

Semiconductor Devices and Models II Instructor: Michael Shur
E-mail: shurm@rpi.edu Home page: http://www.ecse.rpi.edu/shur/

Homework No 2. Solutions

1. The data in Fig. 1 are the measured current-voltage characteristics of a silicon p-n junction diode at very small biases (much smaller than $V_{t h}$, where $V_{t h}$ is the thermal voltage (assume temperature $\mathrm{T}=25^{\circ} \mathrm{C}$). (The current is in $\mu \mathrm{A}$ in the graph and in A in the table, the voltage is in V.) Using the empirical diode equation

$$
I=I_{s}\left(\exp \frac{V}{\eta V_{t h}}-1\right)
$$

extract the ratio $I_{s} /\left(\eta V_{t h}\right)$ from the slope of the diode characteristics.

Figure 1

In the linear range $\left(V \ll V_{t h}\right.$, where $V_{t h} \sim 26 \mathrm{mV}$ is the thermal voltage, $I \sim I_{s} V /\left(\eta V_{t h}\right)$. From the data in Fig. 1s, we find
$I=0.0629+57.2514 V$, where current I is in nA and voltage V is V
Hence $g_{o}=I_{s} /\left(\eta V_{t h}\right)=57.25 \mathrm{nS}$
Current (nA) versus voltage (V)

Figure 1s.
2. Fig. 2 shows the measured current-voltage characteristics of the same silicon p-n junction diode at biases in the range between 0.1 V and 0.5 V . Re-plot the measured characteristic in a semilog scale and extract I_{s} and η

Figure 2
Plotting the data on a semilog scale, we obtain

Fig. 2s. I (A) versus $V(\mathrm{~V})$

Fig. 3s. $\log (\mathrm{I}, \mathrm{A})$ versus $\mathrm{V}(\mathrm{V})$ for finding the intercept
$\operatorname{Ln}(I)=\operatorname{Ln}\left(I_{s}\right)+V /\left(\eta V_{t h}\right)$ and $\log (I)=\operatorname{Ln}\left(I_{s}\right) / 2.3+V /\left(2.3 \eta V_{t h}\right)$
Hence from the slope and intercept in Fig. 3s, we find $I_{s} \sim 2.3 \mathrm{nA}, \eta V_{t h}=0.041 \mathrm{~V}, \eta=1.58$
Hence,

3. What does the value of η reveal about the current mechanism?

This value of η shows that recombination current must play an important role.
4. Compare the ratio of $I_{s} /\left(\eta V_{t h}\right)$ extracted from the I-V characteristics at very low voltages and from the semi log plot.

The ratio of $I_{s} /\left(\eta V_{t h}\right)$ extracted from the I-V characteristics at very low voltages is approximately $5710^{-9} \mathrm{~A} / \mathrm{V}$. The value of $\eta V_{t h}$ extracted from the semi \log plot is 0.041 V . The intercept of the semi log plot yields $I_{s} \sim 2.3 \mathrm{nA}$ for the ratio of $I_{s} /\left(\eta V_{t h}\right)$ $\sim 5610^{-9} \mathrm{~A} / \mathrm{V}$. Hence, these values agree with each other. The accuracy of the semi log plot does not allow for a more accurate comparison.
5. Figure 3 shows the measured diode current-voltage characteristic for voltages from 0 to - 10 V . Compare these characteristics with the predicted reverse characteristic obtained from the ideal diode equation. Is agreement good? If not, estimate the contribution from the generation current.

The next figure shows the comparison with the empirical diode equation $I=I_{S}\left(e^{\left(\frac{V}{\eta V_{T H}}\right)}-1\right)$.

6. Comment on the accuracy of the diode equation in describing the device characteristics of real $p-n$ diodes.

As seen from the above figure, the agreement in the reverse bias region is very bad because of the contribution from the generation current in the depletion region under the reverse bias conditions.

4-3-4. Design a Si $p^{+}-n$ junction diode with the reverse saturation current smaller than 1 nA at room temperature at -5 V and forward current at 0.5 V of approximately 1 mA at $T=300 \mathrm{~K}$. Specify the device dimensions and indicate doping levels. Hint: Assume reasonable values of parameters. Use eq. (4-3-21) and choose x_{n} $\ll X_{n} \ll L_{p}$ where X_{n} is the length of the n-region, x_{n} is the width of the depletion region, and L_{p} is the hole diffusion length. (You may estimate L_{p} to be on the order of $50 \mu \mathrm{~m}$.)

Solution:

Let us choose $N_{a}=10^{18} \mathrm{~cm}^{-3}, N_{d}=10^{15} \mathrm{~cm}^{-3}$.
At $300 \mathrm{~K}, n_{i} \approx 10^{10} \mathrm{~cm}^{-3}$. Then
$V_{b i}=\frac{k_{B} T}{q} \ln \frac{N_{a} N_{d}}{n_{i}^{2}}=\frac{k_{B} T}{q} \ln \frac{10^{18} 10^{15}}{10^{20}}=0.0258 \times \ln \left(10^{13}\right)=0.773(\mathrm{~V})$
$x_{n}(V=0)=\sqrt{\frac{2 \varepsilon_{s} V_{b i}}{q N_{d}}}=\sqrt{\frac{2 \times 1.05 \times 10^{-10} \times 0.773}{1.602 \times 10^{-19} \times 10^{21}}}=1(\mu \mathrm{~m})$
Let us choose $X_{n}=10 \mu \mathrm{~m}$ so that $x_{n} \ll X_{n} \ll L_{p}$. Assuming that the hole mobility in Si is $\mu_{p}=200 \mathrm{~cm}^{2} / \mathrm{Vs}$, we find $D_{p}=\mu_{p} k_{B} T / q=200 \mathrm{x} 0.0258=$ $5.17 \mathrm{~cm}^{2} / \mathrm{s} . p_{n o}=n_{\mathrm{i}}^{2} / N_{d}=10^{5} \mathrm{~cm}^{-3}$. Then we find from eq. (4-3-34):
$j \approx \frac{q D_{p} p_{n o}}{X_{n}}\left[\exp \left(\frac{V}{V_{t h}}\right)-1\right]=$
$\frac{1.602 \times 10^{-19} \times 5.17 \times 10^{5}}{10^{-4}}[\exp (38.7 \times V)-1]=$
$8.28 \times 10^{-10}[\exp (38.7 \times V)-1]\left(\frac{A}{\mathrm{~cm}^{2}}\right)$
At 0.5 V , the current density is equal to $0.21 \mathrm{~A} / \mathrm{cm}^{2}$. Hence, the diode area should be equal to $10^{-3} / 0.21 \approx 0.0048 \mathrm{~cm}^{2}$. If the diode has a circular shape, this corresponds to the radius of 0.0389 cm . The reverse current at -5 V is approximately $0.0048 * 8.28 * 10^{-10} \approx 0.0038(\mathrm{nA})$, well within the specs.

