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Abstract—Finding a good representation is key to almost
all signal processing applications. Overcomplete represen-
tation possesses many characteristics that are beneficial to
signal processing applications. However, it implicitly brings
a heavy computational complexity that impedes tractability
in real-world applications. In this paper, we synthesize two
publications from image object detection and sensor array
source localization that are related to overcomplete rep-
resentations and corresponding computation acceleration.
we also discuss the potential research directions for future
work.

Index Terms—feature representation, source localiza-
tion, direction-of-arrival estimation, object detection

I. INTRODUCTION

Feature representation is the corner stone of many
signal processing applications including image classifica-
tion, object detection, source localization, etc. [10], [13],
[18] Yet, designing task-related informative features and
building fast algorithms based on those features bring
huge challenges. Due to the unique characteristics of
each downstream signal processing applications, each
research direction has become its own root. Specifically,
this paper mainly focuses on synthesising the assigned
articles from two different branches: object detection [3]
and source localization [19], each direction is presented
as an independent subsection in the following sections.

Source localization aims to localize sources using
sensor arrays. The sensor array is usually far away
from the sources, which makes the distance estimation
impossible. Therefore, the task becomes to estimate the
direction-of-arrival of sources. One of the primary goal
of source localization is to accurately localize sources,
which requires the ability to differentiate sources even
when sources are closely spaced. Beamforming [12],
Capon’s method [1] and MUSIC [23] are some of the
most well known nonparametric methods. The basic
assumption of beamforming is the received signal energy
achieves its maximum when steering the sensor array to
the source direction. This vanilla method performs well

in the simple lab experiment when the sound sources
are uncorrelated and well spaced with little white noise.
But it suffers from Raleigh limitation that it is not
able to differentiate two sources when they are closely
spaced. Capon’s method (Minimum Variance Distor-
tionless Response (MVDR) filter in audio processing
literature) tends to augment the noise toleration ability
by minimizing the noise power with a fixed gain of the
actual source direction. MUSIC algorithm relies on the
spectral decomposition to decompose the received signal
to orthogonal signal and noise subspace. This method
implicitly needs the sources to be uncorrelated and also
a large number of snapshots to ensure its performance.
Parametric methods like deterministic maximum likeli-
hood (DML) and stochastic maximum likelihood (SML)
perform well with hard-to-acquire accurate initialization
[13]. How to accurately localize correlated, close spaced
sources under considerable noise within acceptable time
span is desired to be explored.

Localizing and recognizing multiple objects within the
frame is the key objective of object detection. Both local-
ization and classification branches require good feature
representation. There are a significant amount of efforts
for extracting useful features from images [11], [14],
[15], [18]. Consider the variation of object scales, build-
ing object detection algorithms with multiscale feature
representation can achieve good overall detection perfor-
mance. Feature/image pyramid is almost a default choice
in designing object detection algorithms [5], [9], [10],
[17], [20]. Famous Integeral Chanel Feature (ICF) [5],
Deformable Part models (DPM) [10] work well in both
pedestrian detection (Caltech [6], INRIA [2], ETH [8]
datasets) and general object detection (PASCAL VOC
dataset). But the corresponding computational cost also
impedes them to be applied in the real-world scenario.
There are a lot of ad-hoc efforts for speeding up the
specific detection algorithms (e.g. cascaded and coarse-
to-fine DPM [9], [20]), and these acceleration methods
are all based on precomputed image features. While



constructing feature pyramid is computational-expensive,
and the investigation of accelerating feature computation
is missing. Finding methods to accelerate the process is
key to real-world applications tractability.

Overcomplete representation has been an active re-
search area for many years [7], [16]. Overcomplete
representation means the basis vector outnumbers the
input signal dimensions. It often comes with robustness
to noise, flexibility to match the data structure and
easiness to utilize sparsity. Different advantages of over-
complete representation have been utilized in both areas.
For source localization, it perfectly aligns the central
assumption that there are only relatively small number
of point sources in the localization scheme. Sparsity
is easily introduced by overcomplete representation. In
the vision realm, both primate and computer visual
systems benefit from using overcomplete representation
to extract visual features, which provide key information
for algorithm to detect object within the frame [11], [14],
[15], [18]. By utilizing the overcomplete representation,
the visual features are more robust to viewpoint changes,
lighting and image deformation.

In the following sections, we discuss the problem
formulation with overcomplete representation of source
localization and image feature representation, the pro-
posed methods from [3], [19] to accelerate computation
of such representation and the achieved results with
discussion.

II. MOTIVATION AND PROBLEM STATEMENT

A. Source Localization with overcomplete basis

For sensor array source localization problem, Our job
is to find source locations given the information of the
array geometry, the wave propagation medium parame-
ters, and received signal from sensor array. we formalize
the source localization with overcomplete representation
problem following the notation in [19].

Consider K signal uk(t), k ∈ {1, ...,K} as sources
arrive at the omnidirectional sensor array M with addi-
tive noise nm(t), m-th sensor receives signal ym(t),m ∈
{1, ...,M} within the sensor array. The received signal
can be expressed in (1), where u(t) and n(t) are defined
in the similar fashion as y(t).

y(t) = A(θ)u(t) + n(t), t ∈ {t1, ..., tT } (1)

The array manifold matrix A(θ) contains the delay and
gain information for each source-sensor pair. Column
vector a(θk), for k ∈ {1, ...,K} is the steering vector.
we are able to create the mapping θ → A(θ) by
the array geometry and propagation parameters where

θ = [θ1, ..., θK ]. Given the received signal y(t) and
the mapping ability, the goal is to find the number
of sources K and θk for all k. Estimating θ is not a
simple linear estimation since the number of sources
and the arrival angles are both unknown. The problem
formulation above is based on the single snapshot for the
sake of exposition simplicity. In fact, estimation based
on joint-time sample can provide robustness to noise. we
will formulate the source localization with overcomplete
basis under the joint-time sample scenario.

One central assumption that most nonparametric meth-
ods rely on is signal sources can be treated as point
sources and the number of sources are relatively small.
This assumption naturally brings the overcomplete rep-
resentation and sparse representation on the table. Note
{θ̃1, ..., ˜θNθ

} as a sample grid of possible source lo-
cations, where Nθ is much larger than the number
of sources K and number of sensors M . Then the
array manifold matrix A(θ) can be rewrite as A =
[a(θ̃1), ..., a( ˜θNθ

)]. Then u(t) will need to change to a
sparse spectrum S = [s(t1), ..., s(tT )], similar to n(t)
and y(t). The localization problem is reformulated to (2).
And our goal changes from The nonlinear estimation of
A(θ) to the estimation of S.

Y = AS +N (2)

It is clear that (2) is ill-posed and has infinite solutions.
Enforcing spatial sparsity of S can solve this problem.
Solving (2) with l0-norm that counts the number non-
zero element is NP-hard. Instead, l1-norm is proved to
provide the exact solution when S is ”sparse enough”
with respect to A. And it can be solved by linear
programming. Under the joint-time sample scenario,
signals are not necessarily sparse in time. So we first
calculate the l2-norm of all time samples for each spatial
index of S shown in (3), then enforce spatial sparsity
using l1-norm. The cost function can be described as in
(4). For the real data, (4) can be solved with quadratic
programming. And for the complex data, second order
cone (SOC) programming can help to solve.

s
(l2)
i = ∥[si(t1), ..., si(tT )]∥2 (3)

min ∥Y −AS∥22 + λ∥s(l2)∥1 (4)

Although formulating source localization problem
with overcomplete basis and sparse representation is
able to provide super resolution performance, robustness
to noise, ability to solve coherent source problem, the
main drawback is the computational complexity. In the
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Fig. 1. Illustration of shift invariant feature approximation within an
octave. Top row: image pyramid. Bottom row: feature pyramid. Solid
and dotted arrows meas exact and approximated computation.

next section, we will introduce l1-SVD to accelerate the
computation.

B. Multiscale Feature Approximation

Multiscale feature pyramid provides robust feature
representation and serves as the fundamental structure in
many object detection algorithms. But computing exact
feature pyramid is computational intense. Since most
of the image structure is preserved in the resampled
image, it is desirable to explore whether we can use
one scale feature map to approximate the feature maps
in the nearby scales illustrated in Fig. 1. How to
construct the accurate approximation with a function
of scale difference follows. Note Ω as a shift invariant
function that generate a per-pixel feature map Cs given
the hs×ws input image Is at scale s. Widely used feature
like gradient histogram, linear filter, color statistics etc.
can be written as the weighted sum of Cs, the extracted
feature shown in (5)

fΩ(Is) ≡
1

hswsk

∑
ijk

Cs(i, j, k) ,where Cs = Ω(Is)

(5)
From previous work on image statistics, the expec-

tation E[·] over ensemble images statistics ϕ(I) shows
power relation across different scales [21], [22] shown
in (6), where s1, s2 represent two different sclaes and
λϕ is an unique constant for each statistic.

E[ϕ(Is1)]/E[ϕ(Is2)] = (s1/s2)
−λϕ (6)

fΩ(Is1)/fΩ(Is2) = (s1/s2)
−λΩ + ϵ (7)

For single image with shift invariant function, decom-
posing the image into K patches can approximate the
expectation of fΩ(I) ≈

∑
fΩ(Ik)/K, where fΩ(I) ≈

E[fΩ(Ik)]. Eq. (6) can be rewritten as (7), where ϵ is
the deviation from the power law for a given image.
Now the task is to estimate λΩ. Compute the average
scaling effect µs over the image samples(at scale s),
µs = s−λΩ + E[ϵ] can be derived from (7). Using least
square fit on the log scale can easily estimate λΩ. Empir-
ically results on several common shift invariant features
(histogram of gradients, HOG etc.) show the expected
error term is really small, and the deviation for individual
images is also relatively small when scale change is
small, which indicates the feature pyramid estimation is
approachable. We will illustrate the proposed method in
next section.

III. METHODS

Although overcomplete representation brings a lot of
advantages, an implicit disadvantage is the increase com-
putation complexity. In the following subsections, we
will illustrate the proposed approaches in both areas to
decrease the computational complexity by approximating
the feature representation.

A. l1-SVD

To make the source localization with sparse represen-
tation tractable in the real world application, decompos-
ing the joint-time sample into signal subspace and noise
subspace can reduce the searching dimension introduced
by joint time samples. Recall the received joint-time
signal Y = [y(t1), ..., y(tT )] is a M × T matrix. Y can
be decomposed into K dimensional signal subspace and
T − K dimensional noise subspace by applying SVD:
Y = ULV ′. And we only keep the top-K dimensions
that represent the signal subspace YSV = Y V Dk, where
DK = [IK0′] that chooses the top K basis. Similarly,
let SSV = SV DK and NSV = NVDK . For each
signal subspace singular vector, we have (8). K is
usually much smaller than T , which brings significant
computation complexity reduction. And we still impose
l1-norm to the spatial index of SSV to ensure sparsity and
apply l2-norm across the singular index k, the objective
function becomes (9), where λ can be chosen following
discrepancy principle.

ySV (k) = AsSV (k) + nSV (k), k = 1, ...,K (8)

min ∥YSV −ASSV ∥22 + λ∥s̃(l2)∥1 (9)
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Notice that ∥s̃(l2)∥1 = ΣNθ

i=1

√
ΣK
k=1(s

SV
i (k))2 is nei-

ther linear or quadratic. SOC programming can solve
the problem with complexity O((K×Nθ)

3), without l1-
SVD, the complexity is O((T ×Nθ)

3), where T ≫ K.

B. Fast Feature Pyramid

Feature pyramid ensembles multi-scale featuremaps
as an overcomplete feature representation of the input
image. Scales are evenly sampled in the log-space, with
typically 4-12 scales per octave (an octave is the interval
between one scale and its double). A standard way
of calculating feature pyramid is to extract feature at
every scale. From (7), the feature map Cs at scale s
can be approximated by multiplying the nearest resized
feature map Cs′ at scale s′ and the estimated scaling
factor (s/s′)−λΩ : Cs ≈ R(Cs′ , s/s

′)(s/s′)−λΩ , where
s′ ∈ {1, 12 ,

1
4 , ...} is the calculated nearest scale. To build

the fast feature pyramid, feature map is calculated only
once per octave. And the rest of the feature can be
extrapolated with the corresponding nearest feature map.

Usually, calculating Ω is linear in number of pixels
n× n (for simplicity), the computational complexity of
building a feature pyramid with m scales per octave is∑inf

k=0 n
22−2k/m = n2

1−4−1/m ≈ mn2

ln4 . Typically, m is
between 8 to 12. The fast feature pyramid approach only
computes feature map once per octave, which achieved
an order of magnitude reduction in computational com-
plexity.

Both methods try to accelerate calculation from dif-
ferent angles: dimension reduction and feature extrapo-
lation. In the next section, we will illustrate the achieved
performance in both accuracy aspect and speed aspect.

IV. EVALUATION

A. Source localization

To illustrate the performance superiority of l1-SVD,
the sensor array is set to be a M = 8 uniform linear array
separated by half a wavelength, two zero-mean source
signals in the far-field impinge on the array. Let T = 200,
the grid is 1◦ sampled resulting Nθ = 180.

In the first comparison shown in Fig. 2, two sources
are closely located at 62◦ and 67◦, which is within the
Raleigh’s limit. The experiment is set in a relatively
noisy environment that SNR = 0dB. From Fig. 2,
beamforming, Capon and MUSIC all merge two sources
into one peak, except l1-SVD. This comparison illus-
trates the super resolution ability and the robustness of
noise.

Since l1-SVD doesn’t rely on the orthogonality as-
sumption of signal and noise subspace, l1-SVD is able

Fig. 2. Spatial Spectra for beamforming, Capon’s, MUSIC and
l1-SVD for uncorrelated sources from [19]. DOAs: 62◦ and 67◦.
SNR = 0dB.

Fig. 3. Spectra for correlated sources from [19]. DOAs: 63◦ and
73◦. SNR = 20dB.

to solve correlated signal scenarios shown in Fig. 3. Let
two sources with correlation coefficient of 0.99 located
at 63◦ and 73◦ at SNR = 20dB environment. Again,
only l1-SVD is able to locate two sources, which prove
its ability to resolve correlated sources case.

B. Fast feature Pyramid Application: Object Detection

The effectiveness of fast feature pyramid method
compared to the traditional should be measured based
two factors: accuracy and inference speed. Given the
fact that the fast feature pyramid is nothing but a fast
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TABLE I
MRS OF LEADING APPROACHES ON FOUR PEDESTRIAN

DETECTION DATA SETS (INHERITED FROM [3])

INRIA [2] Caltech [6] TUD ETH [8]
VJ [24] 72 95 95 90

HOG [2] 46 68 78 64
Crosstalk [4] 19 54 58 52

ICF-exact 18 48 53 50
ICF 19 51 55 56

ACF-exact 17 43 50 50
ACF 17 45 52 51

version of traditional feature pyramid, we hope the
object detection accuracy (log-average miss rate (MR))
should achieve the similar performance compared to
normal feature pyramid. As for speed, since different
object detection algorithm speed bottleneck varies, there
is no unified measurement for the speed improvement.
But the computation of exact feature pyramid runs at
∼ 15fps, whereas the fast feature pyramid speeds up to
nearly 50fps under the experiment system settings. From
the computational complexity derived from the previous
section, noticeable speed improvement is anticipated.

Three models are tested with the fast feature pyramid
implementation:

• Aggregated Channel Features (ACF) aggregated
normalized gradient magnitude, histogram of ori-
ented gradients and LUV color space as the single
pixel lookups as the extracted feature. Multiscale
sliding window approach with boosted trees are
used to detect objects within the frame.

• Integral Channel Features (ICF) as a precursor to
ACF shares the same channel features and boosted
tree strucutre. The key difference is ICF sums
over rectangular channel regions instead of using
aggregated pixel lookups.

• Deformable Part Models (DPM) [10] uses a variant
of HOG features as the image representation, and
a linear SVM as the classifer. The object model
contains a coarse root model and optional finer
components.

From Table. I, ACF-exact (normal feature pyramid)
achieved best performance in pedestrian detection, and
there is no significant performance drop with fast feature
pyramid substitution. The direct comparison of DPM
in pedestrian detection data sets is unavailable. But
in general object detection dataset (VOC), the mean
Average Precision (AP) is achieved 26.6 by exact feature
pyramid and 24.5 by fast feature pyramid across 20

classes.

V. CONCLUSION AND DISCUSSION

Overcomplete representation brings huge performance
improvement in computer vision and source localization
area, the implicit computational complexity yet impede
the tractability in the real world application. In this paper,
we illustrate the problem statement with overcomplete
representation in both vision area and source localiza-
tion. With the complexity burden in mind, we describe
two approximation methods- l1-SVD and fast feature
pyramid for acceleration. And we also evaluate their
performance based on the traditional evaluation metrics
in each area. For source localization, using overcomplete
representation not only achieves the localization super
resolution under noisy environment, but also solves the
correlated sources scenario. In vision domain, feature
pyramid provides robust features under various condi-
tions, which already become a default feature represen-
tation structure. These approximation methods indeed
reduce the complexity at least an order of magnitude,
which make these approaches tractable.

The overcomplete representation is easy to introduce
sparsity, which suits in the basic assumption of source
localization there are only small number of sources
present in the scene. We tested the performance of l1-
SVD using a powerful toolbox [25], the localization
performance highly depends on the choice of l1 regular-
ization parameter λ. And the estimation of λ often does
not yield the best results. Investigation of alternative way
of utilizing sparsity is needed.

Feature pyramid provides robust features that brings
huge performance improvement in detecting objects in
various scales. But the DPM performance decrease in the
general object detection is quite significant, additional
experiment to examine the importance of different scales
in detecting objects may better verify the validity of
fast feature pyramid. Moreover, INRIA dataset that are
used to empirically prove the validity of fast feature
pyramid is not challenging enough compared to general
detection dataset. Whether the power law of scale still
holds in more complex scenes is also worthwhile to
investigate. Also MR is not a complete measurement of
detection performance, intersection over union (IOU) or
ROC curve might be more insightful for presenting the
performance variations.
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