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Abstract—Applied deep learning has penetrated various
fields of research, creating new, data-driven models for
automated tasks and acting as denoising functions in signal
reconstruction. This paper reviews two works as they
relate to the current state of deep learning: Plug-and-
Play Methods Provably Converge with Properly Trained De-
noisers, which investigates the convergence of denoisers in
Plug-and-Play frameworks, and Deep Sets, which develops
neural network architectures specific to set operations.
The relationship between these ideas and current deep
learning topics such as transformers and network stability
are discussed. Additionally, several research ideas building
from the work outlined in these two manuscripts are
proposed, including the investigation and use of spectral
normalization for network stability and the potential use
of deep set functions in a Plug-and-Play framework.

I. INTRODUCTION

The significance of deep learning in computer vision
and signal processing has grown exponentially in recent
years. While state-of-the-art methods have become so-
phisticated, the fundamental deep neural network (DNN)
is simply a data-fitted model consisting of sequential
affine transformations followed by nonlinear functions.
This cascade architecture gives multi-layer networks the
capacity to robustly fit complex non-linear mappings
[1]. As universal approximators, DNNs have successfully
been applied to various domains for both regression and
classification tasks.

DNNs have been applied to many domains, but their
utility can often be categorized in one of two scenarios:
the first is where an input contains sufficient information
to determine the desired output, but deductively theoriz-
ing a mapping is not feasible. In these cases, such as
image classification, data-driven methods are preferred,
and DNNs have outperformed support vector machines
[2]. The second scenario is where analytical models con-
necting output to input exist, but the input information
is either too noisy or insufficient to accurately recon-
struct the output (e.g. image reconstruction from sparse
sensor data). In this case, DNNs may act similarly to

compressed sensing, where the network compensates for
the data insufficiency by imposing a priori knowledge
learned from the dataset [3]. It is worth noting that for
poorly conditioned inverse problems, network stability is
a significant issue in deep reconstruction.

The rest of this paper will observe two works which
intersect the two scenarios above. The first is Plug-and-
Play Methods Provably Converge with Properly Trained
Denoisers [4], which pertains to deep learning as applied
to signal reconstruction. The second is Deep Sets [5],
which describes and tests DNN considerations for prob-
lems involving sets. Fundamentals will be reviewed for
each work, as well as their theory and findings. Finally,
several new ideas pertaining to these works are proposed.

A. Background in Plug-and-Play Methods

Plug-and-play (PnP) is a general framework for ex-
tracting a desired signal with undersampled or noisy
data. Consider accurately recovering signal x from data
D. We can frame this as maximizing the log posterior
probability logP (x|D) via Bayes’ theorem:

x = argmax
x

P (D|x)P (x)

P (D)
= argmax

x
logP (D|x)+logP (x)

Instead of a probability maximization, we can equiv-
alently seek to minimize the total loss between a data
likelihood term f and a prior g:

x = argmin
x

f(x) + γg(x)

Many optimization methods exist to this end, but most
involve alternating between checking data consistency
(reduce f(x)) and denoising (reduce g(x)). Since re-
ducing g(x) is simply denoising, [6] realized that this
step does not have to be an optimization objective, and
other denoisers such as non-local means [7] can instead
be used. Substituting general denoisers into this iterative
framework is known as “plug-and-play” (PnP), and it has
experienced broad success in applied research. Despite
the empirical results, little has been done to theoretically



prove why and under what conditions a denoiser will
converge within PnP. [4] proves convergence of PnP
denoisers under certain assumptions. Specifically, with
denoiser Hσ, Hσ − I should satisfy the following Lips-
chitz condition for some ε > 0 [4]:

||(Hσ − I)(x2)− (Hσ − I)(x1)||2

||x2 − x1||2
= ε2 (1)

B. Convergence Criteria for PnP

The procedures involved in proving convergence can
be found in the appendix of the original paper, as they are
too lengthy to include here. Essentially, the authors prove
convergence assuming (1) under two PNP methods:
forward-backward splitting (FBS) and Douglas-Rachford
splitting (DRS), which is functionally equivalent to al-
ternating direction of method multipliers (ADMM). FBS
can be compressed into the following iterative algorithm:

xk+1 = Hσ(I − α∇f)(xk) (2)

Intuitively, this formula is alternating between a data-
fitting gradient step I − α∇f and denoising step Hσ. It
is then proven that this iteration is contractive (Lipschitz
constant < 1) if, assuming f is µ-strongly convex,
differentiable, and L-Lipschitz:

1

µ(1 + 1/ε)
< α <

2

L
− 1

L(1 + 1/ε)

Which exists if ε < 2µ/(L− µ).
For DRS, the iterative formula can be compressed as:

xk+1 =
1

2
(xk + (2Hσ − I)(2 Proxαf −I)(xk)) (3)

Then, it is demonstrated that these iterations are con-
tractive if:

ε

(1 + ε− 2ε)µ
< α, ε < 1

C. Adding Stability for DNNs in PnP

Although deep learning is not inherent to PnP, DNNs
are commonly used in this framework as denoisers.
[4] also proposes and tests a spectral normalization
technique for training deep denoisers to fit (1). Assume
denoiser Hσ(x) = x − R(x), where R is a learned
residual mapping. It is easy to see that enforcing (1)
is equivalent to enforcing a Lipschitz condition on R.
The Lipschitz constant of a feed-forward network can
be constrained by controlling the spectral norms of
each layers’ weight parameters. Assuming the activation

functions are non-expansive, then the Lipschitz condition
of a single layer transformation corresponds to the largest
singular value of the weight matrix, also known as the
spectral norm. Consequently, the Lipschitz condition of
the entire network is bounded by the product of spectral
norms over all feed-forward layers. In other words:

L ≤
K∏
`=1

max(σ(W`)) (4)

Where σ(W`) extracts the singular values of from the
`th layer weight matrix.

Spectral normalization techniques in deep learning
were first popularized with SN-GAN to stabilize dis-
criminator training in generative adversarial learning [8].
In short, each weight matrix is routinely normalized by
its largest singular value. Unfortunately, singular value
decomposition (SVD) is prohibitively expensive for this
use. Instead, the most significant left (u`) and right (v`)
singular vectors are estimated for each W` via power
iteration, which essentially estimates the leading left
and right singular vectors by iteratively transforming
initializations by W` or W>` :

vk+1
` = W>` u

k
` /||W>` uk` ||2

uk+1
` = W`v

k+1
` /||W`v

k+1
` ||2

These estimations are in turn used to calculate
σ(W`) = u>` W`v` and normalize each transform by its
spectral norm.

[8] introduces a relaxation for applying this to convo-
lutional layers, in which the kernel is flattened, but [4]
found that this method insufficient, as it both theoreti-
cally and empirically underestimates the spectral norms.
As such, the authors introduce a new technique called
real spectral normalization, which is analogous to power
iteration for matrices but extends to convolutional kernels
mapping RCin×h×w → RCout×h×w. For convolutional
kernel K`, the transpose operator K∗` is determined by
permuting the first two (channel) dimensions and rotating
the last two channels by 180◦ [9]. After this, the first left
and right singular inputs U` and V` can be iteratively
estimated in a way analogous to power iteration.

D. Pnp Experiments

[4] runs several experiments to support their theo-
retical findings. The most insightful is an image Poisson
denoising problem. The authors test convolutional neural
networks (CNNs) both with and without real spectral
normalization and BM3D as denoisers in PnP-FBS and
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PnP-ADMM. To assess convergence, ε was calculated
for each model between iterations. It was found that
ε < 1 for all CNNs tested, and was smaller in instances
where spectral normalization was applied, guaranteeing
convergence. This was not the case for B3MD, which
had Lipschitz constants greater than 1. The authors also
assess performance of the models via PSNR and confirm
that spectrally normalized CNNs outperform BM3D.
Additionally, the spectral normalized CNNs are tested
in PnP algorithms for two real-world reconstructions:
single-photon imaging and compressed sensing magnetic
resonance imaging (MRI). In both of these experiments,
the spectrally normalized CNNs yield at least com-
petitive performance when compared with other PnP
algorithms as well as other reconstruction methods, such
as total variation minimization [10]. Overall, these results
support the theory presented in this work, and show
merit in the spectral normalization technique proposed
for CNNs.

E. Neural Networks for Set Mappings

Deep Sets [5] observes machine learning tasks in
which the input is a set X = x1, x2, ..., xM , with each
element xm being an object from a domain of all possible
objects (e.g. word bank). Note that the total set length M
is variable. When processing sets, one of two function
properties is typically desired: permutation invariance
or permutation equivariance. [5] proposes deep learning
approaches for both of these scenarios.

F. Permutation Invariant Deep Mappings

A function is permutation invariant if all permutations
of a single input sequence produce the same output, e.g.
f(x1, x2, x3) = f(x3, x2, x1). To this end, [5] proposes
a simple function form that guarantees invariance:

f(X) = ρ(
∑
x∈X

φ(x)) (5)

The authors formally prove that all functions in this
form have permutation invariance, but the intuition is
self evident: elements of a sequence are first individually
processed, and the summation of this process output
is commutative (therefore permutation invariant), which
can then be non-linearly transformed.

[5] also draws parallels between this formulation and
results from other math theory, including kernel ma-
chines and spectral methods. One notable example given
is de Finetti’s theorem, which states that a sequence
of variables are independent with regard to some latent
variable given that they are exchangeable:

p(X|α,M0) =

∫
p(θ|α,M0)

M∏
m=1

p(xm|θ)dθ (6)

In a sense, an exchangeable distribution model is an
invariant set function, with the input sequence being a
set. The authors specifically show that for exponential
families with conjugate priors, this theorem can be
simplified to the form found in Equation 5.

For deep learning set tasks, the most apparent solution
is treat both φ and ρ as unknown non-linear functions,
each of which can be approximated with feed-forward
DNNs and trained end-to-end. Since φ processes inputs
xm individually, this structure can process sets of vari-
able length, similar to a recurrent neural network (RNN).

G. Permutation Equivariant Deep Mappings

The second scenario considered is permutation equiv-
ariance, meaning that a certain permutation of an input
sequence simply produces the same output sequence
but with that same permutation (e.g. if f(x1, x2, x3) =
(y1, y2, y3) then f(x3, x2, x1) = (y3, y2, y1)). This prop-
erty can only apply to f : RM → RM . To this end, the
authors propose the following equivariant neural network
layer architecture:

f(x) = σ(λIx+ γmaxpool(x)1) (7)

Where 1 is a vector of 1’s, γ and λ are scalar
parameters, and σ is an activation function. Using this
structure not only makes each layer-wise transformation
equivariant, but also allows for variable length inputs, as
the number of parameters is independent of input size.

H. Experimental Results

The authors of [5] apply their methods to numerous
real-world experiments, several of which are simple
regressions or classifications with set inputs. First, vari-
ous methods are used to generate multivariate Gaussian
distributions, with the task of calculating entropy and
mutual information within distributions only from a set
of samples. A 3-layer permutation invariant (Equation
5) DeepSet model with ReLU activations was trained
for this, which consistently outperformed a support dis-
tribution machine model [11]. Next, a DeepSet model is
trained to sum a set of digits (both in text and image
form), and achieves better results than both long short-
term memory (LSTM) and gated recurrent units (GRU)
models [12] [13]. Additionally, the authors demonstrate
competitive performance on point cloud classification
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tasks (classifying an object from a set of points forming
a 3D mesh) and estimation of galaxy red-shift from
photometrics.

An unsupervised, more interesting tested task is set
expansion, in which a model is given a set of inputs
an must predict another object that fits well within this
set. If one considers a set as a point in an exchangeable
model with de Finetti’s theorem (Equation 6), then one
can also view the expansion task as selecting the object x
with maximum point-wise mutual information with input
X:

s(x|X) = log p(X ∪ x|α)− log p(X|α)p(x|α) (8)

This framing is used to create a relative loss function
for network training:

l(x, x′|X) = max(0, s(x′|X) + ∆(x, x′)− s(x|X))

Where x is an expansion that feasibly exists in X ,
and x′ does not feasibly exist. The authors also note
that data-driven DNNs can easily incorporate meta-data
(e.g. an image associated with tags), unlike other existing
models. To this end, DeepSets is applied successfully
when in both text concept set retrieval (predicting a word
that shares conceptual similarity with words in an input
set) and image tagging (adding additional appropriate
tags to an image).

Finally, the authors apply their equivariant DNN
model to anomaly detection (detecting an object that
does not belong in a set) in face images. The tested
network consisted of a convolutional network as a fea-
ture extractor followed by a sequence of either fully-
connected or permutation equivariant layers. Use of the
equivariant layers achieved better performance, confirm-
ing its utility in appropriate tasks.

Overall, Deepsets proposes and tests robust deep
learning methods for set operations when either invari-
ance or equivariance is desired. The theory provided
gives sound explanation for the architectural choices, and
experimental results validate their advantages.

II. DISCUSSION

Both Deep Sets and Plug-and-Play Methods explore
relevant challenges in deep learning, providing both
theoretical and empirical findings for their ideas. The
following section explores potential research directions
based on the ideas presented and how they relate to
broader topics in the field of deep learning. Namely,

observing network spectral norms as they relate to sta-
bility and adversarial robustness and as a broader reg-
ularization method, Deep Sets’ relation to other current
architectures, and an application that incorporates both
Deep Sets and PnP methods are discussed.

A. Spectral Norms for Robustness and Regularization

Plug-and-Play Methods guarantees PnP convergence
by limiting the Lipschitz constant of the denoiser net-
work and provides a powerful method for spectral
normalization in convolutional layers. Controlling the
Lipschitz constant of a DNN is a hot topic, especially in
adversarial robustness, where it is thought that instability
against adversarial attacks are related to large Lipschitz
constants [14]. The Troublesome Kernel explores insta-
bility in deep medical image reconstruction, and even
claims that such Lipschitz instability is inherent in the
problem due to a lack of kernel awareness [15].

Spectral normalization proposes a potential method for
controlling the Lipschitz constant, but far more investiga-
tion is needed to prove its value. Equation 4 only gives
an upper limit on the network’s Lipschitz constant; it
does not guarantee that any input that could generate
such a divergence exists, let alone whether or not that
input feasibly exists within the input distribution. It is
also unclear when spectral norms should be controlled
for stability. For example, Figure 1 of [4] shows that even
networks without spectral normalization achieved ε < 1,
suggesting that the network learned a stable mapping on
its own.

Whether or not higher spectral norms truly lead to
more instability should be explored. This would be easy
to evaluate in the context of adversarial attacks, as one
could train various classification networks and observe
their adversarial robustness in relation to layer spectral
norms. Furthermore, if large spectral norms cause ad-
versarial instability, then one would expect adversarial
examples to have significant components along the sin-
gular vectors of at least one of the layer transformations
during forward propagation. In other words, given train-
ing example x and adversarial example x′ = x + ∆x,
for some layer `, the different in hidden values h′` − h`
should be very closely aligned with one of W`’s largest
righthand singular vectors. This can be easily tested.

If results show that high spectral norms indeed cause
adversarial instability, then regularization of spectral
norms should be investigated. Current spectral normal-
ization methods simply normalize the each layer’s spec-
tral norm to 1, but this is a very rigid application, as some
mappings may necessarily require larger singular values.
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This approach also only scales each singular value
evenly, rather than reducing the largest singular value
directly. Using the power iteration method mentioned
earlier with left and right singular vectors u` and v`,
one can easily see that the gradient of parameters W`

with respect to the layer’s spectral norm is:

∇σ(W`)W` = u`v
>
` (9)

Given this, the following regularization is proposed
during training for each layer:

W k+1
` = W k

` −η(∇LW` + λ∇σ(W`)W`)

∇σ(W`)W` = u`v
>
` if σ(W`) > 1

= 0 o.w.

Where L is some loss function. Employing this regu-
larization penalizes transformations only if they are po-
tentially expansive, but still does not disallow expansive
transforms entirely, facilitating convergence towards a
mapping that is both accurate and stable.

B. Deep Sets in Relation to other Architectures

It is worth noting that while other works have per-
haps not explored the theoretical realm of deep set
processing as much as [5], many have arrived at related
architectures to the permutation invariant approach. The
transformer is the most prominent example of this, which
has shown great success in natural language processing
[16]. Similar to the permutation invariant approach in [5],
the transformer first processes inputs individually into
embeddings. Rather than explicitly summing outputs,
however, the transformer uses self-attention to facili-
tate interaction between inputs, which is invariant of
sequence permutation. Language processing is often not
a set task, as the order of words is important to the
embedded meaning, so the transformer typically adds a
positional encoding to each embedded input to preserve
sequence information. For complex set operations, the
obvious architecture would simply be a transformer
without this positional encoder. Given the transformer’s
success, especially with language tasks, it would reason
that such an architecture would perform well in set tasks
like expansion. Perhaps architectures that process inputs
invariantly offer generally more robust frameworks, as
positional encodings can be added or removed depending
on the nature of the problem.

C. Deep Sets in PnP for Reconstruction with Noisy
Sampling

One possible application of both PnP methods and
Deep Sets would be a reconstruction task for noisy
data that can represent a set. For instance, imagine a
scenario where a sensor array can record more than
sufficient data, but reconstruction is extremely noisy, and
the noise model is either complicated not clearly defined.
An example of this would be Compton Tomography
imaging, which is similar to Computed Tomography
(CT), but instead reconstructs images with incoherently
scattered energy rather than transmission [17]. It is
theoretically possible reconstruct an image detecting
only a single scatter energy with collimated detectors,
but the data received is extremely noisy due to the
effects of an unknown attenuation map. One solution to
this is to jointly reconstruct the attenuation image and
scatter image [18] [19]. Using scatter information from
multiple energies can help constrain this reconstruction,
but simultaneously considering all scatter energies in a
single data fidelity term is difficult to optimize. In this
instance, one can separate the recorded data by scatter
energy and reconstruct multiple, noisy images and then
feed these reconstructions into a DNN denoiser as a set
of inputs. The denoiser would consider the input as a set
of images, with the task of outputting a single, denoised
image. This approach could be particularly useful if
the noise model is not well defined. Such an iterative
reconstruction should include consistency between the
different reconstructions outputs of the data fidelity step
as part of the convergence criteria.

III. CONCLUSION

This work has reviewed the fundamentals presented
in PnP Algorithms and Deep Sets, two works broadly
related to deep learning. As both present strong the-
oretical exploration as well as empirical results, new
research can either explore the theory or apply the ideas
presented to specific domains. In particular, a more theo-
retical exploration into spectral normalization as it would
relate to network instability, the relationship between the
Deep Sets permutation invariant architecture and popular
transformer architecture, and a potential application of
the invariant architecture and PnP methods to scenarios
where data can be abundantly sampled, but with difficult
underlying noise models are all discussed.
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