checks the agent’s Outbound Message Interrupt Status R
Appendix K. MPC8240 I2O Doorbell Driver 10K-153

MPC8240 I2O Doorbell Driver

ound
or any
ibrary
f the
gister
d to

e file
 are
tually,
ctive
w to
all to
ay be
ration
etails.
rrupt
ments
 found

e I2O
ask
at
ss is
und
ich
sage
SR
ent’s

cessible
 clear
 in
ple. It
ssage
 or

priate
 to the
t occur
(OMISR) to determine if the cause of the interrupt was due to the agent’s outb
doorbell. It is important to note that the I2O_ISR_host must be expanded to check f
kind of expected interrupt from the agent, not just message unit interrupts. The I2O l
function I2OOutMsgStatGet() is used to read the OMISR. It returns the content o
OMISR after applying the mask value in the Outbound Message Interrupt Mask Re
(OMIMR) and clears the status register. The I2O library function I2ODBGet() is use
read the ODBR. It returns the content and clears the register.

The two functions I2O_ISR_host() and I2O_ISR_agent() are defined in the sourc
.../drivers/i2o/i2o1.c and are linked into the libdriver.a library. For testing, they
currently manually called when requested by the user in the function test_i2o(). Even
the host and agent will register an interrupt service routine (ISR) with their respe
Embedded Programmable Interrupt Controller (EPIC) systems. Details about ho
register the ISRs with EPIC are not yet specified. It may take the form of a function c
an EPIC-provided function that accepts a pointer to the ISR function. Alternately, it m
integrated by the linker by placing a reference to the ISR functions in some configu
table. When the integration takes place, this document will be updated to reflect the d
The code for the entire I2O_ISR_host function follows. Note that the only type of inte
that is currently handled is doorbell interrupt from the message unit, but there are com
in the code indicating where to check for other causes of interrupts. The code can be
in i2o1.c.

K.1.3 Enable Doorbell Interrupts:
Since the agent is servicing the inbound doorbell, the agent enables it by calling th
library function I2ODBEnable(), which clears the Inbound Doorbell Interrupt M
(IDIM) bit in the Inbound Doorbell Interrupt Mask Register (IMIMR). The IMIMR is
offset 0x104 in the agent’s Embedded Utilities Memory Block (EUMB), whose addre
in the agent’s EUMBBAR. Similarly, since the host is servicing the agent’s outbo
doorbell, the host enables it by calling the I2O library function I2ODBDisable(), wh
clears the Outbound Doorbell Interrupt Mask (ODIM) bit in the agent’s Outbound Mes
Interrupt Mask Register (OMIMR). The OMIMR is at offset 0x34 in the agent’s PC
block, whose address is in the agent’s PCSRBAR at offset 0x14 in the ag
Configuration Registers.

The address of the agent’s Configuration Registers are known by the host and are ac
from the PCI bus. At present, the user interface in DINK32 allows the user to set or
the ODIM or IDIM bit. The functions I2ODBEnable() and I2ODBDisable() are defined
.../drivers/i2o/i2o1.c to perform this task. See the code in test_i2o() for a usage exam
is interesting to note that the observed behavior of the Kahlua chip with regard to me
unit registers is not dependant on the ODIM and IDIM bit settings Even if the ODIM
IDIM mask bits are set, writes to the affected doorbell are not blocked and the appro
bit is set in the message unit’s status register. It is up to software to apply the mask
status register to determine whether or not to take any action. The interrupt should no
10K-154 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

isters.
ters via
via the

 this
nit will
terrupt
rated;

e IDBR

, this
host

ll be
but the
BR by

_i2o()
by an
dy set
ll bit
with
if the mask bit is set, but this has not yet been tested.

K.1.4 Writing and Reading Doorbell Registers:
The functions I2ODBPost() and I2ODBGet() are defined in .../drivers/i2o/i2o1.c to write a
bit pattern to or return the contents of the agent’s inbound and outbound doorbell reg
Note that the agent application accesses both inbound and outbound doorbell regis
its own EUMB and the host application accesses these same doorbell registers
agent’s PCSR. See the code in test_i2o() for usage examples.

K.1.4.1 Host Rings an Agent via Agent’s Inbound Doorbell

The host application calls the I2O library function I2ODBPost() to write the bit pattern to
the agent’s Inbound Door Bell Register (IDBR). If the inbound doorbell is enabled,
generates a Message Unit interrupt to the agent processor and the agent’s EPIC u
execute the I2O_ISR_agent function to determine the cause of the message unit in
and handle it appropriately. If the inbound doorbell is not enabled, no interrupt is gene
but the doorbell and the status register bit are still set. The agent application reads th
by calling the I2O library function I2ODBGet(). This clears the IDBR.

K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell

The agent application calls the I2O library function I2ODBPost() to write the bit pattern to
the agent’s Outbound Door Bell Register (ODBR). If the outbound doorbell is enabled
causes the outbound interrupt signal INTA_ to go active which interrupts the
processor. After the ISR is integrated into the EPIC unit, this mechanism wi
documented here. If the outbound doorbell is not enabled, no interrupt is generated;
doorbell and the status register bit are still set. The host application reads the OD
calling the I2O library function I2ODBGet(). This clears the ODBR.

Sample application code. Here is some sample code from the DINK32 function test
in device.c that provides examples of how the I2O library functions can be used
application. When this section of code is entered, the DINK32 user interface has alrea
the local variables “mode” and “bit”. Mode reflects the user request. Bit is the doorbe
number to set. Mode = 4 to manually run the ISR’s for testing prior to integration
EPIC.

/* different depending on if DINK = is running on host or agent */
 if (target_mode 0)
 {
 /* running on host */
 unsigned int kahlua_pcsrbar get_kahlua_pcsrbar();
 /* PRINT("kahlua’s pcsrbar 0x%x\n",kahlua_pcsrbar); */
 switch (mode)
 {
 case 0:
 /* read agent’s outbound DB register and print it out */
 db_reg_content I2ODBGet(REMOTE,kahlua_pcsrbar);
Appendix K. MPC8240 I2O Doorbell Driver 10K-155

MPC8240 I2O Doorbell Driver
 PRINT("Agent’s outbound doorbell register:
0x%x\n",db_reg_content);
 break;

 case = 1:
 /* set agent’s inbound doorbell register */
 db_reg_content 1 << bit;
 I2ODBPost(REMOTE,kahlua_pcsrbar,db_reg_content);
 break;

 case = 2:
 /* enable agent’s outbound DB register interrupts */
 if (I2ODBEnable(REMOTE,kahlua_pcsrbar,0) ! = I2OSUCCESS)
PRINT("Cannot enable agent’s outbound doorbell interrupt.\n");
 else
 PRINT("Enabled agent’s outbound doorbell interrupt.\n");
 break;

 case = 3:
 /* disable agent’s outbound DB register interrupts */
 if (I2ODBDisable(REMOTE,kahlua_pcsrbar,0) ! = I2OSUCCESS)
 PRINT("Cannot disable agent’s outbound doorbell
interrupt.\n");
 else
 PRINT("Disabled agent’s outbound doorbell interrupt.\n");
 break;

 #ifdef DBG_I2O
 case 4:
 I2O_ISR_host();
 break;
 #endif
 }
 }
 else
 {
/* running on agent */
 /* PRINT("kahlua’s eumbbar 0x%x\n",eumbbar); */
 switch (mode)
 {
 case 0:
 /* read agent’s inbound DB register and print it out */
 db_reg_content I2ODBGet(LOCAL,eumbbar);
 PRINT("Agent’s inbound doorbell register:
0x%x\n",db_reg_content);
 break;

 case = 1:
 /* set agent’s outbound doorbell register */
 db_reg_content 1 << bit;
 I2ODBPost(LOCAL,eumbbar,db_reg_content);
 break;

 case = 2:
10K-156 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

d
) or

ask

) or
)
 /* enable agent’s inbound DB register interrupts */
 if (I2ODBEnable(LOCAL,eumbbar,3) ! I2OSUCCESS)
 PRINT("Cannot enable agent’s inbound doorbell interrupt.\n");
 else
PRINT("Enabled agent’s inbound doorbell interrupt.\n");
 break;

 case = 3:
 /* disable agent’s inbound DB register interrupts */
 if (I2ODBDisable(LOCAL,eumbbar,3) ! I2OSUCCESS)
 PRINT("Cannot disable agent’s inbound doorbell
interrupt.\n");
 else
 PRINT("Disabled agent’s inbound doorbell interrupt.\n");
 break;

 #ifdef DBG_I2O
 case 4:
 I2O_ISR_agent();
 break;
 #endif
 }
 }

K.1.4.3 Descriptions of the I2O library functions
I2OSTATUS I2ODBEnable (LOCATION loc,unsigned int base,unsigned int
in_db)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE if calle
from host. This controls the use of the base parameter as PCSR (ifREMOTE
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) mask registers.

• base is the base address of PCSR or EUMB.

• in_db is used for LOCAL to control enabling of doorbell and/or machine check

• Returns: I2OSUCCESS

Description:

 Enable the specified doorbell interrupt by clearing the appropriate mask bits.

I2OSTATUS I2ODBDisable(LOCATION loc,unsigned int base,unsigned int
in_db)

• Same as I2ODBEnable, but it disables the specified interrupts bysetting the m
bits.

unsigned int I2ODBGet(LOCATION loc,unsigned int base)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE
EUMB (ifLOCAL) and selection of outbound (if REMOTE) or inbound(if LOCAL
doorbell registers.

• base is the base address of PCSR or EUMB.
Appendix K. MPC8240 I2O Doorbell Driver 10K-157

MPC8240 I2O Doorbell Driver

) or

asked
ddress

 by the
dress

API)
the
• Returns:Contents of agent's inbound (if loc = LOCAL) or outbound (if loc
REMOTE) doorbell register.

Description:

Returns content of specified doorbell register and clears the doorbell register.

void I2ODBPost(LOCATION loc,unsigned int base,unsigned int msg)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) doorbell registers.

• base is the base address of PCSR or EUMB

• msg is the 32 bit value written to the specified doorbell register

Description:

 The 32 bit value is written to the specified doorbell register.

I2OSTATUS I2OInMsgStatGet(unsigned int eumbbarI2OIMSTAT *val)

• eumbbar is the base address of the agent's EUMB

• *val receives the agent's inbound message interrupt statusregister

• Returns: I2OSUCCESS

Description:

 The agent's Inbound Message Interrupt Status Register (IMISR)content is m
by the agent's Inbound Message Interrupt Mask Register(IMIMR) and placed in the a
given in the val parameter. The IMISRregister is cleared.

I2OSTATUS I2OOutMsgStatGet(unsigned int pcsrbar,I2OOMSTAT *val)

• pcsrbar is the base address of the agent's PCSR

• *val receives the agent's outbound message interrupt statusregister

• Returns: I2OSUCCESS

Description:
The agent's Outbound Message Interrupt Status Register (OMISR)content is masked
agent's Outbound Message Interrupt Mask Register(OMIMR) and placed in the ad
given in the val parameter. The OMISRregister is cleared.

K.2 I2C Driver Library
This section provides information about the generic Application Program Interface (
to the I2C Driver Library as well as information about the implementation of
Kahlua-specific I2C Driver Library Internals (DLI).
10K-158 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

,

er

meter
K.2.1 Background
The intended audience for this document is assumed to be familiar with the I2C bus
protocol. It is a companion document to the Kahlua specification and other documentation
which collectively give details of the I2C protocol and the Kahlua implementation. This
document provides information about the software written to access the Kahlua I2C
interface. This software is intended to assist in the development of higher level applications
software that uses the I2C interface.

Note: The I2C driver software is currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

K.2.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, generic
application level programmatic interface to the I2C driver library that hides all
details of the Kahlua-specific implementation of the I2C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

• I2C API functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition possible

— return values

— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• An I2C Driver Library Internals (DLI) which provides information about the low
level software that is accessing the Kahlua-specific implementation of the I2C
interface.

• I2C DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition

— possible return values

— brief description of what the function does

K.2.3 I2C Application Program Interface (API)

K.2.3.1 API functions description

The I2C API function prototypes, defined return values, and enumerated input para
Appendix K. MPC8240 I2O Doorbell Driver 10K-159

MPC8240 I2O Doorbell Driver

only

ing the
nding

dard
ore)

ns to
 the
r, in

LE
values are declared in drivers/i2c/i2c_export.h. The functions are defined in the source file
drivers/i2c/i2c1.c.

I2C_Status I2C_Initialize(unsigned char addr, I2C_INTERRUPT_MODE
en_int, int (*app_print_function)(char *,...));

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

• app_print_function is the address of the optional application's print function,
otherwise NULL if not available

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Configure the I2C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the I2C library currently
supports polling mode.

The slave address can be set to the I2C listening address of the device runn
application program, but the DLI does not yet support the application's device respo
as an I2C slave to another I2C master device.

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the I2C library functio
report error and status condition information. If no print function is supplied by
application, the call to I2C_Initialize must provide a NULL value for this paramete
which case the I2C library will not attempt to access a print function.

I2C_Status I2C_do_transaction(I2C_INTERRUPT_MODE en_int,
I2C_TRANSACTION_MODE act,
unsigned char i2c_addr,
unsigned char data_addr,
int len,
char *buffer,
I2C_STOP_MODE stop,
int retry,
I2C_RESTART_MODE rsta);
Where:

• en_int controls the I2C interrupt enable status (currently use I2C_INT_DISAB
only, polling mode)

• act is the type of transaction: I2C_MASTER_RCV or I2C_MASTER_XMIT

• i2c_addr is the I2C address of the slave device

• data_addr is the address of the data on the slave device
10K-160 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

 data

TOP

slave

ceive
tween

ted
ely to
x50 on

rite
ice, not
ta (if

at the
time
eration
ctive

d

mode:

d

strate
• len is the length in bytes of the data

• buffer is a pointer to the buffer that contains the data (xmit mode) or receives the
(rcv mode)

• stop controls sending an I2C STOP signal after completion (curently use I2C_S
only)

• retry is the timeout retry value (currently ignored)

• rsta controls I2C restart (currently use I2C_NO_RESTART only)

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Act as the I2C master to transmit (or receive) a buffer of data to (or from) an I2C
device.

This function currently only implements a simple master-transmit or a master-re
transaction. It does not yet support the application retaining I2C bus ownership be
transactions, operating in interrupt mode, or acting as an I2C slave device.

K.2.3.2 API Example Usage

The ROM monitor program DINK32 uses the I2C API in both currently implemen
modes: master-transmit and master-receive. The DINK32 program runs interactiv
allow the user to transmit or receive a buffer of data from an I2C device at address 0
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/w
mode, I2C device address for the data (this is the address of the data on the I2C dev
the I2C bus address of the device itself, which is hard-coded in DINK32), the raw da
in write mode), and the length of the data to transfer to or from the device. Note th
initialization call to configure the I2C interface is actually made only once, the first
the user requests an I2C transmit or receive operation. Each transmit or receive op
is performed by a single call to an I2C API function. The DINK32 program is an intera
application, so it gives the I2C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, an
identify the optional print function.

2. Call I2C_do_transaction to transmit the buffer of data.

These are the steps DINK32 takes to perform a master-receive transaction in polling

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, an
identify the optional print function.

2. Call I2C_do_transaction to receive the buffer of data.

The following code samples have been excerpted from the DINK32 application to illu
Appendix K. MPC8240 I2O Doorbell Driver 10K-161

MPC8240 I2O Doorbell Driver
the use of the I2C API from par_devtest in device.c:

#define PRINT dink_printf
int dink_printf(unsigned char *fmt, ...)
{
/* body of application print output function, */
}
/* In the function par_devtest, for testing the I2C device interface
*/
{
/* initialize the I2C handler to I2C address 48, if needed */
if (I2CInited == 0)
{
I2C_Status status;
if ((status = I2C_Initialize(48, en_int, PRINT)) != I2C_SUCCESS)
{
PRINT("devtest I2C: error in initiation\n");
return ERROR;
} else {
I2CInited = 1;
}
}
return test_i2c(action, en_int);
}
static unsigned char rcv_buffer[BUFFER_LENGTH] = { 0 };
static unsigned char xmit_buffer[BUFFER_LENGTH] = { 0 };
/***
* function: test_i2c
*
* description: run i2c test by polling the device
*
* note:
* Test i2c device on PMC card, 0x50 serial EPROM.
* The device test data is currently only printable characters.
*
* This function gets some data from the command line, validates it,
* and calls the I2C library function to perform the task.
**/
static STATUS test_i2c(int act, int en_int)
{
int retry = 800, len = 0, rsta = 0, addr = 0;
unsigned char eprom_addr = 0x50;
/* read transaction address */
... addr ...
/* read # of bytes to transfer */
... len ...

/* validate the data address, length, etc. */
...
/* If transmitting, get the raw data into the transmit buffer */
... xmit_buffer[] ...
/* read built-in I2C device on Kahlua PMC card */
if (act == DISPLAY_TAG)
{
10K-162 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver
if (I2C_do_transaction (en_int, I2C_MASTER_RCV, eprom_addr, addr,
len, rcv_buffer, I2C_STOP, retry, I2C_NO_RESTART) != I2C_SUCCESS)
{
PRINT("dev I2C: error in master receive test\n");
return ERROR;
} else {
rcv_buffer[len] = 0; /* ensure NULL terminated string */
PRINT("%s",rcv_buffer); /* expecting only printable data */
PRINT("\n");
}
}
/* write to built-in I2C device on Kahlua PMC card */
if (act == MODIFY_TAG)
{
if (I2C_do_transaction (en_int, I2C_MASTER_XMIT, eprom_addr, addr,
len, xmit_buffer, I2C_STOP, retry, I2C_NO_RESTART) != I2C_SUCCESS)
{
PRINT("dev I2C: error in master transmit test\n");
return ERROR;
}
}
return SUCCESS;
}

K.2.4 I2C Driver Library Internals (DLI)
This information is provided to assist in further development of the I2C library to enable
the application to operate as an I2C slave device, interrupt enabled mode, bus retention
between consecutive transactions, correct handling of device time out, no slave device
response, no acknowledgment, I2C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2c1.c.

K.2.4.1 Common Data Structures and Values

These data structures and status values are defined (see drivers/i2c/i2c.h) for the Kahlua
I2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the I2C registers.

#define I2CADR 0x00003000
#define I2CFDR 0x00003004
#define I2CCR 0x00003008
#define I2CSR 0x0000300C
#define I2CDR 0x00003010
typedef enum _i2cstatus
{
I2CSUCCESS = 0x3000,
I2CADDRESS,
I2CERROR,
I2CBUFFFULL,
I2CBUFFEMPTY,
I2CXMITERROR,
Appendix K. MPC8240 I2O Doorbell Driver 10K-163

MPC8240 I2O Doorbell Driver

rrupt
I2CRCVERROR,
I2CBUSBUSY,
I2CALOSS,
I2CNOEVENT,
} I2CStatus;
These structures reflect the bit assignments of the I2C registers.
typedef struct _i2c_ctrl
{
unsigned int reserved0 : 24;
unsigned int men : 1;
unsigned int mien : 1;
unsigned int msta : 1;
unsigned int mtx : 1;
unsigned int txak : 1;
unsigned int rsta : 1;
unsigned int reserved1 : 2;
} I2C_CTRL;
typedef struct _i2c_stat
{
unsigned int rsrv0 : 24;
unsigned int mcf : 1;
unsigned int maas : 1;
unsigned int mbb : 1;
unsigned int mal : 1;
unsigned int rsrv1 : 1;
unsigned int srw : 1;
unsigned int mif : 1;
unsigned int rxak : 1;
} I2C_STAT;
Values to indicate receive or transmit mode.
typedef enum _i2c_mode
{
RCV = 0,
XMIT = 1,
} I2C_MODE;

K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions
I2CStatus I2C_Init(unsigned int eumbbar,
unsigned char fdr,
unsigned char addr,
unsigned int en_int);

• eumbbar is the address of the Embedded Utilities Memory Block

• fdr is the frequency divider value used to set the I2C clock rate

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: 1 = enable, 0 = disable

• Return: I2CStatus return value is always I2CSUCCESS.

Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and inte
10K-164 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

 whole
TOP in
ted at
r slave
enable mode (I2CCR:MIEN).

I2C_CTRL I2C_Get_Ctrl(unsigned int eumbbar);

: eumbbar is the address of the Embedded Utilities Memory Block

• Return: I2C_CTRL is the contents of the I2C control register (I2CCR)

Description:

Read the I2C control register.

void I2C_Set_Ctrl(unsigned int eumbbar, I2C_CTRL ctrl);

• eumbbar is the address of the Embedded Utilities Memory Block

• ctrl is the contents of the I2C control register (I2CCR)

• Return: none

Description:

Set the I2C control register.

I2CStatus I2C_put(unsigned int eumbbar,
unsigned char rcv_addr,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block
rcv_addr is the receiver's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to send a buffer of data to the intended rcv_addr. If stop_flag is set, after the
buffer is sent, generate a STOP signal provided that the receiver doesn't signal the S
the middle. Caller is the master performing transmitting. If no STOP signal is genera
the end of current transaction, the master can generate a START signal to anothe
address.

The function does not actually perform the data buffer transmit,
Appendix K. MPC8240 I2O Doorbell Driver 10K-165

MPC8240 I2O Doorbell Driver

en the
r is the
erate a
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CStatus I2C_get(unsigned int eumbbar,
unsigned char sender_addr,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block

• sender_addr is the sender's I2C device address
buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, wh
buffer is full and the sender does not signal STOP, generate a STOP signal. Calle
master performing receiving. If no STOP signal is generated, the master can gen
START signal to another slave address.

The function does not actually perform the data buffer receive,
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CStatus I2C_Timer_Event(unsigned int eumbbar, I2CStatus
(*handler)(unsigned int));

• eumbbar is the address of the Embedded Utilities Memory Block
10K-166 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

t set
d

 given

addr is
or 1
d by

Xmit,
P, to
alled
K =
• handler is a pointer to the function to call to handle any existing status event,

• Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is no
results from call to the handler function if there was a pending event complete

Description:

In polling mode, I2C_Timer_Event can be called to check the I2C status and call the
(or the default: I2C_ISR) handler function if the I2CSR MIF bit is set.

I2CStatus I2C_Start(unsigned int eumbbar,
unsigned char slave_addr,
I2C_MODE mode,
unsigned int is_cnt);

• eumbbar is the address of the Embedded Utilities Memory Block

• slave_addr is the I2C address of the receiver

• mode: XMIT(1) - put (write)

• RCV(0) - get (read)

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Generate a START signal in the desired mode. Caller is the master. The slave_
written to bits 7:1 of the I2CDR and bit 0 of the I2CDR is set to 0 for mode = XMIT
for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (use
I2C_ISR function).

I2CStatus I2C_Stop(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Generate a STOP signal to terminate the master transaction.

I2CStatus I2C_Master_Xmit(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master sends one byte of data to slave receiver. The DLI global variables ByteTo
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STO
transmit. If a data byte is sent, it is written to the I2CDR. This function may only be c
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXA
Appendix K. MPC8240 I2O Doorbell Driver 10K-167

MPC8240 I2O Doorbell Driver

ables
a byte
 the
 1

g

Xmit,
tion
F =

no

ables
a byte
 been
met:
0 I2CCR.MSTA = 1 I2CCR.MTX = 1

I2CStatus I2C_Master_Rcv(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master receives one byte of data from slave transmitter. The DLI global vari
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the dat
or sending of a STOP if the buffer is full. This function may only be called when
following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =
I2CCR.MTX = 0

I2CStatus I2C_Slave_Xmit(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte sent I2CBUFFEMPTY if no data in sendin
buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteTo
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This func
may only be called when the following conditions are met: I2CSR.MIF = 1 I2CSR.MC
1 I2CSR.RXAK = 0 I2CCR.MSTA = 0 I2CCR.MTX = 1

I2CStatus I2C_Slave_Rcv(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte received I2CBUFFFULL if buffer is full or
more data expected

Description:

Slave receives one byte of data from master transmitter. The DLI global vari
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the dat
or setting the acknowledge bit (I2CCR.TXAK) if the expected number of bytes have
received. This function may only be called when the following conditions are
I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA = 0 I2CCR.MTX = 0

I2CStatus I2C_Slave_Addr(unsigned int eumbbar);

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block
10K-168 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

 when

)

)

ed this
nction
. It is

tested
 when
• Returns: I2CADDRESS if asked to receive data
results from call to I2C_Slave_Xmit if asked to transmit data

Description:

Process slave address phase. Called from I2C_ISR. This function may only be called
the following conditions are met: I2CSR.MIF = 1 I2CSR.MAAS = 1

I2CStatus I2C_ISR(unsigned int eumbbar);

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns:

— I2CADDRESS if address phase for master receive results from call to
I2C_Slave_Addr if being addressed as slave (untested)

— results from call to I2C_Master_Xmit if master transmit data mode

— results from call to I2C_Master_Rcv if master receive data mode

— results from call to I2C_Slave_Xmit if slave transmit data mode (untested

— results from call to I2C_Slave_Rcv if slave receive data mode (untested)

— I2CSUCCESS if slave has not acknowledged, generated STOP (untested

— I2CSUCCESS if master has not acknowledged, wait for STOP (untested)

— I2CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which caus
function to be called. Handle condition, see above in possible return values. This fu
is called in polling mode as the handler function when an I2C event has occurred
intended to be a model for an interrupt service routine for polling mode, but this is un
and the design has not been reviewed or confirmed. This function may only be called
the following condition is met: I2CSR.MIF = 1

[NOTE: This function is tested only for the master-transmit
and master-receive in polling mode. I don't think it is tested
even in those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc.]

K.2.4.3 The following DLI functions were written but not used and not
tested:
I2CStatus I2C_write(unsigned int eumbbar,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag);

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer
Appendix K. MPC8240 I2O Doorbell Driver 10K-169

MPC8240 I2O Doorbell Driver

ffer is
 STOP

 is full
rforming

 for
This
• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Send a buffer of data to the requiring master. If stop_flag is set, after the whole bu
sent, generate a STOP signal provided that the requiring receiver doesn't signal the
in the middle. Caller is the slave performing transmitting.

I2CStatus I2C_read(unsigned int eumbbar,
unsigned char *buffer_ptr,
unsigned int length,
unsigned int stop_flag);

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Receive a buffer of data from the sending master. If stop_flag is set, when the buffer
and the sender does not signal STOP, generate a STOP signal. Caller is the slave pe
receiving.

K.2.4.4 I2C support functions
unsigned int get_eumbbar();

• Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary
information about the Embedded Utilities Memory Block Base Address Register.
function is defined in kahlua.s.

[NOTE: I don't understand the initialization sequences for
establishing the config_addr and config_data well enough at
this point to be able to explain them; however, I think it is
essential to offer the user a complete explanation of the
initialization process.]

unsigned int load_runtime_reg(unsigned int eumbbar,
unsigned int reg);

• eumbbar is the address of the Embedded Utilities Memory Block
10K-170 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

 in

c2.s
• reg specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• Returns: register content

Description:

The content of the specified register is returned. This function is defined
drivers/i2c/i2c2.s.

unsigned int store_runtime_reg(unsigned int eumbbar,
unsigned int reg,
unsigned int val);

• eumbbar is the address of the Embedded Utilities Memory Block

• offset specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• val is the value to be written to the register

• Return: No return value used, it should be declared void.

Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2
Appendix K. MPC8240 I2O Doorbell Driver 10K-171

MPC8240 EPIC Interrupt Driver
Appendix L MPC8240 EPIC Interrupt
Driver
This appendix describes the sample EPIC driver source code provided in this DINK32
release and its usage on the Sandpoint Reference Platform running DINK32.

L.1 General Description
EPIC is the embedded programmable interrupt controller feature implemented on
Motorola’s MPC8240 and MPC107. It is derived from the Open Programmable Interrupt
Controller (PIC) Register Interface Specification R1.2 developed by AMD and Cyrix.
EPIC provides support for up to five external interrupts or one serial-style interrupt line
(supporting 16 interrupts), four internal logic-driven interrupts (DMA0, DMA1, I2C, I2O),
four global timers, and it supports a pass through mode. Please refer to Chapter 12 of the
MPC8240 User’s Manual for a more in depth description of EPIC on the MPC8240.

L.2 EPIC Specifics
Unlike other embedded features of the MPC8240 and MPC107 such as DMA and I2O, the
EPIC unit is accessible from the local processor only. The control and status registers of this
unit cannot be accessed by external PCI devices. The EPIC registers are accessed as an
offset from the Embedded Utilities Memory Block (EUMB). The EPIC unit supports two
modes: Mixed and Pass-through.

The DINK32 EPIC driver sample code demonstrates EPIC in direct mode and also error
checks for Pass-through mode in case external interrupts are enabled with no interrupt
handler setup. Serial mode is implemented in DINK32, but as a coding example only due
to the need for external hardware necessary to test this mode which is not provided on the
Sandpoint reference platform.

The EPIC registers are in little-endian format. If the system is in big-endian mode, the bytes
must be appropriately swapped by software. DINK32 is written for big-endian mode and
the sample code referred to in this appendix performs the appropriate byte swapping.

L.2.1 Embedded Utilities Memory Block (EUMB)
The EUMB is a block of local and PCI memory space allocated to the control and status
registers of the embedded utilities. The embedded utilities of the MPC8240 are the
Messaging Unit (I2O), DMA controller, EPIC, I2C, and ATU. The local memory map
location of the EUMB is controlled by the embedded utilities memory block base address
register (EUMBBAR). The PCI bus memory map location of the EUMB is controlled by
the peripheral control and status registers base address register (PCSRBAR). Since EPIC is
only accessible from local memory, only the EUMBBAR is of concern for this appendix.
10L-172 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

egister

e 8259

 (up to

es.

s

MB

ry
Please refer to the following sections in the MPC8420 User’s Manual:
Section 4.4 Embedded Utilities Memory Block
Section 5.5 Embedded Utilities Memory Block Base Address Register
Section 5.1 Configuration Register Access

L.2.2 EPIC Register Summary
The EPIC register map occupies a 256 Kilobyte range of the EUMB. All EPIC registers are
32 bits wide and reside on 128 bit address boundaries. The EPIC registers are divided into
four distinct areas whose address offsets are based on the EUMB location in local memory
controlled by the value in the EUMBBAR configuration register.

The EPIC address offset map areas:

• 0x4_1000 - 0x4_10F0: Global EPIC register map

• 0x4_1100 - 0x4_FFF0: Global timer register map

• 0x5_0000 - 0x5_FFF0: Interrupt source configuration register map

• 0x6_0000 - 0x6_0FF0: Processor-related register map

Please refer to Section 12.2 in the MPC8420 User's Manual for the complete EPIC r
address map table and Section 12.9 for all register definitions.

L.2.3 EPIC Modes
• Pass-through Mode

This mode provides a mechanism to support alternate interrupt controllers such as th
interrupt controller architecture. Pass-through is the default mode of the EPIC unit.

• Mixed Mode

This mode supports two subsequent interrupt modes, either a serial interrupt mode
16 serial interrupt sources) or a direct interrupt mode (up to 5 interrupt sources).

Refer to Sections 12.4 -12.6 in the MPC8240 User's Manual for more on EPIC mod

L.3 Directory Structure
DINK32/drivers/epic

• epic.h: contains all EPIC register address macros and all function declaration

• epic1.c: contains all C language routines

• epic2.s: contains all Assembly language routines

• epicUtil.s: contains assembly routines to load and store to registers in the EU

• makefile: used by the DINK32 makefile to build this directory into a driver libra
Appendix L. MPC8240 EPIC Interrupt Driver 10L-173

MPC8240 EPIC Interrupt Driver

ector
rrupt

rrupt
iption
ervice

 each
ll ISR"
• Readme.txt: a text version of this appendix

L.4 EPIC Cross-Reference Table Structure
The following table is defined in epic1.c in order to cross reference interrupt v
numbers with the corresponding interrupt vector/priority register address and inte
service routine address:

/* Register Address Offset/ Vector Description /ISR Addr
cross-reference table */
struct SrcVecTable SrcVecTable[MAXVEC] =
{
 { EPIC_EX_INT0_VEC_REG, "External Direct/Serial Source 0", 0x0},
 { EPIC_EX_INT1_VEC_REG, "External Direct/Serial Source 1", 0x0},
 { EPIC_EX_INT2_VEC_REG, "External Direct/Serial Source 2", 0x0},
 { EPIC_EX_INT3_VEC_REG, "External Direct/Serial Source 3", 0x0},
 { EPIC_EX_INT4_VEC_REG, "External Direct/Serial Source 4", 0x0},
 { EPIC_SR_INT5_VEC_REG, "External Serial Source 5", 0x0},
 { EPIC_SR_INT6_VEC_REG, "External Serial Source 6", 0x0},
 { EPIC_SR_INT7_VEC_REG, "External Serial Source 7", 0x0},
 { EPIC_SR_INT8_VEC_REG, "External Serial Source 8", 0x0},
 { EPIC_SR_INT9_VEC_REG, "External Serial Source 9", 0x0},
 { EPIC_SR_INT10_VEC_REG, "External Serial Source 10", 0x0},
 { EPIC_SR_INT11_VEC_REG, "External Serial Source 11", 0x0},
 { EPIC_SR_INT12_VEC_REG, "External Serial Source 12", 0x0},
 { EPIC_SR_INT13_VEC_REG, "External Serial Source 13", 0x0},
 { EPIC_SR_INT14_VEC_REG, "External Serial Source 14", 0x0},
 { EPIC_SR_INT15_VEC_REG, "External Serial Source 15", 0x0},
 { EPIC_TM0_VEC_REG, "Global Timer Source 0", 0x0},
 { EPIC_TM1_VEC_REG, "Global Timer Source 1", 0x0},
 { EPIC_TM2_VEC_REG, "Global Timer Source 2", 0x0},
 { EPIC_TM3_VEC_REG, "Global Timer Source 3", 0x0},
 { EPIC_I2C_INT_VEC_REG, "Internal I2C Source", 0x0},
 { EPIC_DMA0_INT_VEC_REG, "Internal DMA0 Source", 0x0},
 { EPIC_DMA1_INT_VEC_REG, "Internal DMA1 Source", 0x0},
 { EPIC_MSG_INT_VEC_REG, "Internal Message Source", 0x0}
};

Each of the 24 entries conforms to the following:

{ "vector/priority register address offset",
"text description",
"Interrupt Service Routine address" }.

The first column of the structure contains the macro for each of the 24 inte
vector/priority register address offsets in EPIC. The middle column is the text descr
of the interrupt vector, and the last column is the address of the registered interrupt s
routine (ISR) for each interrupt vector. Currently the structure is initialized such that
vector ISR address is 0x0. This can be modified such that each defaults to a "catch a
10L-174 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

an be
nds in

bit

0xF)
address instead of 0x0. As each interrupt vector is set up, an ISR must be registered with
EPIC via the epicISRConnect() routine in the epic1.c source file. This routine takes the ISR
function name and stores the address of that function in the ISR Address structure location
corresponding to the interrupt vector number. Although each interrupt’s vector/priority
register allows the vector number to range from 0-255, this structure limits the vector
number range from 0-23. So as each interrupt’s vector/priority register is set up, the 8-bit
vector field value must match the vector number location in the structure.

L.5 EPIC Sample Routines
The EPIC sample routines are contained in the epic1.c and epic2.s files. All C language
routines are in epic1.c and all assembly language routines are in epic2.s. These routines,
along with the structure described in L.4, “EPIC Cross-Reference Table Structure", c
used as sample code for systems using the MPC8240 EPIC Unit. L.6, “EPIC Comma
DINK32" describes how these routines are used by DINK32.

L.5.1 Low Level Routines
The following routines are in the epic2.s source file:

• External Interrupt Control Routines:

— CoreExtIntEnable(): enables external interrupts by setting the MSR[EE] bit

— CoreExtIntDisable(): disables external interrupts by clearing the MSR[EE]

• Low Level Exception Handler:

— epic_exception():
Save the current (interrupted) programming model/state
Calls epicISR() to service the interrupt
Restore the programming model/state and
RFI back to interrupted process

L.5.2 High Level Routines
The following routines are in the epic1.c source file:

L.5.2.1 EPIC Initialization Routines:

epicInit(): initialize the EPIC Unit by:

• Setting the reset bit in the Global Configuration Register which will:

— Disables all interrupts

— Clears all pending and in-service interrupts

— Sets EPIC timers to base count

— Sets the value of the Processor Current Task Priority to the highest priority (
Appendix L. MPC8240 EPIC Interrupt Driver 10L-175

MPC8240 EPIC Interrupt Driver

atible

ter
thus disabling interrupt delivery to the processor

— Reset spurious vector to 0xFF

— Default to pass-through mode

• Sets the EPIC operation mode to Mixed Mode (vs. Pass Through or 8259 comp
mode)

— If IRQType (input) is Direct IRQs:

— IRQType is written to the SIE bit of the EPIC Interrupt Configuration Regis
(ICR)

— clkRatio is ignored

— If IRQType is Serial IRQs:

— both IRQType and clkRatio will be written to the ICR register

epicCurTaskPrioSet(): Change the current task priority value

epicIntISRConnect(): Register an ISR with the EPIC unit cross-reference table

L.5.2.2 High Level Exception Handler:

epicISR(): this routine is a catch all for all EPIC related interrupts:

• perform IACK (interrupt acknowledge) to get the vector number

• check if the vector number is a spurious vector

• cross-reference vector ISR (interrupt service routine) from table

• call the vector ISR

• perform EOI (end of interrupt) for the interrupt vector

L.5.2.3 Direct/Serial Register Control Routines:

epicIntEnable(): enable an interrupt source

epicIntDisable(): disable and interrupt source

epicIntSourceConfig(): configure and interrupt source

L.5.2.4 Global Timer Register Control Routines:

epicTmBaseSet(): set the base count value for a timer

epicTmBaseGet(): get the base count value for a timer

epicTmCountGet(): get the current counter value for a timer

epicTmInhibit(): inhibit counting for a timer

epicTmEnable(): enable counting for a timer
10L-176 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

riority
L.6 EPIC Commands in DINK32
The following commands are typed from the DINK32 command line to control the EPIC
unit.

• help dev epic - Display usage of EPIC commands

• dev epic - Display content and addresses of EPIC registers, and current task p

• dev epic ex - “dev epic” command example uses

• dev epic init - Initialize the EPIC unit to default direct mode

• dev epic init [Mode(0|1)] [Ratio(1-7)] - Initialize the EPIC unit (this calls the
epicInit() routine)

• dev epic ta [0-15]- Change the Processor Task priority register

• dev epic en [Vector(0-23)] - Enable a particular interrupt vector

• dev epic dis [Vector(0-23)] - Disable a particular interrupt vector

• dev epic con [Vector(0-23)] - Print content of a Source Vector/Priority register

• dev epic con [Vector(0-23) Polarity(0|1) Sense(0|1) Priority (0-15)]

— Program the Source Vector/Priority register

• dev epic tmbase [Timer(0-3)] - Display a timer current count register

• dev epic tmbase [Timer(0-3)] Count(hex value) Inhibit(0|1)

— Set, enable/disable a Timer Base Count Register

• dev epic tmcnt [Timer(0-3)] - Display a Timer Current Count Register

• dev epic tmdis [Timer(0-3)] - Inhibits counting for a timer

• dev epic tmen [Timer(0-3)] - Enables counting for a timer

• dev epic ISRCnt [Vector(0-23) Address]

— Manually link an ISR to an interrupt vector

Example:

dev epic init - Initialize EPIC unit to default Direct Mode.

dev epic init 0 7 - Initialize EPIC unit to Serial Mode with a clock ratio of 7.

dev epic en 1 - Enable interrupt vector 1

dev epic ta 10 - Set the Processor Task priority register to 10

dev epic dis 5 - Disable interrupt vector 5

dev epic con 2- Print the configuration of Interrupt vector 2

dev epic con 7 1 0 5- Configure the source Vector/Priority
Appendix L. MPC8240 EPIC Interrupt Driver 10L-177

MPC8240 EPIC Interrupt Driver

 that
nit is
 of
lt state
 EPIC
 register of vector 7 to have the following properties:

 Polarity = 1

 Sense = 0

 Priority = 5

dev epic tmbase 0 - Display Timer 0 Base Count Register

dev epic tmbase 0 7fff 0

— Set Timer 0 Base Count Register to 0x7fff and enable counting to proceed

dev epic tmcnt 1 - Display Timer 1 Current Count Register

dev epic tmdis 2 - Inhibit counting on Timer 2

dev epic tmen 3 - Enable counting on Timer 3

dev epic ISRCnt 1 90000 - Set the ISR address for vector 1 to 0x90000

L.7 EPIC Unit Startup
When the MPC8240 comes up running DINK32, the EUMBBAR is configured such
the EUMB is located at an offset of 0xFC00_0000 from local memory. The EPIC u
untouched by the DINK32 initialization routines and is left in its default state
Pass-Through mode. External interrupts are also left untouched and left in the defau
of disabled. The following list shows the necessary routine calls needed to utilize the
unit:

• Initialize the EPIC unit

— epicInit()

• For each interrupt vector to be used:

— epicSourceConfig()

— epicISRConnect()

• For each interrupt vector to be used:

— epicIntEnable()

• Set the Processor Current Tast Priority

— epicCurTaskPrioSet()

• Enable External Interrupts

— CoreExtIntEnable()
10L-178 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver
L.8 External Interrupt Exception Path in DINK32
The path of an external interrupt exception in DINK32 begins at the 0x500 interrupt
exception vector. All DINK32 exception vector locations are set up in the same manner
which is to save the exception type and pass the exception handling to a catch all exception
handler. This handler is called handle_ex and is located in the except2.s DINK32 source
file.

In the handle_ex handler a check is performed to see if the exception was a 0x500 and
if DINK32 is running on an MPC8240 or MPC107. If the two conditions are true, the
exception handling is passed to the EPIC low level interrupt handler, epic_exception
located in the epic2.s source file. Epic_exception: handles any necessary context
switching and saving of state before calling the EPIC high level interrupt handler, epicISR()
located in the epic1.c source file.

Note: Currently, epic_exception first checks the mode of the EPIC unit. If in
pass-through mode, an error message is printed stating that the EPIC unit is in pass-through
mode and must be initialized.

EpicISR() acknowledges the interrupt by calling the epicIACK() which returns the
vector number of the interrupting vector source. This vector number is then compared to
the spurious vector value located in the EPIC Spurious Vector Register. If the interrupting
vector is a spurious vector the interrupt is ignored and state is restored to the interrupted
process. If the interrupting vector is a valid interrupt, then the vector number is used to
reference the vector ISR from the cross-reference table. The vector ISR is then called to
service the particular interrupt. Once the ISR completes and returns, an end-of-interrupt is
issued by calling epicEOI(). Control then returns to epic_exception.

Epic_exception finishes by restoring state and performs an RFI (return from
interrupt) back to the interrupted process.

L.9 Example Usage on Sandpoint Reference Platform
The EPIC driver source code currently defaults to a demonstration mode. The demo code
is located in the epicInit() routine and allows for an interactive demonstration of
external interrupts. The external interrupts demonstrated are IRQ lines 1 and 2, use of
Global Timers 0 and 1, DMA0, and the Message Unit if in a Host/Agent setup. A debug
mode is also provide and is controlled by the -DEPICDBG compiler directive in the
makefile located in the EPIC source directory. The compiler directive allows the driver
code to be much more verbose and informative when exercising the EPIC unit features in
the debug state.

L.9.1 L.9.1 Sandpoint Reference Platform
The Sandpoint Reference Platform provides a means to test external interrupts via two slide
Appendix L. MPC8240 EPIC Interrupt Driver 10L-179

MPC8240 EPIC Interrupt Driver
switches (S5 and S6) located on the mother board. Although these switches can be
manipulated to demo the EPIC unit, this is not the intended function of the switches. The
intended usage of these switches is described in the document titled, "Sandpoint PPMC
Processor PCI Mezzanine Card Host Board Technical Summary".

Switch S5 manipulates a 5V signal that originates from the interrupt output line of the
Winbond southbridge chip in the center of mother board. With S5 slid to the left, a 5V
signal is passed on, with S5 slid right, a 0V signal is passed on. The EPIC IRQ0-4 interrupt
lines can be configured to be active-low or active-high triggered.

Switch S6 specifies to which IRQ line (IRQ1 or IRQ 2) the interrupt signal from S5 is
passed. With the S6 slid right, IRQ1 is selected. With S6 slid left, IRQ2 is selected.

L.9.2 Demo Code Snippet
The following code is included in epic1.c and shows the default setup used to demonstrated
external interrupts on the Sandpoint Reference Platform.

/* direct mode (default mode) specific setup */
if (IRQType == EPIC_DIRECT_IRQ)
{

/* If DINK is running on a Host:
Set up IRQ1 and IRQ2 for Sandpoint slide switches S5 and S6
unless an Agent was detected on either line.
If DINK is running on an Agent:
Do not setup IRQ lines. */

 if (pmcIntLine != AGENT_DETECTED) /* Not an Agent */
 {
 if (pmcIntLine != 1) /* No Agent on IRQ1 */
 {
 /* set int 1 to active low, edge-sensitive, priority 10 */

printf("EPIC: IRQ1 Configure... ");
status = epicIntSourceConfig(1,0,0,10);
printf("Connect ISR... ");
epicISRConnect(1,IRQ1ISR);

 /* enable interrupt vector 1 */
printf("Enable\n");
epicIntEnable(1);

 }
 if (pmcIntLine != 2) /* No Agent on IRQ2 */
 {
 /* set int 2 to active low, edge-sensitive, priority 10 */

printf("EPIC: IRQ2 Configure... ");
status = epicIntSourceConfig(2,0,0,10);
printf("Connect ISR... ");
epicISRConnect(2,IRQ2ISR);

 /* enable interrupt vector 2 */
printf("Enable\n");
epicIntEnable(2);

 }
10L-180 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver
 }

 /* If DINK is running on an Agent in a host/agent setup, we’ll
 enable the use of the Message Unit. The Message Unit can be
 exercised using the "dev i2o" command in DINK.

 If DINK is running on the Host, we’ll set up the IRQ interrupt
 vector for whatever IRQ line the Agent was detected on. */

 if (pmcIntLine == AGENT_DETECTED)/* Dink running on Agent*/
 {

printf("\n");
printf("EPIC: Host/Agent setup detected\n");
printf("EPIC: Message Unit Interrupt Configure... ");
status = epicIntSourceConfig(pmcIntLine,0,0,10);
printf("Connect ISR... ");
epicISRConnect(pmcIntLine, I2O_ISR_agent);
printf("Enable\n");
/* enable interrupt vector 23 */
epicIntEnable(pmcIntLine);

 }
 else if (pmcIntLine != 0xff) /*Dink running on Host */
 {

printf("\n");
printf("EPIC: Agent detected on IRQ %d\n",pmcIntLine);
printf("EPIC: IRQ%d Configure... ",pmcIntLine);
status = epicIntSourceConfig(pmcIntLine,0,0,10);
printf("Connect ISR... ");
epicISRConnect(pmcIntLine, I2O_ISR_host);
printf("Enable\n");
epicIntEnable(pmcIntLine);

 }
} //end of Direct Mode specific setup

/* Set up ISR for global timers 0-3. The timers will not be
configured or enable so they are not continually interrupting.
Set up will be left for the user to do from the command line */

printf("EPIC: Timer0 Connect ISR...\n");
epicISRConnect(16,Timer0ISR);
printf("EPIC: Timer1 Connect ISR...\n");
epicISRConnect(17,Timer1ISR);
printf("EPIC: Timer2 Connect ISR...\n");
epicISRConnect(18,Timer2ISR);
printf("EPIC: Timer3 Connect ISR...\n");
epicISRConnect(19,Timer3ISR);

/* Set up DMA0 interrupt */

printf("EPIC: DMA0 Configure... ");
status = epicIntSourceConfig(21,0,0,10);
printf("Connect ISR... ");
epicISRConnect(21,DMA0ISR);
printf("Enable\n");
Appendix L. MPC8240 EPIC Interrupt Driver 10L-181

MPC8240 EPIC Interrupt Driver
epicIntEnable(21);

L.9.3 Running the Interactive Demo
The interactive demo requires that DINK32 is running on a Sandpoint system with an
MPC8240 PMC module. From the DINK32 command line, initialize the EPIC unit by
typing the EPIC initialization command. DINK32 will respond with initialization messages
and will be ready to handle external interrupts. The user may now also manipulate the S5
and S6 switches to trigger interrupts on the IRQ1 and IRQ2 lines. The Global Timers can
now be manipulated to generated timed interrupts. The Message Unit (I2O) can be used if
in a Host/Agent setup. DMA0 can be used in an interrupt driven manner to transfer blocks
of data.Of course while all these external interrupts are being handled, DINK32 continues
to run and will accept user input at the command line, while simultaneously writing status
to the terminal.

Host EPIC initialization on Sandpoint running DINK32 in a non Host/Agent setup:

DINK32_KAHLUA >>dev epic init
Initialize epic

EPIC: Disable External Interrupts
EPIC: Reseting... Mixed Mode... Direct Mode

EPIC: Configuring EPIC to default mode...
EPIC: IRQ1 Configure... Connect ISR... Enable
EPIC: IRQ2 Configure... Connect ISR... Enable
EPIC: Timer0 Connect ISR...
EPIC: Timer1 Connect ISR...
EPIC: Timer2 Connect ISR...
EPIC: Timer3 Connect ISR...
EPIC: DMA0 Configure... Connect ISR... Enable

EPIC: Lower Current Task Priority
EPIC: Enable External Interrupts in MSR

DINK32_KAHLUA >>

Host EPIC initialization on Sandpoint running DINK32 in a Host/Agent setup:

DINK32_KAHLUA >>dev epic init
Initialize epic

EPIC: Disable External Interrupts
EPIC: Reseting... Mixed Mode... Direct Mode

EPIC: Configuring EPIC to default mode...
EPIC: IRQ1 Configure... Connect ISR... Enable
EPIC: IRQ2 Configure... Connect ISR... Enable

EPIC: Agent detected on IRQ 3
EPIC: IRQ3 Configure... Connect ISR... Enable
10L-182 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver
EPIC: Timer0 Connect ISR...
EPIC: Timer1 Connect ISR...
EPIC: Timer2 Connect ISR...
EPIC: Timer3 Connect ISR...
EPIC: DMA0 Configure... Connect ISR... Enable

EPIC: Lower Current Task Priority
EPIC: Enable External Interrupts in MSR

DINK32_KAHLUA >>

Agent EPIC initialization on Sandpoint running DINK32 in a Host/Agent setup:

DINK32_KAHLUA >>dev epic init
Initialize epic

EPIC: Disable External Interrupts
EPIC: Reseting... Mixed Mode... Direct Mode

EPIC: Configuring EPIC to default mode...

EPIC: Host/Agent setup detected
EPIC: Message Unit Interrupt Configure... Connect ISR... Enable
EPIC: Timer0 Connect ISR...
EPIC: Timer1 Connect ISR...
EPIC: Timer2 Connect ISR...
EPIC: Timer3 Connect ISR...
EPIC: DMA0 Configure... Connect ISR... Enable

EPIC: Lower Current Task Priority
EPIC: Enable External Interrupts in MSR

DINK32_KAHLUA >>

L.10 Code and Documentation Updates
For the most up-to-date versions of the EPIC sample driver code and this
appendix/document please visit the following URL:

http://www.mot.com/SPS/PowerPC/teksupport/faqsolutions/code/index.html
Appendix L. MPC8240 EPIC Interrupt Driver 10L-183

Converting Dink32 to Little Endian

taware

L for
Appendix M Converting Dink32 to Little
Endian

M.1 General Information
This information is based on a little endian version of DINK, V7.0 10/8/97 called DINKLE.
The makefile is included in this appendix, the other files from this version are not required
to understand this appendix, but can be requested from risc10@email.sps.mot.com.
Following the instructions below and having access to this DINKLE version can facilitate
the conversion of any version of DINK32 to a little endian version.

M.1.1 Preparation
The reset vector EH100S: at 0x00000100 and 0xfff00100 is extracted from except2.s and
copied to a new file called reset.s. The system_reset code, which includes the copy DINK32
from ROM to RAM is extracted from except2.s and copied to a new file called reset1.s.
Finally the rest of except2.s is copied to a new file called except2l.s. This is necessary, as
described later, because the reset vector and reset code must run in Big Endian (BE) and the
rest of the code must run in Little Endian (LE).

Thus the two files (reset.s and reset1.s) are compiled as BE and that the rest are compiled
as LE. The linker will then link these mixed mode files into a single executable.

These two assembly language files need to be compiled as BE. Use the metaware assembler
option -lb, which is the default.

• reset.s

• reset1.s

These three assembly language files need to be compiled as LE. Use the me
assembler option -le.

• except2l.s

• reg_swap.s

• go_tr2.s

All the C language files need to be compiled as LE. Use the metaware option flag -H
Little Endian compilation, the default is -HB Big Endian.

The CC and two assembler commands for metaware are.

• CC = /...path.../metaware/bin/hcppc -HL -Hnocopyr -c -Hsds

• ASOPTL = -big_si -le
ASL = /...path.../metaware/bin/asppc -c $(ASOPTL)
10M-184 Dink32 R12 User’s Manual

Converting Dink32 to Little Endian

and

set in
t.s and
om the
un the
r. The
hich

 are

code.

he
rPC
 our

cessor
 the

copy
set to
• ASOPTB = -big_si -be
ASB = /...path.../metaware/bin/asppc -c $(ASOPTB)

The order of compilation and linking is.

• reset.o

• except2l.o

• reset1.o

• except1.o

• go_tr1.o

• go_tr2.o

• reg_swap.o

• All the rest of the C files.

The makefile included in M.1.3, “DINKLE V7.0 10/8/97 makefile" is useful to underst
the linking order.

M.1.2 Explanation
It is critical to understand that the processors and peripheral logic all come out of re
Big Endian. Therefore, the first code that is run (this is the reset code located in rese
reset1.s) will be compiled in big endian. The reason the reset vector is separated fr
other code and other exception handlers (found in except2l.s) is that we want to r
other handlers in LE mode so we will assemble them with our Little endian assemble
linker will then link the files in the following order: reset.s, except2l.s, reset1.s w
are Big Endian, Little Endian and Big Endian respectively. All of the other files
compiled as Little endian.

M.1.2.1 Two important considerations

The first involves the copy algorithm and the second involves the little endian swap

M.1.2.1.1 Copy algorithm

In DINK, we copy ROM contents to RAM before jumping to the RAM image. T
compiler has compiled the rest of DINK as "TRUE" little endian. Little Endian on Powe
is not a "TRUE" little endian but rather a munged Little Endian scheme (see
Programming Environments Manual for more details). The fact that the PowerPC pro
really expects BIG ENDIAN data at little endian addressing is accomplished by
unmunging of data during the copy algorithm (use of stwbr instructions). The
algorithm is found in except2.s, which has been copied along with all of system_re
except2l.s

The code is shown here.
Appendix M. Converting Dink32 to Little Endian 10M-185

Converting Dink32 to Little Endian
//now copy DINK in ROM to RAM. ROM image is compiler little endian
//so,we have to swap the byte and muge the address by K.O.

 addis r8,r0,0 //use this for copy ROM to RAM
 ori r8,r8,4 //use for Munge address
lp1:
 lwz r10,0(r4) //read word from eprom.
 lwz r11,4(r4) //muge the address
 stwbrx r10,r8,r3 //byte swap
 stwbrx r11,r0,r3 //byte swap

/* original big endian code which is now replaced
* stwx r5,0,r3 //store word into dram.
* lwzx r7,0,r3 //load word from dram.
* cmp 0,0,r7,r5 // check to see if dram got written
* bne error_dram_init
*/

addi r4,r4,8 //go to next double word of eprom and dram.
 addi r3,r3,8
 addic. r6,r6,-8 //decrement word from 256k block
//-- set cr0 on this one for branching.
 bgt lp1 //if count>0, then loop

The memory, which is local to the processor, always has BE
ordered data in its physical memory locations (just like the
values in the onboard registers and onboard caches are still in
big endian order). The byte lane swap is accomplished at the
PCI interface.

M.1.2.1.2 Little endian swap instruction sequence

The peripheral logic is switched to little endian first (before the processor) in reset1.s (ie.
the specific programming of the bridge chip to be in little endian mode). There is a period
of time when the processor and the peripheral logic will not be in the same endian mode.
This period should be minimized. It is interesting to note that this period is of interest
because the addresses, that you think you are executing from, may not actually be intuitive.
In the the V7.0 code this is not a problem (and is not dealt with) because the instructions
that are being accessed, when the peripheral logic has been switched to LE and the
processor is still in BE, are already in local memory in BE format and the processor hasn’t
switched yet. If, however, you were running from code out in PCI then there would be an
issue because the "unmunge" logic in the peripheral chip has just been turned "on" but the
processor is not munging addresses just yet.

There is an elegant way of handling this. Place a sequence (approximately. 30) of "ORI
R0,R0,0x60" opcodes in the code stream after switching the peripheral logic to LE and then
after these "ori" instructions begin, LE code modules which have DUPLICATE opcodes
can run until the processor can be put into LE mode (i.e. until the RFI executes).

The "ori r0,r0,0x60" opcode is used because it is an opcode that
10M-186 Dink32 R12 User’s Manual

Converting Dink32 to Little Endian
doesn’t matter if the bytes are read as BE or LE (i.e. they are the
same opcode; a relatively innocuous no-op). 0x60000060 is
still 0x60000060 in big or little endian mode.

After this assembly code (which has duplicate instructions), "regular" compiler generated
LE modules may be located.

The duplicated instructions handle the fact that the address is
temporarily "unmunged" so it is coming out as 0x04, 0x00,
0x0C, 0x08 etc. Instead of duplicating instructions you could
alternate a no-op with the real instruction or reverse the opcode
in memory (not recommended for clarity)

M.1.3 DINKLE V7.0 10/8/97 makefile
This makefile will only work with V7.0, it is included here only
for illustrative purposes.

DEBUG =
OPTIM =
CC = /risc/tools/pkgs/metaware/bin/hcppc -HL -Hnocopyr -c -Hsds -fsoft
#-Hlist
CCobj = $(CC) $(DEBUG) $(OPTIM)
PREP = $(CC) -P

Assembler used to build the .s files (for the board version)

ASOPTL = -big_si -le
ASOPTB = -big_si -be

ASL = /risc/tools/pkgs/metaware/bin/asppc -c $(ASOPTL)
ASB = /risc/tools/pkgs/metaware/bin/asppc -c $(ASOPTB)
Linker to bring .o files together into an executable.

LKOPT = -Bbase=0 -xm -e system_reset -Bnoheader -Bhardalign
-xo=dink32.src -q -Qn -Cglobals -Csections -Csymbols -Ccrossref
LINK = /risc/tools/pkgs/metaware/bin/ldppc $(LKOPT) > xref.txt

DOS Utilities

DEL = rm
COPY = cp
LIST = ls -l

These are the modules which have to do wi th DINK’s registers.
REGISTERS = reg_tb.o reg_spr.o

These are the modules which have to do with DINK’s memory access rout ines.
MEMORY = mem_tb.o

These are the modules which have to do wi th the DINK parser .
PARSER = tok_tb.o arg_tb.o rfs_tb.o par_tb.o toks.o

These are the modules which have to do wi th the error checking
and repor t ing.
Appendix M. Converting Dink32 to Little Endian 10M-187

Converting Dink32 to Little Endian
ERRORS = errors.o err_tb.o

These are the modules which have to do with the downloader including
DINK’s compression rout ines.
DOWNLOAD = downld.o dc_tb.o

#
These are the modules which have to do wi th the input output to the
board level stuf f .
INPUTOUTPUT = duar t.o board.o

These are the modules which have to do wi th DINK’s assembler/disassembler.
ASMDSM = asm.o dsm.o

These are for the exceptions in the DINK32 system.
EXCEPTIONS = reset .o except2l.o reset1.o except1.o

These are for the Go and Trace rout ines. Please note that the EXCEPTIONS
are
very important for the Go/Tr operat ions.
GOTRACE = go_tr1.o go_tr2.o reg_swap.o

These are the modules which have to do wi th DINK’s help and breakpoints.
MISC = help.o brk_pts.o subl ib .o

These are the modules which have to do wi th the main loop and

in i t ial izat ion of DINK32.
DINKMAIN = main.o prin t.o
DINKASM = $(EXCEPTIONS) $(GOTRACE)
DINKWORKERS = $(REGISTERS) $(MEMORY) $(DOWNLOAD) $(ASMDSM) $(MISC)
DINKINTERFACE = $(PARSER) $(ERRORS) $(INPUTOUTPUT)
DINKOBJECTS = $(DINKASM) $(DINKMAIN) $(DINKWORKERS) $(DINKINTERFACE)
DCOMPOBJECTS = dc_tb_unix.o dc_unix.o

dink32: $(DINKOBJECTS)
$(LINK) $(DINKOBJECTS) $(LIBS) -o dink32.src

clean:
$(DEL) -f *.o *. lst * .map dink32.src dcomp zz.*

#.s.o:
$(PREP) $* . i
$(AS) $*.s

reset.o: $(INC_ALL) $(INC_ASM) reset.s
$(ASB) reset .s

reset1.o: $(INC_ALL) $(INC_ASM) reset1.s
$(ASB) reset1.s

except2 l.o : $(INC_ALL) $(INC_ASM) except2l .s
$(ASL) except2l.s

reg_swap.o: $(INC_ALL) $(INC_ASM) reg_swap.s
$(ASL) reg_swap.s

go_tr2.o: $(INC_ALL) $(INC_ASM) go_tr2.s
$(ASL) go_tr2.s

.c .o:
$(CCobj) $*.c
10M-188 Dink32 R12 User’s Manual

Converting Dink32 to Little Endian
INC_ALL = config.h
INC_C = dink.h
INC_TOK = tok_tb.h toks.h
INC_GEN = errors.h cpu.h
INC_ASM = dink_asm.h yellowknife.h

reg_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) reg_tb.c reg_tb.h
reg_spr.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) reg_spr.c reg_tb.h
mem_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) mem_tb.c
tok_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) tok_tb.c
arg_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) $(INC_GEN) arg_tb.c rfs_tb.h
rfs_tb.o: $(INC_ALL) $(INC_C) $(INC_GEN) rfs_tb.c rfs_tb.h
par_tb.o: $(INC_ALL) $(INC_C) $(INC_TOK) par_tb.c errors.h
toks.o: $(INC_ALL) $(INC_C) $(INC_TOK) toks.c errors.h
err_tb.o : $(INC_ALL) $(INC_C) $(INC_TOK) err_tb.c err_tb.h
errors.o : $(INC_ALL) $(INC_C) $(INC_GEN) errors.c
help.o : $(INC_ALL) $(INC_C) $(INC_TOK) help.c arg_tb.h rfs_tb.h errors.h
brk_pts.o : $(INC_ALL) $(INC_C) $(INC_GEN) brk_pts.c brk_pts.h
sublib.o : $(INC_ALL) $(INC_C) $(INC_GEN) sublib.c
netrix1.o : $(INC_ALL) netrix1.c
netrix.o : $(INC_ALL) netrix.c
except1.o : $(INC_ALL) $(INC_C) except1.c
#except2.o : $(INC_ALL) $(INC_ASM) except2.s
#go_tr2.o : $(INC_ALL) $(INC_ASM) go_tr2.s
go_tr1.o : $(INC_ALL) $(INC_C) go_tr1.c
#reg_swap.o : $(INC_ALL) $(INC_ASM) reg_swap.s
dc_tb.o : $(INC_ALL) $(INC_C) $(INC_GEN) dc_tb.c
downld.o : $(INC_ALL) $(INC_C) $(INC_GEN) downld.c
duart.o: $(INC_ALL) $(INC_C) $(INC_GEN) duart.c duart.h
print.o : $(INC_ALL) $(INC_C) $(INC_GEN) print.c
board.o : $(INC_ALL) $(INC_C) $(INC_GEN) board.c duart.h
asm.o : $(INC_ALL) $(INC_C) $(INC_GEN) asm.c asm_dsm.h
dsm.o : $(INC_ALL) $(INC_C) $(INC_GEN) dsm.c asm_dsm.h
main.o : $(INC_ALL) $(INC_C) $(INC_TOK) main.c errors.h arg_tb.h reg_tb.h
duart.h

Appendix M. Converting Dink32 to Little Endian 10M-189

	Chapter�1 DINK32 User’s Guide Index
	Chapter�2 Introduction
	Chapter�3 MDINK32/DINK32 Features
	3.1 MDINK32 Overview
	3.2 New features for MDINK32 V12.1
	3.3 MDINK32 Design Methodology
	3.4 Hardware Configuration Requirements
	3.5 MDINK32 Software Build Process
	3.6 MDINK32 Memory Model
	3.7 New features for DINK32 V12.1
	3.8 DINK32 Design Methodology
	3.9 DINK Software Build Process
	3.10 DINK32 Memory Model

	Chapter�4 MDINK32/DINK32 Commands
	4.1 Commands
	4.1.1 .(period) .
	4.1.2 about about
	4.1.3 assemble as
	4.1.4 bkpt bp
	4.1.5 defalias da
	4.1.6 devdisp dd
	4.1.7 devmod dm
	4.1.8 devtest dev
	4.1.9 disassem ds
	4.1.10 download dl
	4.1.11 env env
	4.1.12 flash fl
	4.1.13 fupdate fu
	4.1.14 fw fw -e
	4.1.15 go go
	4.1.16 help he
	4.1.17 Identify id
	4.1.18 log log
	4.1.19 memcompare mc
	4.1.20 memdisp md
	4.1.21 memfill mf
	4.1.22 meminfo mi
	4.1.23 memod mm
	4.1.24 memove mv
	4.1.25 memsrch ms
	4.1.26 memtest mt
	4.1.27 menu me
	4.1.28 pciconf pcf
	4.1.29 pcidisp pd
	4.1.30 pcimod pm
	4.1.31 pciprobe ppr
	4.1.32 regdisp rd
	4.1.33 regmod rm
	4.1.34 rtc rtc
	4.1.35 runalias ra
	4.1.36 setbaud sb
	4.1.36.1 Host versus Keyboard.

	4.1.37 symtab st
	4.1.38 tau tau
	4.1.39 transpar tm
	4.1.40 trace tr

	Chapter�5 DINK32 Command Form Summary
	Chapter�6 Utilities
	6.1 S-Record Compression/Decompression
	6.1.1 Overview
	6.1.2 Building
	6.1.2.1 Files
	6.1.2.2 Modification of header file
	6.1.2.3 Build command

	6.1.3 Command syntax

	6.2 bat_decoder
	6.2.1 Overview
	6.2.2 Building
	6.2.2.1 Using unix commands
	6.2.2.2 Using makefile supplied

	6.2.3 Command syntax

	6.3 l2_decoder
	6.3.1 Overview
	6.3.2 Building
	6.3.2.1 Using unix commands
	6.3.2.2 Using makefile supplied

	6.3.3 Command syntax

	6.4 config_decoder
	6.4.1 Overview
	6.4.2 Building
	6.4.2.1 Using unix commands
	6.4.2.2 Using makefile supplied

	6.4.3 Command syntax

	6.5 Memory Test

	Chapter�7 User Program Execution
	7.1 Execution Steps

	Chapter�8 Errors and Exceptions
	8.1 Error Codes
	8.1.1 Parser Errors
	8.1.2 Errors from Error Checking Toolbox
	8.1.3 addresses
	8.1.4 Get Argument Errors
	8.1.5 Tokenizer Toolbox Errors
	8.1.6 Screen Toolbox Errors
	8.1.7 Breakpoint Errors
	8.1.8 Download Errors
	8.1.9 Compression and Decompression Errors
	8.1.10 DUART Handling Errors
	8.1.11 Register Errors
	8.1.12 Flash Errors

	8.2 Exceptions

	Chapter�9 Restrictions
	9.1 Special Purpose Registers

	Chapter�10 Known Bugs
	10.1 Known Bugs

	Appendix�A Adding Commands and Arguments
	A.1 Help
	A.1.1 Help Menus

	A.2 Input Arguments
	A.2.1 Input Token Facility

	Appendix�B Adding ERROR Groups to MDINK/DINK32
	B.1 Error Group Files
	B.1.1 err_tb.h
	B.1.2 errors.h

	Appendix�C History of MDINK32/DINK32 changes
	C.1 Version 12.1 August 30, 1999.
	C.2 Version 12.0 November 30, 1999.
	C.3 Version 11.0.2 June 1, 1999
	C.4 Version 11.0.1 May 1, 1999 Not Released
	C.5 Version 11.0 March 29, 1999
	C.6 Version 10.7 February 25, 1999
	C.7 Version 10.6 January 25, 1999
	C.8 Version 10.5 November 24, 1998
	C.9 Version 10.4 November 11, 1998
	C.10 Version 10.3 no date
	C.11 Version 10.2 September 11, 1998
	C.12 Version 10.1 September 10, 1999
	C.13 Version 9.5 August 5, 1998
	C.14 Version 9.4 May 22, 1998
	C.15 Prior to Version 9.4 Approximately October 10, 1997

	Appendix�D S-Record Format Description
	D.1 General Format
	D.2 Specific Formats
	D.3 Examples
	D.4 Summary of Formats

	Appendix�E Example Code
	E.1 General Information
	E.2 agentboot
	E.2.1 Background
	E.2.2 In This Directory
	E.2.3 Assumptions
	E.2.4 Usage
	E.2.5 Notes

	E.3 Demo
	E.3.1 Building
	E.3.2 Function Addresses

	E.4 Dhrystone
	E.4.1 Building
	E.4.2 Function Addresses

	E.5 L1test
	E.5.1 Building
	E.5.2 Function Addresses
	E.5.3 Excimer versus Yellowknife

	E.6 l2sizing
	E.6.1 In This Directory
	E.6.2 Assumptions
	E.6.3 Usage
	E.6.4 To Build
	E.6.5 Notes

	E.7 L2test
	E.7.1 Building
	E.7.2 Function Addresses
	E.7.3 Excimer versus Yellowknife

	E.8 lab4
	E.8.1 Building
	E.8.2 Function Addresses

	E.9 memspeed
	E.9.1 Building
	E.9.2 Function Addresses

	E.10 printtest
	E.10.1 Building
	E.10.2 Function Addresses

	E.11 testfile
	E.11.1 Building
	E.11.2 Function Addresses

	Appendix�F Updating DINK32 from the Web
	F.1 General Information
	F.1.1 For YellowKnife and Sandpoint:
	F.1.2 For Excimer and Maximer:

	F.2 Makeing a DINK32 or MDINK32 from the Release
	F.3 Settings for terminal emulators
	F.3.1 Hyperterm on NT
	F.3.2 Zterm on Mac

	Appendix�G Dynamic functions such as printf and variables such as memSpeed
	G.1 General Information
	G.2 Methodology and implementation.
	G.3 Setting up the static locations.
	G.4 Using the Dynamic Functions.
	G.5 Error Conditions.
	G.6 Alternative method for Metaware only.

	Appendix�H MPC8240 (Kahlua) Drivers
	H.1 Drivers directory.

	Appendix�I MPC8240 DMA Memory Controller.
	I.1 Background
	I.2 Overview
	I.3 DMA Application Program Interface (API)
	I.3.1 API Example Usage

	I.4 DMA Driver Library Internals (DLI)
	I.4.1 Common Data Structures and Values

	I.5 Kahlua DMA Driver Library Internals: function descriptions

	Appendix�J MPC8240 I2C Driver Library.
	J.1 Background
	J.2 Overview
	J.3 I2C Application Program Interface (API)
	J.3.1 API functions description
	J.3.2 API Example Usage

	J.4 I2C Driver Library Internals (DLI)
	J.4.1 Common Data Structures and Values

	J.5 Kahlua I2C Driver Library Internals: function descriptions
	J.5.1 DLI Functions Written but not Used and not Tested:

	J.6 I2C support functions

	Appendix�K MPC8240 I2O Doorbell Driver
	K.1 I2O Description of Doorbell Communication between Agent and Host
	K.1.1 System startup and memory map initialization
	K.1.2 Interrupt Service Routines: I2O_ISR_host() and I2O_ISR_agent()
	K.1.3 Enable Doorbell Interrupts:
	K.1.4 Writing and Reading Doorbell Registers:
	K.1.4.1 Host Rings an Agent via Agent’s Inbound Doorbell
	K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell
	K.1.4.3 Descriptions of the I2O library functions

	K.2 I2C Driver Library
	K.2.1 Background
	K.2.2 Overview
	K.2.3 I2C Application Program Interface (API)
	K.2.3.1 API functions description
	K.2.3.2 API Example Usage

	K.2.4 I2C Driver Library Internals (DLI)
	K.2.4.1 Common Data Structures and Values
	K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions
	K.2.4.3 The following DLI functions were written but not used and not tested:
	K.2.4.4 I2C support functions

	Appendix�L MPC8240 EPIC Interrupt Driver
	L.1 General Description
	L.2 EPIC Specifics
	L.2.1 Embedded Utilities Memory Block (EUMB)
	L.2.2 EPIC Register Summary
	L.2.3 EPIC Modes

	L.3 Directory Structure
	L.4 EPIC Cross-Reference Table Structure
	L.5 EPIC Sample Routines
	L.5.1 Low Level Routines
	L.5.2 High Level Routines
	L.5.2.1 EPIC Initialization Routines:
	L.5.2.2 High Level Exception Handler:
	L.5.2.3 Direct/Serial Register Control Routines:
	L.5.2.4 Global Timer Register Control Routines:

	L.6 EPIC Commands in DINK32
	L.7 EPIC Unit Startup
	L.8 External Interrupt Exception Path in DINK32
	L.9 Example Usage on Sandpoint Reference Platform
	L.9.1 L.9.1 Sandpoint Reference Platform
	L.9.2 Demo Code Snippet
	L.9.3 Running the Interactive Demo

	L.10 Code and Documentation Updates

	Appendix�M Converting Dink32 to Little Endian
	M.1 General Information
	M.1.1 Preparation
	M.1.2 Explanation
	M.1.2.1 Two important considerations
	M.1.2.1.1 Copy algorithm
	M.1.2.1.2 Little endian swap instruction sequence

	M.1.3 DINKLE V7.0 10/8/97 makefile

