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RGENDA

= Active Filter Building Blocks: Sallen-
Key Configuration

=FINAL EXAM DETAILS

*Hand back EXAM 3

*Preliminary Exam 3 regrade

*Brief Overview of Topics (on your own)

sawyes@rpi.edu www.rpi.edu/~sawyes

@ Rensselacr @

SALLEN-KEY LOW PASS

(b) OP AMP realization

From Textbook, Thomas, Rosa, and Toussaint, pg. 739

@ Rensselacr @

SALLEN-KEY HIGH PASS

(b) OP AMP realization

From Textbook, Thomas, Rosa, and Toussaint, pg. 744

SALLEN-KEY BANDPASS
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FIGURE 14-14 Second-order
bandpass circuit.

From Textbook, Thomas, Rosa, and Toussaint, pg. 749
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SALLEN-KEY LOW PASS
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2™ Order Low Pass Filter
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SALLEN-KEY LOW PASS: EQUAL ELEMENT

If Choose R, =R, =R; C,=C,=C
1 3-u R

= == P 1A

“ RC ¢ 2 2R,

Note: Cannot Make ¢ >1

ForR, =0= { =1= Critically Damped
ForR, <2R,; = 0< ¢ <1= Underdamped
ForR, =2R, = ¢ =0= Oscillator
ForR, >2R,; = { <0 = Unstable
@Rensselaer @

EXAM DETAILS

= Monday, May 18th, Sage 3303, 11:30-2:30 pm

= Bring a calculator (no wireless, no cell phones
please)

=One new crib sheet + 3 previous crib sheets,
front and back!

= Folks with approved extra time, meet in my
office_before test .

sawyes@rpi.edu www.rpi.edu/~sawyes

@ Rensselacr @

FINAL EXAM STRUCTURE

1) Short Answer (25 points) Any conceptual question from
any unit!

2) Unit 1: Basic Circuit Analysis (25 points)

3) Unit 2: Transient Response (25 points)
1) First order transient
2) Laplace second order

4) Unit 3: AC Steady State and Power (25 points)
1) Complex Power
2) Transformer

5) Unit 4: AC Steady State Frequency Response (25 points)
1) First/Second Order Bode plots with corrections and SLA
2) Cascading filters

6) Filter Design Problem (25 points)

sawyes@rpi.edu W rpl.edu/~sawyes

@ Rensselacr @

RDVICE ON FINAL EXAM AND BEYOND....

1) Final Exam
a) Do homework 10 all questions as a review
b) Try to take some time to match process with
theory
2) After Circuits....

1) Stay ahead of the professor (read
book/videos/go online....anything)

2) It takes practice to match theory to analytical
(give yourself enough time!)

3) Always check your exams for missed concepts

4) Stay engaged and ask questions during
lecture...after lecture

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselacr @

Congratulations, you are officially
electrical engineering students!

Now you must become electrical
engineers/computer systems
engineers/dual major
engineers....... may the
(electromagnetic) Force be with you...

sawyes@rpi.edu W 1pl.edu/~sawyes

@ Rensselaer @

DC Circuit Analysis and OP Amps 'ﬁ’

@ Rensselaer




REVIEW: LECTURE |

= Passive Sign Convention

= Voltage Reference Point — Ground

= Linear Resistor - Ohm’s Law

= Open/Short Circuits — Ideal Switches
= Ideal Voltage and Current Sources

= Reference Marks

= Kirkoff’s Laws

sawyes@rpi.edu www.rpi.edu/~sawyes

@ Rensselacr @

CHECK SLIDES...

«If you don’t have Lecture 1 down,
you’re in trouble!!

I’ll skip.

sawyes@rpi.edu www.rpi.edu/~sawyes

@ Rensselacr @

REVIEW: LECTURE 2

= Series and Parallel Connections

= Equivalent Circuits
= Series and Parallel Resistors
= Voltage and Current Dividers

CHECK SLIDES...

«If you don’t have Lecture 2 down,
you’re still in trouble!!

Il skip.

@ Rensselacr @
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REVIEW: LECTURE 3

= Node Analysis

= Mesh Analysis

JE— i picdul-samyes @Remselaer@

SUMMARY

=Node Voltage Analysis:
= Label All Node Voltages, Known and Unknown,
Identifying Variables (v,, v,, etc.)
= # of Unknown Node Voltages = # of Nodes - # of
Voltage Sources - 1 (Reference)
= Write a KCL at Each Unknown Node Voltage
= Best to Use: Sum of Currents Out of Node =0
= Express i’s in terms of Node Voltages
= Solve Algebraic Equations for Node Voltages
= Use MAPLE, MATLAB, Cramer’s Rule, etc.
= Solve for Currents Using Ohm’s Law

@ Rensselaer @




NODE ANALYSIS -SOLVING PROCEDURE

Identify all nodes

Choose a reference node (ground)
Label the unknown nodes

Locate all voltage sources

1. Determine either absolute or relative voltages based
on the voltage sources

WP

5. Write a KCL equation for each node

6. Use Ohm’s Law to rewrite the currents as voltage
differences over resistance

1. If avoltage source is on one of the current paths,
‘follow’ it to the next node to get an expression for
current.

7. Setup the linear system
8. Solve the matrix

@ Rensselacr @

NODE ANALYSIS-WITH VOLTAGE SOURCES SEE PG 84

Adding voltage sources to circuits modifies node analysis
procedure because the current through a voltage source is not
directly related to the voltage across it.

Actually simplifies node analysis by reducing the number
of equation required.

Method 1: Use source transformation to replace the voltage
source and series resistance with an equivalent current source
and parallel resistance

Method 2: Strategically select reference node and write node
equations at the remaining N-2 non-reference nodes in the
usual way (can be used whether or not there is a resistance in
series with voltage source)

Method 3: Combine nodes to make a supernode

Rensselaer @

SUMMARY

=Mesh Current Analysis:
» Label and Define ALL Mesh Currents

* Unknown Mesh Currents and Currents from
Current Sources

= # of Unknown Mesh Currents = # of Meshes -
# of Current Sources;
= Write a KVL around-Each Unknown Mesh
Current
= Sum of Voltages due to All Mesh Currents =0
= Best to Go Backwards Around Current Arrow
= Solve Algebraic Equations for Mesh Currents
(Maple, Cramer’s Rule, etc.)
= Solve for Voltages Using Ohms Law

@ Rensselacr @

MESH ANALYSIS -SOLVING PROCEDURE

1. Identify all loops
2. Locate all current sources

3. If possble, simplify the problem by redrawing the
circuit with current sources on the ‘outside’

4. Label the currents in each loop

5. Assign the current directly if a current source is on the
‘outside’

6. Assign a relative current expression if the current
source is shared by two loops.

7. Write a KVL expression for each loop

1. If a current source is shared by two loops, combine them to
form a larger loop.

8. Use Ohm’s Law to write the KVL in terms of currents
9. Set up the linear system
10. Solve the matrix

@ Rensselacr @

MESH ANALYSIS-WITH CURRENT SOURCES SEE PG 91

Method 1: Use source transformation to replace current source
and parallel resistance the with an equivalent voltage source
and series resistance

Method 2: If current source is contained in only one mesh, then
that mesh current is determined by the source current and is no
longer an unknown. Write mesh equations around the
remaining meshes in the usual way and move known mesh
current to the source side of the equations in the final step.

Method 3: Create a supermesh by excluding the current
source and any elements connected in series with it.

@ Rensselaer @

REVIEW: LECTURE 4

= Linearity

= Superposition Principle
= Superposition Example
= Dependent Sources

sawyes@rpl.edu www.rpi.edui-sawyes
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LINERRITY

=If have multiple inputs

sInput = x; + x, + x5

=Output must be additive

¥ =kix; + KpXp + KX,

=Leads to Superposition Principle

=Can use only for multiple inputs to a
linear circuit

@ Rensselacr @
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SUPERPOSITION

=Find Output due to each independent source
with all other independent sources set = 0;
then Add to find Total Output:
= Source of 0 is called a “dead source”

= “Dead” voltage source = 0V = Short

Circuit
= “Dead” current source = 0 A = Open
Circuit
JE—— O — @Rensse]aer @

=Total Output = Sum of all Outputs due
to each independent source with all
other independent sources “dead”:
= Simply Add them
= Works only for Linear Circuits; Only
kind we will consider

sawyes@rpi.edu W rpl.edu/~sawyes

@ Rensselacr @

DEPENDENT SOURCES

=Symbol:
= Diamond = Symbol for Dependent Source
= Circle = Symbol for Independent Source

=4 Types of Dependent Sources
= Voltage Controlled Voltage Source (VCVS),E
= Current Controlled Current Source (CCCS),F
= Voltage Controlled Current Source (VCCS), G
= Current Controlled Voltage Source (CCVS), H

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselacr @

VCVS

Symbol for Dependent Source

+ v, -

D
g
o

‘e

3v, Volts

Voltage Controlled Voltage Source (VCVS)
@ Rensselaer @
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REVIEW: LECTURE 5

=  Wheatstone bridge
= Norton/Thevinin equivalent circuits

@ Rensselaer @
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WHEATSTONE BRIDGE

When Bridge is Balanced, i,, =0; v,, =0
Meter Draws No Current

—— . adl-savyos @ Rensselaer @
THEVENIN'S THEOREM
Ry 1

i
—
— +
Source +
v = VT \'
Network

v, =Thevenin Voltage

Any Source Network
May be Replaced with its R, =Thevenin Resistance
Thevenin Equivalent Circuit

WHEATSTONE BRIDGE

C‘l') i I i
V -
Bridge Balanced
R — 3
Solve for R R,
— R —— @Rensse]aer @

THEVENIN'S THEOREM

i=0 R, 41_

G—
I +
Source + _
v.o=v T v
Network oc

vy =V, = Open Circuit Voltage
Vi =V, =vwheni=0

R =Thevenin Resistance

sawyes@rpicdu i 1piedul-sawyes @Rﬁnsselaﬁr@
NORTON'S THEOREM
i i
— -
— +
Source + .
Network v = @ i

Any Source Network iy = Norton Current

May be Replaced with its R, = Norton Resistance
Norton Equivalent Circuit

@ Rensselaer @

sawyes@rpi.edu W 1pl.edu/~sawyes

sawyes@rpiedy wiow i edul-sawyes @Rensselaer @
NORTON'S THEOREM
i
Pra—
. +
+] 1.

Source s i R, v
Network 0=|v 3

iy =i, = Short Circuit Current
iy =i, = Current Flowing from + to—when v=0

N
R = Norton Resistance

@ Rensselaer @
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+ +
i v

Thevenin Equivalent Circuit Norton Equivalent Circuit
. .V
From Source Conversions: iy =—— and Ry =R;

T
vy =V, = Open Circuit Voltage

iy =i, =Short Circuit Current

@ Rensselacr @
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THEVENIN/NORTGN SOURCES-SOLVING PROCEDURE

1. Thevenin-Remove the load

1. Find the voltage (V,. = V;y) between the two nodes where the load
‘was connected, using any method

2. Norton-Remove the load and connect a short circuit (wire) between
the two nodes where the load was attached

1. Find the current (I, = Iy through that short circuit (wire), using
any method

2. Note:the short circuit may ‘combine’nodes. Recognize that you
can do KCL at a node to find current through an individual wire
connecting components.

3. Resistance-Remove the load

1. Apply a test voltage source, V,,,, at the nodes where the load was
attached

2. Short circuit all other independent voltage sources and open
circuit all otheri d current

3. Find the current through that source, L,
4. Rpo =Ry = Ryg =Vie/Tient
4. Note: only two of these are needed since Vyy = (Ryg)(Iy)

@ Rensselacr @
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For Maximum Power Transfer; Choose R, =R

Best You Can Do

sawyes@rpi.edu W rpl.edu/~sawyes

@ Rensselacr @

REVIEW: LECTURE 6

= Amplifier circuit model

= Ideal Operational Amplifiers (Op
Amps)

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselacr @

OPERATIONAL AMPLIFIERS

= An Operational Amplifier is a High Gain
Voltage Amplifier that can be used to perform

Mathematical Operations:
= Addition and Subtraction

= Differentiation and Integration
= Other Functions as Well

* Op Amps are the building blocks for many,
many electronic circuits

@ Rensselaer @
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0P AMP NOTATION Posifive DC Voltage

1A
Non-Inverting Input ﬁ— n U
Output
ou
Inverting Input [ﬁ— - :
LM324

Ng:éative DC Voltage
sonyes@rpied p— @Rensse]aer @




TRANSFER CHARACTERISTIC

Vo

+Saturation
+Vee
Vp = Vy
—Saturation
_Vcc
vy =A(vVp, —Vy)
Linear Range
cawyos@rpiodu o piedu-sauyes @Rﬁnsselaﬁr @

IDEAL 0P AMP

i, =0 N |Vo| Can Never be greater than |V |

— \\
Vp O + ~_
- . VO
. ——0
lN:O P
v - e
N(p——-
~ OPAMP

Since R, — oo, Ideal Op Amp Draws No Current!
Since A — o0, v, = v in Linear Range

@ Rensselacr @
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IDEAL 0P AMP

i,=0 In Linear Range:

— \\\
. o - Vo
Vp =Vy Virtual Short P O
///
///
WO -
ii=0 OPAMP
N

Ideal Op Amp has a Virtual Short at Input
Vp =V 1p =1y =0

sawyes@rpi.edu W 1pl.edu/~sawyes

@ Rensselacr @

= " OPAMP
Ifv,>0, vy =+V.  +Saturation

Ifv, <0, v, =—V,.  —Saturation

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselacr @

COMPARATOR

No Negative Feeback

Vi ( )

Ifv, > v, => vy =+V

Vs
L Ifv,<v,=>v,=-V,

sawyes@rpi.edu W 1pl.edu/~sawyes

@ Rensselaer @

0P AMP CIRCUITS

= For most Op Amp circuits, we add negative
feedback:

= Circuit connection between v, and vy

= Helps to keep Op Amp in Linear Range

= This will help keep vy = vy

= Output, v = A(V,, - V), will be finite, as long as
its magnitude is less than V¢

= Output can never be greater than +V¢

sawyes@rpl.edu www.rpi.edui-sawyes
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VOLTAGE FOLLOWER

Vp = Vg

Apply v to v,

\\
~
+ .
S
~
S
Vg ~ VO

I :

VN VS 7

Vp =Vy

— OPAMP
Negative Feedback

Vs

Draws No Current from Source
Buffer, or Isolation Amplifier

sawyes@rpi.edu www.rpi.edu/~saw

Vo = Vg

@ Rensselacr @

INVERTING AMPLIFIER

NON-INVERTING AMPLIFIER

VP: VS .

+ —
Lo Ys -0
'R, I R, | _.
— 0 opamp T 1
R Vx _ Vo
Vg ! ———O
1 0="Vy
= ﬁ +
— Vo =0-1R,
Vo _ R, —_Ys
=—— 2
vs Ry R, " @Renssclacr @
SUMMING AMPLIFIER
R:
OPAMP
Vo
—O
R R
—Lv +-Lv,
R, R,
sawyes@rpiedy wiow i edul-sawyes @Rensselaer @

-~ OPAMP Vo = Vs +igR,
-+
Vs N ATAY =v+ Vs Rl
i=s l > | R,
? R, v= %2 I =1,
JT; vio — (1 + Rl]
Vs R,
sawyes@rpiedu e 1pi.edul~sawyes @Rﬁnsselaﬁr@
DIFFERENTIAL AMP

sawyes@rpi.edu W 1pl.edu/~sawyes

@ Rensselaer @

0P AMP CAD ILM

Go to WebCT Site, Click on Modules
Click on Op Amp CAD Module

Move top slider to choose type of circuit

Inverting, Non-Inverting Amplifier

Differential Amplifier, Comparator

Integrator, Differentiator (Later in Course)

sawyes@rpl.edu www.rpi.edui-sawyes
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Transient Response: First Order/Second Order @
Circuits

@ Rensselaer

REVIEW: LECTURE 8

» Signals and waveforms
= DC waveforms
= Unit step functions
= Ramp functions
= Exponential functions
= Sinusoidal functions

@ Rensselacr @

STEP FUNCTION
v(t)

V. >
V, = Amplitude

V() = V,u(t) t

DELAYED STEP FUNCTION
v(t)

Vv

A
V,, = Amplitude

[0 fort<O
VAu(t)_{VA fort>0
@Renssclacr @
EXPONENTIAL FUNCTION
v(t)
VA
KT AN S—
v(t)=[V,e ™ Ju(t)
@ Rensselaer @

T.
S t
T, = Time Shift v(®) = V,u(t="Tg)
Vou(tT. )_{ 0 fort<T
At S V, fort=T;
@®Rensselacr @
SINUSOIDAL WAVEEORM

See Pages 219 - 226 Thomas and Rosa
v(t) =V, cos(at + @)
Amplitude =V, ; volts
Angular Frequency = @ = 27f; radians/sec
f = Frequency = i; hertz

0
T, =Period; seconds

¢ =Phase Angle; degrees
@ Rensselaer @
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REVIEW: LECTURE 9

3l condition =0+
ai CONGIUOIH (=UT

@ Rensselacr @

DYNAMIC CIRCUITS

YO =Yy +Ys
Homogeneous Response + Particular Response
yO=yx+ Y5

Natural Response + Forced Response

Yn=Yur YETYp

YO =Yz +Yys
Zero-Input Response + Zero-State Response

@ Rensselacr @

RC CIRCUITS

Solution to Any Current or Voltage in Any
Circuit Containing 1 C plus R's,

Independent Sources and Dependent Sources,

with a Switched DC Input:
Y(0) = Y + (¥, — Ysg)e 07| fort>t,
T:ReqC Can Find y,, yg., 7

Directly From Circuit

R, =Equivalent Resistance Seen at Terminals of C

@ Rensselacr @

RL CIRCUITS

Solution to Any Current or Voltage in Any
Circuit Containing 1 L plus R's,

Independent Sources and Dependent Sources,

with a Switched DC Input:
V(O =y + (¥ — Yg)e /7| for t > t,
z':L Can Find y,, yg. 7
R, Directly From Circuit

R, = Equivalent Resistance Seen at Terminals of L

@ Rensselacr @

REVIEW: LECTURE 10

s Second order Series RLC and Parallel RLC
= Already solved problems!

* Get into standard from and find o, w, and B (if
needed)

= Compare o, w, to find form of solution
=Find coefficients
-Nee_d» t=>00 and initial conditions both
Ve(0+) and dVc(0+)/dt tor example
@ Rensselaer @
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SERIES RLC CIRCUITS

\Z10)

d*v dv
LC dtzc +RTCd—tC+VC =v;
dve Ropdve 11,
d> L dt LC ¢ LC "

@ Rensselaer @
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SERIES RLC CIRCUITS

d’ve Rypdv. 1 1
—t———t—=V.=—=V;
d* L dt LC LC

1 1 R 1
= — a)z T = =20
LC| (seconds)’ 0 L | seconds

d2VC +2u dv,

> 2
dtz at TV =) vy

@ Rensselacr @

SERIES RLC CIRCUITS

Assume v, (t) = Ke"

sZ+20{s+wg=O

Characteristic Equation

Roots are s ,s, = - /&’ — @&}

Ve () =K e" +K,e™

@ Rensselacr @

2
IVe 120 8¥e L iy, = @fv, Need Initial Conditions

de’ dt

+ dve o, % o* :l' 0"
v.(0%) and F(O ) at (U] CIL( )
@Renssclacr @
ATIMITIO MT A ATHATITMO
SERIES RLC CIRCUITS
s +2as+@; =0
2 2

Roots are s,, s, =—a*./a" — ),

3 Possible Cases:

Case I: @ >@;: 2 Real, Unequal Roots
Case2: @’ =@ : 2 Real, Equal Roots

Case3: @’ <@} : 2 Complex Conjugate Roots

@ Rensselacr @

SERIES RLC CIRCUITS

Case I: @’ >a@;: 2 Real, Unequal Roots

R
s, =—a+\&’ -} a=—"

ToL
szz—a—‘/aZ_a)g wgzL
LC
’ voy =K +Ke™
2 Decaying Exponentials
| Circuit is Overdamped |
@ Rensselaer @

SERIES RLC CIRCUITS

Case2: @’ =@} : 2 Real, Equal Roots

=—_ 1
1 o a_RT a)g:_

S2 =—a _Z LC

_ —at —at
voy = Kie™ + K, te

Decaying Exponential + Exponentially Damped Ramp

Circuit is Critically Damped |

@ Rensselaer @
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SERIES RLC CIRCUITS

Case 3: @’ <@} : 2 Complex Conjugate Roots
s, =—a+\ &~ =—a+ o -’ =—a+jf
S, =—a—\J&’ -} =—a-j\& - =-a-if
Ve = Kle(—a+jﬁ)l + Kze(—a-jﬁ)l

Vey = Ae “cos(St + @)

Exponentially Damped Sinusoid

Circuit is Underdamped |

@ Rensselacr @

PARALLEL RLC CIRCUITS

Output =i

© /T\D-‘i; R, liRT L lé ::llc

' 1
d’i di . . =
dtlZL + 2(1% +ai, =iy 2R, C
Same Form of Equation as for Series RLC @ = 1
Slightly Different & | 7 LC
sawyes@rpl.odu v rpi.edu-sawyes @Herlsselaer @

Parallel RLC Circuits
LHS of Differential Equation is Same for Any Output

Natural Response for Any Output

2
¥y +2ad(}1/—t”+w§yN =0

dt?

Same as for Series RLC Circuits

@ Rensselacr @

sawyes@rpi.edu W rpl.edu/~sawyes

Natural Response

(?;N+2a(2/tN+w§yN =0
Characteristic Equation
s’ +2as+ @) =0
Same Roots as for Series RLC

Overdamping, Critical Damping, Underdamping

REVIEW: LECTURE 12 AND 13

=Laplace transforms
*Finding poles and zeros

= Partial Fraction Expansion
= Simple real poles
* Complex conjugate poles
= Double poles
=Relationship to differential equations

= S-domain impedances (zero and non-zero

initial conditions)
@ Rensselaer @

sawyes@rpi.edu W 1pl.edu/~sawyes

sawyes@rpiedy wiow i edul-sawyes @Rensselaer @
LAPLACE TRANSFORMS
Signal f(v) F(s)
Impulse () 1
Step u(t) 1
S
Constant Au(t) é
S
1
Ramp tu(t) -
S
JE—— T — @Rensse]aer @
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Signal f(t) F(s)
Exponential e "u(t) !
S+a
Damped Ramp  [te™* Ju(t) ! >
(s+a)
S
Cosine Wave cosSt]u(t
[cosBt]u(t) Ky
+a
Damped Cosine [e *cos/St]u(t _sre
p [ Stlu(t) Cra) 1B
—— [R— @Rﬁnsselaﬁr @

LAPLACE TRANSFORMS

Time Domain s-Domain
Af (t)+Bf,(t) AF (s) + BE,(s)
[t(z) de LON
0 S
@ sF(s)—1(07)
dt
e 'f(t) F(s+a)
t f(t) —dF(s)/ds
f(t—a)u(t—a) e F(s)
sawyes@rpiody [ro—— @Rensse]aer @

POLES AND ZER0S

F(s):b“‘sn + +bs+b,
a s’ +. +a,s+a,
Factor F(s):
F(S):K (S_Zl)(S_ZZ)( ..... )(S—Zm)

(s—=p) (s—p,) (.....) (s—p,)

K= b—m = Scale Factor
a

n

sawyes@rpiedu e 1pi.edul~sawyes @Rensselaer @

POLES AND ZEROS
F(S)=K (S_Zl) (S_Zz)( ..... ) (S—Zm)
(s=p) (s=p,) (.....) (s=p,)

Ats=z,=>F(s) - 0 =>Zeros of F(s)

Ats= p;=> F(s) — oo => Poles of F(s)
Poles and Zeros are "Critical Frequencies" of F(s)
Useful to Plot "Pole-Zero Diagram" in s-plane

sawyes@rpiedy wiow i edul-sawyes @Rensselaer @

POLE-ZERO DIRGRAMS

Show Poles as: jo 4 Show Zeros as:

X (0]
Complex ! P ,
. 1

Conjugates o .

(o3

P> X
s-plane
sowyes@rpiscu w1 du-saupes @Rﬁnsselaﬁr@

PARTIAL FRACTION EXPANSION

There are only 3 Types of Poles:

Simple, Real Poles: (s—4), =>p, =4
Real, Equal Poles: (s+3)°, =>p,=p,=-3

Complex Conjugate Poles: (s* +8s+25)
=>p,,p,=—4%]3

@ Rensselaer @
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PARTIAL FRACTION EXPANSION

Form<n:
¢ Simple Real Poles

In General:

Expand: F(s)= A + A,

S=P; S—P, S—Ps

=[(s— pn)F(s)]L=p“ ; Cover-Up Rule

= f(t) =)Ae™ +Ae™ +A,e™ +
@Rensselaer @

ERTIAL FRECTIO
i L VilV

A L8AV L RAL, ARdd

EYDPANSIO

Al 434 AALYAVLY

» Complex Conjugate Poles

In General:

Expand F(s) = Ay + ot A — + A -
S—p, s+ta-jf s+a+jf

Find A, and A = ‘A‘ /¢ from Cover-Up Rule
=>f()=Ae” '+ ..+2[|Ale“cos(Bt+¢) t20
Simple Poles Complex Poles

@ Rensselacr @

PARTIAL FRACTION EXPANSION

e Real, Equal Poles — Double Pole:
Expand F(s) = L+ ..+[L+%]
S—P s=P, (5-Pp,)
=[6-p)F®) ]|
Usually Find A | from evaluating F(0) or F(1)
=f(t)=(Ae™ + ...+ A e™ +A te™) t=0
Simple Poles Repeated Poles

; Cover-Up Rule
=Pa

@ Rensselacr @

IMPEDANCE
Zero initial conditions
O C‘) O
L5 L
- RQ )) sLQ < Q
l Zx PR Z
!
Z = Impedance = V)
I(s)
S—— - @ Rensselacr ©®

NON-ZERO INITIAL CONDITIONS
o + 0
i LlI A

4 sLQ <
Vi =RQ VLJi VC:J;

" HU”
O j\w i
- - g /u\
PSS
@ Rensselaer @

REVIEW: LECTURE 14 CIRCUIT ANRLYSIS

=Essentially Unit 1 + Unit 2 in one problem

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselaer @

15



GENERAL PROCESS

s-Domain Circuit Analysis

Time domain Complex frequency
(t domain) domain (s domain)
Laplace Transform
Linear ——————— Transformed
Circuit T Circuit
Differential Laplace Transform Algebraic
equation T equation

Classical Algebraic
techniques techniques

Response Inverse Transform Response
—_—
wavelorm 1 transform

@ Rensselacr @

sawyes@rpi.edu www.rpi.edu/~sawyes

1. Find Initial Conditions
2. Determine Laplace Equivalent circuit

3. Use Unit 1 concepts (node/mesh/voltage
dividers etc.) to find an expression for the
parameter of interest (impedances)

a. ‘“Clean up” expressionto have N(s)
4. Find poles (zeros, Unit 3) D(s)
5. Partial fraction expansion
a. Cover up rule for coefficients or F(0), F(1)

6. Inverse Laplace gives time domain response

AC Steady State: Phasor Analysis and Power Circuits '@’

@ Rensselacr @
LECTURE 18.1 REVIEW
= Transfer Functions
= Phasors
= Phasor Math
@ Rensselacr @

@ Rensselaer
PHASO RS Complex Space
Imaginary X= ‘X‘ /¢, =Polar Form
%, <Kl 1X]
. = |X]|singy oith
1 P«
X, = ‘X‘cos¢x Real

X =X, +jX; = Rectangular Form
X= ‘X e’ = Euler Form

@ Rensselaer @

PHASORS

* 3 Ways to Express Phasors
Rectangular Form; X =X, + jX
Polar Form; X= ‘X‘ %

Euler Form; X =|X|e!*

e Will Need to Be Able to Easily

Convert Between the 3 Different Forms

@ Rensselaer @
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LECTURE 19.1 AGENDA

= Kirkoff’s laws for phasors
= AC steady state impedence

@ Rensselacr @

AC STEADY STATE IMPEDANCE

Z,=RQ
Z, =jeLQ
i1
:——:—Q
%e="0c jaC

'S LAWS FO

A U LILL ¥F

i+ =5 ==L+ L =1
= KVIL:

vty =v ==V +1 =7
m K’s Laws Work for Phasors!

. Complex Addition, not Simple Addition

@ Rensselacr @

w In General,V = 7 ] in AC Steady State:

@ Rensselacr @

RC STEADY STATE IMPEDANCE

- 1 = AC SS Impedance
- Units of Ohms
- Ohm’s Law for AC Steady State
m Y = AC Steady State Admittance
=1/1 (Units of mhos)

@ Rensselacr @

AC STEADY STATE IMPEDANCE

V =7I; Ohm's Law for AC Steady State

Z =R(w)+ jX(w) = AC Steady State Impedance
R(w) = AC Steady State Resistance
X(w) = AC Steady State Reactance

Y =G(w)+ jB(w) = AC Steady State Admittance

G(w) = AC Steady State Conductance
B(w) = AC Steady State Susceptance

@ Rensselaer @

LECTURE 20.1 AGENDA

= AC Thevenin/Norton circuits
= AC node equations

—AC mesh-eguations-(not on the

test)

=—AC bridge-eireuits-(not on the

test)

@ Rensselaer @
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EQUIVALENT IMPEDANCE AC THEVENIN/NORTON
I I
_— 1 I
O—| — — -
e | =12 +
Ve
v Load Network =Y Z,, Vi (/\'&E) A (\; )| Z, v
Oi
v AC Thevenin Circuit AC Norton Circuit
Zeq = T Vi=L Z; Z; =Z,, of Dead Source Network
cavyos@rpiodu [ —" @Rﬁmge}aﬁr@ sanyos@rplody O — @Rﬁnsse]aer@
AC SOURCE CONVERSIONS IMPEDANCE BRIDGES
Parallel voltage dividers
I
- VeV vpe |2y By
v, Zs %3 M=VATVB= Z,+2,) S |\ 23+2,)
N -
/ i /) % L I B B S R VM is zero when
M= (Z1+22)(Z3+2) | LI = LI,
Z~Z
243 .
=Y Zy=— — =Rx+iXx
Z 1
sawyes@rpiedu e 1p.edul~sawy @Rensse]aer@ sawyes@rpiedy wiow i edul-sawyes @Rﬁnsse]aer@
REACTIVE POWER
LECTURE 21.1
= Review AC Power
»  Complex Power Define P = "Real Power" = Vp,,I;\,sc0s6
= Real Power P is Measured in Watts
= Reactive Power
= Apparent Power . . .
Define Q ="Reactive Power" =V, I.,.sin@
= Power Factor Q ) . RMSTRMS
Q is Measured in VAR's
(Volt-Amperes-Reactive)
R @Rensselaer @ @®Rensselaer @




REACTIVE POWER

= Q is a Measure of the Rate of Change
of Energy Stored in the Reactive
Elements (L, C):
oPower companies must worry about
Q since they supplied this energy
oSupplied Q over their Lines => Real
Cost
o Power companies want customers
to have Low Q
@ Rensselacr @

REACTIVE POWER

P= IzRMS ‘Z‘ cos@

Equivalent ways of
=Iiys R(®) expressing Real Power
= Vrmslrusc0s @ [Watts]

—_— 2 1
Q = Iys |Z|sin 6 {Equivalent ways of

= Tws X(@) expressing Reactive Power
= Vruslrussind [VAR']
@ Rensselaer @

REACTIVE POWER

= Notes on Reactive Power:
oReal Power = P is always > 0
oReactive Power = Q can be >

APPARENT POWER

Magnitude of S =S| =/P* +Q” = Vyyslaus

‘S‘ ="Apparent Power" =>[Volt-Amperes]

‘S‘ = Product of Vs X I, at Terminals

Oor<o0
o For Inductive Load, X > 0 =>
Q>0
o For Capacitive Load, X < 0 =>
Q<0
@ Rensselacr @
POWER TRIANGLE
i S=P+jQ
Imaginary

Complex P .S
Q= ‘S‘ Sin@ = Vol passin @ omplex Power, S

Q| I

Reactive Power; [VAR'S] 0 0 =Angle of Z

P Real
‘S‘ = VewsTrus
Apparent Power; [VA]

P= ‘S‘ €088 = ViysIgmscos @

Real Power; [Watts]

@ Rensselaer @

@ Rensselacr @
POWER FACTOR
Imaginary s
Q| I8
P Real

P Real Power
cosfd=—

=——————— =Power Factor = pf
‘S‘ Apparent Power

@ Rensselaer @
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POWER FACTOR

For Inductive Loads, 8 >0; cosé >0
For Capacitive Loads, 8 <0; cosd >0
Need a Way to Distinguish
Y _M/o [

= =l/g-0
2z o " 17"

If 6 > 0;= Lagging Power Factor (I lags V)
If @ < 0;= Leading Power Factor (I leads V)

@ Rensselacr @

POWER FACTOR

Power Factor:
Define pf =cos@; 0<pf <1

Must distinguish between 8 20, 8 <0:
02>20; X20;Q=0; Ilags V; lagging pf
0<0; X<0;Q<0; Ileads V ; leading pf

e.g: pf =.8 lagging => Inductive Load
pf =.8 leading => Capacitive Load

LECTURE 22.1

= Coupled Inductors

= Ideal Transformer

= Transformer Circuit

= Power Transfer

= Impedance Matching

= Mutual Inductance (Tee Model)

sawyes@rpi.edu W rpl.edu/~sawyes

@ Rensselacr @

@ Rensselaer @
TRANSFORMER CIRCUIT
LN L
v, VoY [z ly
- AR -

2 Choices for the Equivalent Circuit
Refer Secondary Circuit to the Primary
OR
Refer Primary Circuit to the Secondary
@ Rensselaer @

sawyes@rpl.edu www.rpi.edui-sawyes

REFERRAL TO PRIMARY
I

TN Z
V. () —L
AN \\ “) Yl NZ

Equivalent to Basic Transformer Circuit

Can Now Do AC Steady State Circuit Analysis
@ Rensselaer @

sawyes@rpi.edu W 1pl.edu/~sawyes

REFERRAL TO SECONDARY

Nz, T

Equivalent to Basic Transformer Circuit
Can Now Do AC Steady State Circuit Analysis
@ Rensselaer ®

sawyes@rpl.edu www.rpi.edui-sawyes




POWER TRANSFER

7 Zs = Rs + .]Xs
¥
AN “
T Z =R, +jX,

For Maximum Power to Z, Choose Z, =Z;
=>R, =R and X| =-X_
e—— @RBI’ISSG]HEI' )

sawyes@rpi.edu

TEE MODEL

Transformer-like Model Tee Model

If Dots on Opposite Sides =>M — -M

Some Inductors in Tee Model May Be Negative!

@ Rensselacr @

Ist ORDER LOW PASS FILTER

R
O—"\AN
+ —l +
CcC ——

in out

| v
o—
Higy = Yu® __JRC _ @,
V,(s) s+l/RC s+,
Low Frequencies "Pass"; High Frequencies "Stopped"

=> Low Pass Filter

MUTUAL INDUCTANCE
i M i,
+ (} ° *N o+
s <
Vi Ll> 3 L, A
. <
p— K‘ } p—
o [ o
v, =L, g+Md¥
dt dt
v, = M£+L2&
dt dt
@ Rensselacr @

AC Steady State: Frequency Response '@’

@ Rensselaer

Ist ORDER HIGH PASS FILTER

C
o—F—
+ o+
i \%

: Ry,
o |
V.
H(s) = w(_ S = High Pass Filter

V.(s) s+JRC s+a,
High Frequencies "Pass"; Low Frequencies "Stopped'|

@ Rensselaer @

@ Rensselaer @
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LOW PASS + HIGH PASS

o)
S+ Ay st+a,

(0] 4]
H(o)| =|K L
o [wa]{@w]

High Pass  Low Pass

Let's Design Such that @; > @
DRHCH > RLCL

@ Rensselacr @

H(S)=HL(s)+HH(S):1+& G T
R, s+, s+a,

For Low Frequencies = Looks Like a 1" Order Low Pass|
For High Frequencies = Looks Like a 1" Order High Pass

Let's Design Such that @, > @,
=R,C, > R,C,

@ Rensselacr @

2¥ QRDER PROCESS SUMMARY

Overdamped
1)Find Poles
2)Identify Regions
3)Build Straight Line
Approximations
4)Add corrections (-3db)

BANDPASS FILTER

@ Rensselaer ®

@y > Oy
Gain in dB
K +20 dB/decade 20 dB/decade
dB
Passband
Ky —20
Stopband: Stopband
‘lagH Wy @y loa%L o
Bandwidth=@, -@,,  log,, scale
@ Rensselaer @

BANDGAP OR NOTCH FILTER

Wy > Wy,
Gain in dB
KdB
dB Stopband
20 —+ P 120 4B
de dec
Passband Passband
@ W Doy L o
Bandwidth =@, — @), log,, scale
@ Rensselaer @

4)Add cor

2"0 QRDER PROCESS SUMMARY

Critically Damped
1)Find Poles
2)Identify Regions
3)Build Straight Line

Approximations

rections (-6db)
@ Rensselaer ®
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2\0 ORDER PROCESS SUMMARY

Underdamped LPF, HPF

1)Start with critically
damped case o=,

2)Sketch Straight Line
Approximations away from
('00

3)At o, 20 log abs H(j »,)=20
log(1/(2 £)) > -6 dB relative
to passband @Rensselaer®

2¥ QRDER PROCESS SUMMARY

Underdamped BPF
1. Asymptotes take the form of
inverted V

2. Each side of V has 20 dB rolloff
3. At o, 20 log abs H(j ®,)=0 dB ALWAYS

The point of the inverted V is 20 log abs
H( o,) away from 0dB

5. Use 20 log(2 ) to find this point pulling
V up or down relative to 0dB making it

narrow or wide ‘
@ Rensselacr @

FILTER TYPE SUMMARY (FROM

= First order filters
= Low pass: (no zeros), 1 pole
= High pass: 1 zero at origin, 1 pole

= Second order filters
= Low pass: 2 poles
= High pass: 2 zeros at origin, 2 pole
= Bandpass filter: 1 zero, 2 poles
= Notch filter:

@ Rensselacr @

DAMPING RATIO

=(>1 Overdamped

= (=1 Critically damped

= {<1 Underdamped
= 1>£>0.5 Correction is a —db of some value
=(=0.5 Correction is Odb

= {<0.5 Correction is +db (Strongly underdamped
which means there is a peak!)

sawyes@rpl.edu www.rpi.edui-sawyes

@ Rensselacr @

Congratulations, you are officially
electrical engineering students!

Now you must become electrical
engineers/computer systems
engineers/dual major
engineers....... may the
(electromagnetic) Force be with you...

sawyes@rpi.edu W 1pl.edu/~sawyes

@ Rensselaer ®
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