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Abstract—In this report, we reviewed the theoretical
and practical aspects of explaining the success of deep
neural networks (DNN). The review is centered around
two papers, one representing the issue of provable global
convergence of the learning algorithms used in DNN [1],
other representing a practical approach to explain the
predictions generated by them [2]. In [1], a modified
learning algorithm has been proposed which can provide
provable global convergence guarantee of DNN beyond
the so-called NTK regime. In [2], a generalized version
of class activation map (CAM) has been introduced which
can provide improved class-discriminative property, object
localization ability, reliability and interpretability. Some
potential future research directions in both domains have
been provided in this review.

I. INTRODUCTION

From the theoretical perspective, explaining the suc-
cess of deep neural network (DNN) is governed by the
goal of providing theoretical guarantee for convergence
of gradient descent (GD) or stochastic gradient descent
(SGD) and providing the guarantee of generalization
ability of the learned networks. One of the major pro-
gresses in this direction is to answer following two broad
questions [3]:

1) Why does the overparametrized DNN converge to
global minima despite the optimization problem is
highly nonconvex?

2) Why does the overparametrized DNN generalize
despite the potential possibility of overfitting?

There are several recent works contributed signifi-
cantly to answer those questions [3], [4], [5], [6], [7].
Most of these works depend on the assumption that the
network is highly overparametrized (i.e., number hidden
nodes in each layer is in the order of a large polynomial
of number of samples). This leads to the so-called theory
of Neural Tangent Kernel (NTK).

The idea behind the NTK theory is that, when the
model is highly overparametrized (i.e., in the NTK
regime) and the learning rate is sufficiently small, the
activation pattern of the hidden nodes remains approx-
imately same throughout the training process compared

to the initialization [8], [9]. Then, the first order ap-
proximation of the network is valid, and the network
becomes approximately linear with respect to weights.
This leads to the optimization problem to be convex, and
the SGD/GD enjoys linear convergence rate to converge
to the global minima.

However, one of the major drawbacks of NTK theory
is that it can’t explain the capability of DNN to learn rep-
resentations of multiple abstraction levels from the data
as the model in the NTK regime is approximately linear
[1]. Also, the degree of overparameterization required to
achieve the global convergence makes it incomparable
to the practical overparameterized DNN.

To address these issues, in [1] a modified version of
the basic (e.g., SGD/GD) optimization algorithm has
been proposed which can provably achieve the global
minima of the objective function under an assumption
stated as expressivity condition. The theoretical verifi-
cation of the condition has been provided for fully con-
nected DNN and a numerical verification of the condition
has been provided for Resnet with batch normalization
for different benchmark datasets.

The major advantage of the modified algorithm is
that it can demonstrates to learn representations from
the data and provably achieve the global minima si-
multaneously without sacrificing the generalization per-
formance compared to the baseline algorithms. Also,
the degree of overparameterization required to achieve
the convergence is in the linear order of number of
samples which makes it comparable to overparametrized
DNNs used in practice. However, the lack of provable
generalization guarantee can be identified as a major
shortcoming compared to NTK approximation of DNN.

One of the major practical aspects of explaining DNN
is centered around interpreting its success in vision tasks.
However, most of the networks deployed in vision tasks
contain several convolution layers. Hence, interpreting
such networks has been driven by visualizing the con-
cepts learned by those convolution layers.

Visual explanation from Convolutional Neural Net-
works (CNN) can be broadly divided into two major



2

categories [2]: Pixel-space Gradient Visualization and
Localization based Visual Explanation. All of the pixel-
space gradient visualization techniques found in liter-
ature (e.g., Backpropagation [10], Deconvolution [11]
and Guided-backpropagation [12]) provide visualization
with a certain degree of high-resolution but lack class-
discriminative ability. On the other hand, one of the earli-
est localization based visual explanation technique found
in literature is the Class Activation Map (CAM) [13],
which can demonstrates high class-discriminativeness
but without retraining the technique is only applicable to
a very specific network architecture (i.e., global average
pooling of the last convolution layer followed by the
output layer).

To make the localization based technique more gen-
eral and applicable to any network without alteration
of the structure, a gradient based class activation map
has been proposed in [2] known as Grad-CAM. More-
over, to leverage the high-resolution capability of pixel-
space gradient visualization techniques, guided back-
propagation is integrated with Grad-CAM to gener-
ate Guided Grad-CAM which can demonstrates class-
discriminativeness and generates high-resolution map
simultaneously. The Grad-CAM and Guided Grad-CAM
not only provide visual explanation for prediction of
the networks used in classification tasks, but also other
vision tasks such as image captioning and visual question
answering (VQA). Moreover, it can demonstrate better
localization ability compared to other weakly-supervised
localization techniques, better human reliability com-
pared to guided backpropagation, can identify failure
modes of a network and identify dataset biases.

The rest of the report is structured as follows. Sec-
tion II provides the contemporary theories of global
convergence guarantee of DNN. Section III provides
a comparative discussion on different visual explana-
tion techniques from DNN. Section IV provides some
potential future research directions in both of these
domains. Finally, Section V completes the report with
some concluding remarks.

II. GLOBAL CONVERGENCE GUARANTEE OF

DEEP NEURAL NETWORKS

A. Problem Formulation

The optimization problem of a DNN can be formu-
lated as follow:

min
w
L(w) = 1

n

n∑
i=1

l(f(xi, w), yi) (1)

where {xi, yi}ni=1 are the training samples, w contains
the learnable parameters of the network, l(f(xi, w), yi)

is the loss function and f(xi, w) is the network output
function for the i-th training sample. However, due to
the non-linearity introduced in the hidden layers by the
incorporation of the non-linear activation function turns
the minimization problem into a non-convex problem
[8]. As a result, typical convex optimization theory is
not applicable to prove the global convergence of the
algorithms used in practice (e.g., GD, SGD).

B. NTK Based Global Convergence

Although, the objective function represented in (1) is
highly non-convex in parameter space (i.e., non-convex
w.r.t. w), as most of the loss functions are convex in
functional space, the objective function is also convex
in functional space (i.e., convex w.r.t. f(xi, w)). Hence,
primarily the NTK based convergence analysis depends
on the dynamics of the objective function in functional
space [8], [9]. Moreover, the analysis depends on the fact
that, the parameter (w) of a highly overparameterized
(number of hidden nodes is in the polynomial order
of number of samples) and properly initialized network
remains close to its initial value during the training using
GD/SGD for a sufficiently small learning rate. Based on
the above observations, it can be shown that, the training
of the network can be represented by a kernel method
which is convex in parameter space. The kernel is defined
as:

Kw(xi, xj) =

(
∂f(xi, w)

∂w

)T
∂f(xi, w)

∂w
(2)

which is known as Neural Tangent Kernel (NTK) and
the corresponding kernel matrix known as NTK matrix
can be defined as:

K(w) =
∂vec(fX(w)T )

∂w

(
∂vec(fX(w)T )

∂w

)T

(3)

Here, fX(w) ∈ R(n×my) is the output matrix of the
network, i-th row of which is representing the output of
the network for the sample xi and my is the number of
nodes at the output layer. Accordingly, the convergence
of GD/SGD can be proved with linear convergence rate
as long as the NTK matrix is positive-definite (i.e., full-
rank) throughout the training process. However, based on
a mild assumption on the input data distribution, it can be
shown that the NTK matrix is full-rank at initialization.
Then, due to the proximity of the parameters during
training process to the initialization, the NTK matrix
remains full-rank throughout the training process.
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C. Global Convergence Guarantee Beyond NTK Regime

To prove the global convergence beyond the NTK
regime, in [1], a modified algorithm has been proposed
which contains two phases. In the first phase of the
algorithm, the network learns the representations of the
data while in the second phase, the learning rate has
been modified so that it enters in the NTK regime which
eventually helps to prove the global convergence of the
algorithm.

More precisely, the training algorithm can be high-
lighted using three major steps (Algorithm 1 of [1]):
Phase-1 training, Random Perturbation and Phase-2
training. In Phase-1 training, the parameters are updated
according to typical learning algorithm used in practice
(e.g., GD/SGD) which can be represented using follow-
ing equation:

wt+1 = wt − ηt ⊙ gt; t = 0, 1, 2, ..., τ − 1 (4)

where, wt is the learnable parameters at time t, gt is
the updating rule (e.g., for GD/SGD gt contains the
average gradient of the loss function for the training
samples/mini-batch with respect to wt) and ηt is the
learning rate. However, Phase-1 training is followed by
the Random Perturbation step at time τ , when gaussian
random noise has been added to the weights of all the
layers except the last layer as follow:

wτ
(1:H) ← wτ

(1:H) + δ (5)

where, w(1:H) contains the learnable parameters of all
the hidden layers and δ represents the noise vector. The
last step in the training process is the phase-2 training,
where the learning rate ηt>τ is modified such that the
algorithm enters the NTK regime. Hence, while the
Phase-1 training ensures that the network is learning
representations from the data, the Random Perturbation
followed by the Phase-2 training is utilized to prove the
global convergence.

However, to prove the global convergence it is
required that the network-dataset combination satisfy
the expressivity condition stated as follow (Assumption
1 of [1]):

“There exists w(1:H) such that
φ(w(1:H) ̸= 0, where φ(w(1:H)) :=

det([h
(H)
X (w(1:H)), 1n] [h

(H)
X (w(1:H)), 1n] T )”

Here, h
(H)
X (w(1:H)) ∈ R(n×mH) is the feature

matrix of the last hidden layer, i-th row of which is
representing output vector of the last hidden layer for the
sample xi as input and mH is the number of nodes in the
last hidden layer. Essentially, the expressivity condition

is ensuring the existence of w(1:H) for which the feature
matrix is full-rank. This leads to the confirmation of
full-rankness of NTK matrix K(w) defined in (3).
The full-rankness of the NTK matrix at the end of
Phase-1 training, linear degree of overparameterization
at the output layer (i.e., mH = Ω(n)) and the choice
of learning rate at the Phase-2 training such that the
full-rankness of the NTK matrix is preserved at that
phase ensures the global convergence of the proposed
algorithm. Unlike general NTK convergence theory, the
convergence result hold on data-dependently for this
modified algorithm (Theorem 1 and 3 of [1]). On the
other hand, the data dependency of the NTK matrix
after the Phase-1 training ensures that the network is
learning representations from the data. Finally, the linear
degree of overparameterization requirement together
with the capability of learning representations confirms
the global convergence guarantee of the algorithm
beyond NTK regime.

The expressivity condition is proved to be hold data-
independently for fully connected neural networks with
softplus activation function (σ(z) = ln(1 + exp(ζz))/ζ)
and wide last hidden layer (mH ≥ n) (Theorem 2 of [1]).
The condition is verified numerically for ResNet-18 with
softplus activation function and wide fully connected
layer (mH = cn; c = 1.1) by checking the condition
using randomly sampled w(1:H) for different benchmark
datasets. Improved test error of ResNet on those datasets
compared to baseline algorithm ensures that the modified
algorithm does not sacrifice generalization performance
while providing global convergence guarantee (Table 1
of [1]). Also, the modified algorithm reduces training
loss further compared to baseline algorithm (Figure 3 of
[1]).

III. VISUAL EXPLANATIONS FROM DEEP NEURAL

NETWORKS

Visual explanation of the decision made by a DNN
can be obtained by producing a visualization map of the
prediction for a particular input. This visualization map
will indicate which characteristics of the input influenced
the network to make that prediction. For example, for
a vision task the visualization map will indicate which
pixels of a particular image influenced most to make a
particular prediction and what are the features (low, mid
or high-level features) learned by different layers of the
network to make that prediction.

A. Pixel-space Gradient Visualization

Visualizing CNN predictions in pixel-space is based
on calculating the gradient of the class score for the
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predicted output class for a particular input image w.r.t.
that image [10]. This gradient image highlights those
pixels of the image which have most influence to predict
the class. In other words, changing the intensities of
those pixels of the image will impact most on the
prediction score of the class. However, the methods of
gradient calculation through relu non-linearity differ in
different techniques fall into this category such as in
Backpropagation, Deconvolution and Guided Backprop-
agation.

In Backpropagation approach [10], for an input image
I0, the visualization for the predicted class c is obtained
by calculating the gradient of the class score Sc which
can be denoted by ∂Sc

∂I0
. In other words, the gradient of

Sc is backward passed to the input layer.
On the other hand, in De-convolution approach [11], a

de-convolution network in opposite direction is used to
visualize the CNN predictions in pixel-space. It can be
inferred that, a deconvolution module which essentially
performs convolution with flipped filter of forward direc-
tion, replace the convolution module of the forward pass.
To reconstruct the un-pooled map in backward pass,
a switch is created during forward pass through max-
pooling layer which records the maxima of each pooling
region and passed it to the deconvolution network for
reconstruction.

However, Backpropagation and De-convolution differ
only in the method of backward pass through relu acti-
vation [10]. While Backpropagation passes the gradients
which have positive activation during the forward pass,
De-convolution passes only the positive gradients (i.e.,
uses relu in opposite direction). In Guided Backpropa-
gation [12], the method of backward pass through relu
activation is the intersection of above two methods. In
other words, only those positive gradients are backward
passed which have positive activation during the forward
pass.

As a comparison, Guided Backpropagation outper-
forms the other two in some respects. However, all these
methods can produce high-resolution map (i.e., contain
fine grained details) with a certain degree.

B. Localization based Visual Explanation

Another line of work to provide visual explanation of
predictions from CNN is based on visual localization
of the object responsible for the predictions. These
visualizations are generated from the activation maps of
a convolution layer of the network, usually from the last
convolution layer. These visualization maps are referred
to as Class Activation Map (CAM) in literature.

In [13], a method of generating CAM has been
provided for a specific network architecture where the

activation maps of the last convolution layer are global
average pooled (GAP) and directly connected to the
output layer through weights. Then, the CAM of the con-
volution layer can be generated using following equation:

Mc =
∑
k

wc
kAk (6)

where Mc is the CAM for the class c, wc
k is the

weight associated with the class c and the k-th activation
map Ak. However, to generate CAM for other network
architecture using this method, the portion after the last
convolution layer must be replaced by GAP followed
by direct connection to the output layer. This requires a
retraining of the network.

To produce a more general CAM which can be appli-
cable to any network architecture, a modified approach
has been provided in [2] known as Grad-CAM, where
the gradients of the class score w.r.t. activation maps
have been utilized. More precisely, at first the importance
factors of activation maps for class c with class score yc
are calculated by global average pooling of the gradient
of yc w.r.t. corresponding activation map Ak as follow:

αc
k =

1

Z

∑
i,j

(
∂yc

∂Ak

)
i,j

(7)

where αc
k is the importance factor, Z is the number of

pixels in the activation map and ∂yc

∂Ak
is the gradient of

the class score w.r.t. the activation map Ak. Then, wc
k

in (?) can be replaced by αc
k to produce rectified class

activation map referred to as Grad-CAM as follow:

Lc
Grad-CAM = ReLU

(∑
k

αc
kAk

)
(8)

CAM and Grad-CAM both can provide highly class-
discriminative map but they lack high-resolution details.
On the other hand, approaches in pixel-space gradient
visualization can provide high-resolution details but lack
class-discriminative ability. In order to utilize the benefits
of both of the domains, a combined approach is provided
in [2], known as Guided Grad-CAM, where the Grad-
CAM is upsampled using bilinear interpolation to the
input image level and then pointwise multiplied with the
visualization generated by guided backpropagation.

Unlike Guided Backpropagation and Grad-CAM
which can only produce high-resolution and class-
discriminative visualization respectively, Guided Grad
CAM can generate both high-resolution and class-
discriminative map simultaneously as shown in figure 1.
From localization perspective, Grad-CAM outperforms
CAM and other weakly-supervised localization meth-
ods without sacrificing classification performance (Table
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(a) Original Image (b) Guided Backpropagation

(c) Guided Grad-CAM (d) Grad-CAM

Fig. 1. Various visualizations of category ‘cat’ [2]

1 of [2]). From the visualization perspective, human
study conducted in [2] suggests that Guided Grad-
CAM demonstrates improved class-discrimination ability
and reliability compared to its pixel-space visualization
counterparts. Moreover, Grad-CAM can analyze failure
modes of a network and identify dataset biases. Finally,
unlike CAM, due to its generalizability Grade-CAM can
provide visual explanation for the prediction of networks
deployed in other vision tasks such as image captioning
and visual question answering.

IV. FUTURE RESEARCH DIRECTIONS

A. From the Optimization and Generalization Perspec-
tive

The modified algorithm presented in [1] provides a
new research direction for the convergence and general-
ization analysis of DNN based on data-depended NTK.
However, there are some immediate scopes of improve-
ment of the convergence analysis of the algorithm in
terms of precision and convergence results. It can be
noted from Theorem 3 of [1] that, there is no estimate
of time-complexity (τ ) of Phase-1 training. Also, the
convergence guarantee depends on the preserveness of
full-rank of NTK matrix during Phase-2 training. The
full-rankness of NTK is preserved by the suitable choice
of learning rate (ηt) at the second phase. But, there is no
estimate of ηt given which can preserve the full-rankness.
Hence, the analysis results can be made more precise by
providing a theoretical estimate of τ and ηt required for

convergence. Also, the convergence rate of the algorithm
provided is in the sublinear region while convergence
rates of GD/SGD in NTK regime found in literature are
linear [8]. Hence, improving the convergence rate of the
modified algorithm to linear region can be an interesting
research direction.

Although, the modified algorithm can provide the
representation learning and convergence guarantee si-
multaneously, the provable generalization guarantee is
still unavailable. Hence, one of the major future research
directions should be to provide provable generalization
guarantee for data depended NTK. Also, providing prov-
able robustness for adversarial training can be considered
as an interesting research direction.

B. From the Visual Explanation Perspective

In the generation process of Grad-CAM, the average
gradient of the class score w.r.t. activation map has
been chosen as the neuron importance factor (αc

k) but
no theoretical support has been provided. Theoretical
support for such choices can bring more reliability and
interpretability of the visual explanation process and so
developing such support can be an interesting research
direction. Extending the technique to explain the pre-
dictions of the networks deployed in outside the vision
tasks (e.g., reinforcement learning, natural language pro-
cessing, medical diagnosis etc.) can be another future
research direction.

V. CONCLUSION

The modified learning algorithm proposed in [1] can
demonstrate representations learning capability and prov-
able global convergence simultaneously. Further, it has
been numerically verified that, the proposed learning
algorithm does not sacrifice the generalization ability on
practical datasets. However, the separation of training
process into two phases and the addition of random
noise to the parameter after the first phase make it
unable to explain the success of GD/SGD in practical
overparameterized DNN.

On the other hand, the Grad-CAM proposed in [2]
can improve the class-discriminative property and ap-
plicable to any CNN architecture. In addition, Guided
Grad-Grad CAM can provide high-resolution and class-
discriminative map simultaneously. However, some re-
cent papers [14], [15] suggests that, the Grad-CAM
does not satisfy the sensitivity axiom [16] and Guided
Grad-CAM fails the sanity check of visual explanation
methods.
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