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ECSE-2010

Lecture 28: Course Wrap Up

�Active Filter Building Blocks: Sallen-
Key Configuration

�FINAL EXAM DETAILS

�Hand back EXAM 3

�Preliminary Exam 3 regrade

�Brief Overview of Topics (on your own)
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From Textbook, Thomas, Rosa, and Toussaint, pg. 739 From Textbook, Thomas, Rosa, and Toussaint, pg. 744

From Textbook, Thomas, Rosa, and Toussaint, pg. 749
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�Monday, May 18th, Sage 3303, 11:30-2:30 pm 

�Bring a calculator (no wireless, no cell phones 
please)

�One new crib sheet + 3 previous crib sheets, 
front and back!  

�Folks with approved extra time, meet in my 
office before test .
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1) Short Answer (25 points)  Any conceptual question from 
any unit!

2) Unit 1: Basic Circuit Analysis  (25 points)

3) Unit 2: Transient Response (25 points)

1) First order transient 

2) Laplace second order

4) Unit 3: AC Steady State and Power (25 points)

1) Complex Power

2) Transformer

5) Unit 4: AC Steady State Frequency Response (25 points)

1) First/Second Order Bode plots with corrections and SLA

2) Cascading filters

6) Filter Design Problem (25 points)
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1) Final Exam

a) Do homework 10 all questions as a review

b) Try to take some time to match process with 
theory

2) After Circuits….

1) Stay ahead of the professor (read 
book/videos/go online…. anything)

2) It takes practice to match theory to analytical 
(give yourself enough time!) 

3) Always check your exams for missed concepts

4) Stay engaged and ask questions during 
lecture…after lecture
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Congratulations, you are officially 
electrical engineering students!

Now you must become electrical 
engineers/computer systems 

engineers/dual major 
engineers…….may the 

(electromagnetic) Force be with you…

DC Circuit Analysis and OP Amps
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� Passive Sign Convention

� Voltage Reference Point – Ground

� Linear Resistor – Ohm’s Law

� Open/Short Circuits – Ideal Switches

� Ideal Voltage and Current Sources

� Reference Marks

� Kirkoff’s Laws

�If you don’t have Lecture 1 down, 
you’re in trouble!!

I’ll skip.
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� Series and Parallel Connections

� Equivalent Circuits
� Series and Parallel Resistors

� Voltage and Current Dividers

�If you don’t have Lecture 2 down, 
you’re still in trouble!!

I’ll skip.
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� Node Analysis 

� Mesh Analysis

�Node Voltage Analysis:
� Label All Node Voltages, Known and Unknown, 
Identifying Variables (v1, v2, etc.)

� # of Unknown Node Voltages = # of Nodes - # of 
Voltage Sources - 1 (Reference)

� Write a KCL at Each Unknown Node Voltage

� Best to Use:  Sum of Currents Out of Node = 0

� Express i’s in terms of Node Voltages

� Solve Algebraic Equations for Node Voltages

� Use MAPLE, MATLAB, Cramer’s Rule, etc.

� Solve for Currents Using Ohm’s Law
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1. Identify all nodes

2. Choose a reference node (ground)

3. Label the unknown nodes

4. Locate all voltage sources

1. Determine either absolute or relative voltages based 
on the voltage sources

5. Write a KCL equation for each node

6. Use Ohm’s Law to rewrite the currents as voltage 
differences over resistance

1. If a voltage source is on one of the current paths, 
‘follow’ it to the next node to get an expression for 
current.

7. Set up the linear system

8. Solve the matrix

SEE PG 84 

Adding voltage sources to circuits modifies node analysis 
procedure because the current through a voltage source is not 
directly related to the voltage across it.

Actually simplifies node analysis by reducing the number 
of equation required.

Method 1:  Use source transformation to replace the voltage 
source and series resistance with an equivalent current source 
and parallel resistance

Method 2:  Strategically select reference node and write node 
equations at the remaining N-2 non-reference nodes in the 
usual way (can be used whether or not there is a resistance in 
series with voltage source)

Method 3: Combine nodes to make a supernode

�Mesh Current Analysis:
� Label and Define ALL Mesh Currents 

� Unknown Mesh Currents and Currents from 
Current Sources 

� # of Unknown Mesh Currents = # of Meshes -
# of Current Sources; 

� Write a KVL around Each Unknown Mesh 
Current
� Sum of Voltages due to All Mesh Currents = 0

� Best to Go Backwards Around Current Arrow

� Solve Algebraic Equations for Mesh Currents 
(Maple, Cramer’s Rule, etc.)

� Solve for Voltages Using Ohms Law

–

1. Identify all loops

2. Locate all current sources

3. If possble, simplify the problem by redrawing the 
circuit with current sources on the ‘outside’

4. Label the currents in each loop

5. Assign the current directly if a current source is on the 
‘outside’

6. Assign a relative current expression if the current 
source is shared by two loops.

7. Write a KVL expression for each loop

1. If a current source is shared by two loops, combine them to 
form a larger loop.

8. Use Ohm’s Law to write the KVL in terms of currents

9. Set up the linear system

10. Solve the matrix

SEE PG 97 

Method 1:  Use source transformation to replace current source 
and parallel resistance the with an equivalent voltage source 
and series resistance 

Method 2:  If current source is contained in only one mesh, then 
that mesh current is determined by the source current and is no 
longer an unknown.  Write mesh equations around the 
remaining meshes in the usual way and move  known mesh 
current to the source side of the equations in the final step.

Method 3: Create a supermesh by excluding the current 
source and any elements connected in series with it.
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� Linearity

� Superposition Principle

� Superposition Example

� Dependent Sources
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�If have multiple inputs

�Input = x1 + x2 + x3

�Output must be additive

�y =k1x1 + k2x2 + k3x3

�Leads to Superposition Principle

�Can use only for multiple inputs to a 
linear circuit 
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�Find Output due to each independent source 
with all other independent sources set = 0; 
then Add to find Total Output:

� Source of 0 is called a “dead source”

� “Dead” voltage source = 0 V = Short 
Circuit

� “Dead” current source = 0 A = Open 
Circuit
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�Total Output = Sum of all Outputs due 
to each independent source with all 
other independent sources “dead”:

� Simply Add them 

� Works only for Linear Circuits; Only 
kind we will consider
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�Symbol:
� Diamond = Symbol for Dependent Source

� Circle = Symbol for Independent Source

�4 Types of Dependent Sources
� Voltage Controlled Voltage Source (VCVS), E

� Current Controlled Current Source (CCCS), F

� Voltage Controlled Current Source (VCCS), G

� Current Controlled Voltage Source (CCVS), H
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VCVS 

10 V

2 Ω

1  v  + −

−

+
13v  Volts

Voltage Controlled Voltage Source (VCVS)

Symbol for Dependent Source
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� Wheatstone bridge

� Norton/Thevinin equivalent circuits
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M  v  + −

Meter Draws No Current
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sawyes@rpi.edu                             www.rpi.edu/~sawyes 36



7

v

+

−

i

T
N N T

T

v
From Source Conversions:  i  and R R

R
= =

= v

+

−

i

N
i

Thevenin Equivalent Circuit

N
R

Norton Equivalent Circuit

Tv

T
R

N sci i Short Circuit Current= =

T oc
v v  Open Circuit Voltage = =
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1. Thevenin – Remove the load

1. Find the voltage (Voc = VTH) between the two nodes where the load 
was connected, using any method

2. Norton – Remove the load and connect a short circuit (wire) between 
the two nodes where the load was attached

1. Find the current (Isc = IN through that short circuit (wire), using 
any method

2. Note: the short circuit may ‘combine’ nodes. Recognize that you 
can do KCL at a node to find current through an individual wire 
connecting components.

3. Resistance – Remove the load

1. Apply a test voltage source, Vtest, at the nodes where the load was 
attached

2. Short circuit all other independent voltage sources and open 
circuit all other independent current sources.

3. Find the current through that source, Itest

4. REQ = RN = RTH = Vtest/Itest

4. Note: only two of these are needed since VTH = (RTH)(IN)
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T
v

T
R

L
R

Lv

+
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i

L T
For Maximum Power Transfer;  Choose R R=

Best You Can Do
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� Amplifier circuit model

� Ideal Operational Amplifiers (Op 
Amps)

�An Operational Amplifier is a High Gain 
Voltage Amplifier that can be used to perform 
Mathematical Operations:

� Addition and Subtraction

� Differentiation and Integration

� Other Functions as Well

�Op Amps are the building blocks for many, 
many electronic circuits
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U1A

LM324

1

3

2

4
1
1

OUT

+

-

V
+

V
-

Non-Inverting Input

Inverting Input

Output

Positive DC Voltage

Negative DC Voltage
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P Nv v−

Ov

CCV+

CCV−

Saturation+

Saturation−

Linear Range
O P Nv A(v v )= −
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O CCv  Can Never be greater than V

Pv

Nv

Pi 0=

Ni 0=

Ov

1
Since R ,  Ideal Op Amp Draws No Current!→ ∞

P N
Since A , v v  in Linear Range→ ∞ =
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Pv

Nv

Pi 0=

Ni 0=

Ov

P Nv v=

In Linear Range:

Virtual Short

Ideal Op Amp has a Virtual Short at Input

P N P Nv v ;  i i 0= = =
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1v

No Negative Feedback

Ov

1 O CCIf v 0,  v V> = + Saturation+

1 O CCIf v 0,  v V< = − Saturation−
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1v

2v

Ov

No Negative Feeback

1 2 O CCIf v v v V> => = +

1 2 O CCIf v v v V< => = −
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�For most Op Amp circuits, we add negative 
feedback:

� Circuit connection between vO and vN

� Helps to keep Op Amp in Linear Range

� This will help keep vP = vN

� Output, vO = A(vp - vN), will be finite, as long as 
its magnitude is less than VCC

� Output can never be greater than +VCC
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Pv

Nv

Ov

P Nv v= Negative Feedback

O Sv v=

S P
Apply v  to v

Sv

Sv=

Sv
Sv

Draws No Current from Source

Buffer, or Isolation Amplifier
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Pv

2R

2v

1v

1R

3R

4R

Ov

Let's Use Superposition
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  Go to WebCT Site, Click on Modules

  Click on Op Amp CAD Module

  Move top slider to choose type of circuit

  Inverting, Non-Inverting Amplifier

  Differential Amplifier, Comparator

  Integrator, D

•

•

•

•

•

• ifferentiator (Later in Course)
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http://www.academy.rpi.edu/projects/ccli/module_display.php?ModulesID=11
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Transient Response: First Order/Second Order 
Circuits
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� Signals and waveforms
� DC waveforms
� Unit step functions
� Ramp functions
� Exponential functions
� Sinusoidal functions

v(t)

t

AV

AV u(t) =

Av(t) V u(t)=

{ 0    for t 0<

AV    for t 0≥

AV Amplitude=

v(t)

t

AV

A SV u(t T )− =

A Sv(t) V u(t T )= −

{ S0    for t T<

A SV    for t T≥

ST

ST  Time Shift=

AV Amplitude=

v(t)

t

Ct T

Av(t) [V e ]u(t)
−=

•
•

•
•

•
• • • • • • • •

AV

cT

A.368V

See Pages 219 - 226  Thomas and Rosa

Av(t) V cos( t )ω φ= +

AAmplitude V ;   volts=

Angular Frequency 2 f;  radians/secω π= =

0

1
f Frequency ;   hertz

T
= =

0T Period;  seconds=

Phase Angle;  degreesφ =

https://www.youtube
.com/watch?v=QFi1

6s4RXXY

http://www.analyzema
th.com/unitcircle/unit_

circle_applet.html
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�
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H P
y(t) y y= +

N F
y(t) y y= +

ZI ZS
y(t) y y= +

N H F P
y y ;   y y= =

Homogeneous Response Particular Response+

Natural Response Forced Response+

Zero-Input Response Zero-State Response+

Solution to Any Current or Voltage in Any

Circuit Containing 1 C plus R's, 

Independent Sources and Dependent Sources,

with a Switched DC Input:

eqR Cτ =

0(t t )

SS 0 SS 0y(t) y (y y )e    for t t
τ− −= + − ≥

eqR Equivalent Resistance Seen at Terminals of C=

0 SS
Can Find y ,  y ,  

Directly From Circuit

τ

Solution to Any Current or Voltage in Any

Circuit Containing 1 L plus R's, 

Independent Sources and Dependent Sources,

with a Switched DC Input:

eq

L

R
τ =

0(t t )

SS 0 SS 0y(t) y (y y )e    for t t
τ− −= + − ≥

eqR Equivalent Resistance Seen at Terminals of L=

0 SSCan Find y ,  y ,  

Directly From Circuit

τ
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d v dv
LC R C v v

dt dt
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C CT
C T2

d v dvR 1 1
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dt L dt LC LC
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2

C CT
C T2

d v dvR 1 1
v v

dt L dt LC LC
+ + =

2

1 1

LC (seconds)

 
=  

2

0ω=
TR 1

L seconds

 
=  

2α=

2
2 2C C
0 C 0 T2

d v dv
2 v v

dt dt
α ω ω+ + =

T
v (t)

TR L

C
C

v

+

−

L
  v  + −

TR
  v  + −

Need Initial Conditions

C
C

dv
v (0 ) and (0 )

dt

+ + C
L

dv 1
(0 ) i (0 )

dt C

+ +=

2
2 2C C
0 C 0 T2

d v dv
2 v v

dt dt
α ω ω+ + =

2
2CN CN
0 CN2

d v dv
2 v 0

dt dt
α ω+ + =

st

CNAssume v (t) Ke=

2 2

0s 2 s 0α ω+ + =

Characteristic Equation

2 2

1 2 0
Roots are s ,s α α ω= − ± −

1 2s t s t

CN 1 2v (t) K e K e= +

2 2

0s 2 s 0α ω+ + =

3 Possible Cases:

2 2

1 2 0Roots are s , s α α ω= − ± −

2 Real, Unequal Roots

2 Real, Equal Roots

2 2

0Case 1:  :α ω>

2 2

0
Case 2:  :α ω=

2 2

0Case 3:  :α ω< 2 Complex Conjugate Roots

2 2

0Case 1:  :α ω> 2 Real, Unequal Roots

2 2

1 0

2 2

2 0

s

s

α α ω

α α ω

= − + −

= − − −

1 2s t s t

CN 1 2
v K e K e= +

T
R

2L
α =

2

0

1

LC
ω =

2 Decaying Exponentials

Circuit is Overdamped

2 2

0
Case 2:  :α ω= 2 Real, Equal Roots

1

2

s

s

α

α

= −

= −

t t

CN 1 2
v K e K teα α− −= +

TR

2L
α =

2

0

1

LC
ω =

Circuit is Critically Damped

Decaying Exponential Exponentially Damped Ramp+
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2 2

0
Case 3:  :α ω< 2 Complex Conjugate Roots

2 2 2 2

1 0 0

2 2 2 2

2 0 0

s j j

s j j

α α ω α ω α α β

α α ω α ω α α β

= − + − = − + − = − +

= − − − = − − − = − −

( j )t ( j )t

CN 1 2
v K e K eα β α β− + − −= +

t

CN
v Ae cos( t )α β φ−= +

Exponentially Damped Sinusoid

Circuit is Underdamped

Ni (t) TR L C
TRi Li Ci

v

+

−

LOutput i=

2
2 2L L
0 L 0 N2

d i di
2 i i

dt dt
α ω ω+ + =

T

1

2R C
α =

2

0

1

LC
ω =Same Form of Equation as for Series RLC

Slightly Different α
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2
2N N
0 N2

d y dy
2 y 0

dt dt
α ω+ + =

Natural Response for Any Output

Parallel RLC Circuits

LHS of Differential Equation is Same for Any Output

Same as for Series RLC Circuits
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Characteristic Equation

2
2N N
0 N2

d y dy
2 y 0

dt dt
α ω+ + =

2 2

0s 2 s 0α ω+ + =

Natural Response

Same Roots as for Series RLC

Overdamping, Critical Damping, Underdamping
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�Laplace transforms

�Finding poles and zeros

�Partial Fraction Expansion

� Simple real poles

�Complex conjugate poles

�Double poles

�Relationship to differential equations

�S-domain impedances (zero and non-zero 
initial conditions)
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Signal                       f(t)                            F(s)

Impulse                    (t)                              1

1
Step                          u(t)                              

s

Constan

δ

2

A
t                  Au(t)                            

s

1
Ramp                        tu(t)                            

s
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t

t

2

Signal                    f(t)                             F(s)

1
Exponential              e u(t)                    

s

1
Damped Ramp      [te ]u(t)                  

(s )

Cosine Wave        [cos t]u

α

α

α

α

β

−

−

+

+

2 2

t

2 2

s
(t)                  

s

s
Damped Cosine  [e cos t]u(t)         

(s )

α

β

α
β

α β
−

+

+

+ +
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1 2 1 2

t

0

t

Time Domain                      s-Domain

Af (t) Bf (t)                   AF (s) BF (s)

F(s) 
   f( ) d                              

s

df(t)
                                  sF(s) f(0 ) 

dt

    e f(t) α

τ τ

−

−

+ +

−

∫

as

                              F(s )

      t f(t)                             dF(s)/ds

 f(t a)u(t a)                       e F(s)             

α

−

+

−

− −
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m

m 1 0

n

n 1 0

b s  ...... b s b
F(s)

a s ......  a s a

+ + +
=

+ + +

Factor F(s):

1 2 m

1 2 n

(s z ) (s z ) (.....) (s z )
F(s) K

 (s p ) (s p ) (.....) (s p ) 

− − −
=

− − −

m

n

b
K Scale Factor

a
= =
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1 2 m

1 2 n

(s z ) (s z ) (.....) (s z )
F(s) K

 (s p ) (s p ) (.....) (s p ) 

− − −
=

− − −

iAt s z F(s) 0 Zeros of F(s)= => → =>

jAt s p F(s) Poles of F(s)= => → ∞ =>

Useful to Plot "Pole-Zero Diagram" in s-plane

Poles and Zeros are "Critical Frequencies" of F(s)
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s-plane

σ

jω Show Zeros as:

o

o
1z

Show Poles as:

×
×

×

1p

2p

 Complex

Conjugates {
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There are only 3 Types of Poles: 

1Simple, Real Poles    (s 4), p: 4− => =

2

1 2  (sReal, E 3qual Pol ) ,  pe 3: ps + => = = −

2

1 2

  (s 8s 25)

          

Complex Conjugate Pole

          p

:

j3

s

,p 4

+ +

=> = − ±
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  Simple Real Poles

   

•

31 2

1 2 3

In General:

AA A
Expand:  F(s)  .....

s p s p s p
= + + +

− − −

n
n n s p

A [(s p )F(s)] ;     Cover-Up Rule
=

= −

31 2 p tp t p t

1 2 3 f(t) )A e A e A e  .....)   t 0=> = + + + ≥

For m n:<

1

*

1

1

1

p  t t

1

In General:

A A A
Expand F(s)  ....

s p s j s j

Find A  and A A /  from Cover-Up Rule

   t 0

              Simple Poles   

f(t) A e  .... 2 A e co

    Complex Pole

s )

s

( tα β φ

α β α β

φ

−

= + + +
− + − + +

=

= ≥= + + +>

• Complex Conjugate Poles 

n

1 n n

1 n1 n2

2

1 n n

2

n2 n
s p

n1

p t p t p t

1 n1 n2

  Real, Equal Poles Double Pole:  

A A A
Expand F(s)  .. [ ]

s p s p (s p )

A (s p ) F(s) ;  Cover-Up Rule

Usually Find A  from evaluating F(0) or F(1) 

f(t) (A e  .... A e A te )

=

• −

= + + +
− − −

 = − 

=> = + + +    t 0

              Simple Poles       Repeated Poles

≥

R Ω sL Ω
1

 
sC

Ω

RZ LZ
CZ

V(s)
Z Impedance

I(s)
= =
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Zero initial conditions

R Ω

sL Ω
1

 
sC

Ω

LLi (0 )−
C

v (0 )

s

−

RV

+

−

LV

+

−

CV

+

−

RI LI CI

NON-ZERO INITIAL CONDITIONS
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�Essentially Unit 1 + Unit 2 in one problem
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1. Find Initial Conditions

2. Determine Laplace Equivalent circuit

3. Use Unit 1 concepts (node/mesh/voltage 
dividers etc.) to find an expression for the 
parameter of interest (impedances)

a. “Clean up” expression to have 

4. Find poles (zeros, Unit 3)

5. Partial fraction expansion

a. Cover up rule for coefficients or F(0), F(1)

6. Inverse Laplace gives time domain response

N s( )

D s( )

AC Steady State: Phasor Analysis and Power Circuits

� Transfer Functions

� Phasors

� Phasor Math

94

PHASORS

Xφ

Complex Space

Real

Imaginary
XX X / Polar Formφ= =

r XX X cosφ=

i XX X sinφ=

r iX X jX Rectangular Form = + =

Xj
e

φ

Xj
X X e Euler Form

φ= =

1

X

95

PHASORS

X

r i

X

j

Rectangular Form; X X jX

Polar Form;           X X /

Euler Form;           X X e
φ

φ

= +

=

=

  Will Need to Be Able to Easily 

    Convert Between the 3 Different Forms

•

  3 Ways to Express Phasors•

96
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� Kirkoff’s laws for phasors

� AC steady state impedence

97

� KCL:

• If i1 + i2 = i;  => I1 + I2 = I

� KVL:

• If v1 + v2 = v;  => V1 + V2 = V

� K’s Laws Work for Phasors!

• Complex Addition, not Simple Addition

R

L

C

Z  R 

Z j L 

j 1
Z  

j CC

ω

ω ω

= Ω

= Ω

= − = Ω

� In General, V = Z I in AC Steady State:

• Z = AC SS Impedance 

• Units of Ohms

• Ohm’s Law for AC Steady State

� Y = AC Steady State Admittance

= 1/Z (Units of mhos)

Z R( ) jX( ) AC Steady State Impedanceω ω= + =

V ZI;   Ohm's Law for AC Steady State=

R( ) AC Steady State Resistanceω =

X( ) AC Steady State Reactanceω =

Y G( ) jB( ) AC Steady State Admittanceω ω= + =

G( ) AC Steady State Conductanceω =

B( ) AC Steady State Susceptanceω =

� AC Thevenin/Norton circuits

� AC node equations

� AC mesh equations (not on the 
test)

� AC bridge circuits (not on the 
test)

102sawyes@rpi.edu                             www.rpi.edu/~sawyes 
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eqZ

eq

V
Z

I
=

AC
V

+

−

I

V

+

−

I

eqZ
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AC Thevenin Circuit AC Norton Circuit

TZ

TZTV
NI

T N TV I  Z=

V

+

−

V

+

−

I I

=

T eqZ Z  of Dead Source Network=
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=

SV
SZ

I

V

+

−
SI

I

V

+

−
S

Z

S
S

S

V
I

Z
=

~
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V.M V.A V.B−
Z.2

Z.1 Z.2+









V.s⋅
Z.u

Z.3 Z.u+









V.s⋅−

Parallel voltage dividers

V.M

Z.2 Z.3⋅ Z.1 Z.u⋅−

Z.1 Z.2+( ) Z.3 Z.u+( )⋅









V.s⋅
VM is zero when

Z2Z3 = Z1Zu

Z.u

Z.2 Z.3⋅

Z.1

R.X jX.X+

� Review AC Power
� Complex Power

� Real Power

� Reactive Power

� Apparent Power

� Power Factor 

107sawyes@rpi.edu                             www.rpi.edu/~sawyes 

RMS RMSDefine P  "Real Power" V I cos  

           P is Measured in Watts

 

        

θ= =

RMS RMSDefine Q "Reactive Power" V I sin  

             Q is Measured in VAR's

            (Volt-Amperes-Reactive)

θ= =

REACTIVE POWER
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� Q is a Measure of the Rate of Change 
of Energy Stored in  the Reactive 
Elements (L, C):

�Power companies must worry about 
Q since they supplied this energy

�Supplied Q over their Lines => Real 
Cost

�Power companies want customers 
to have Low Q

REACTIVE POWER

2

RMSQ I Z sinθ=
2

RMSI  X( )ω=

RMS RMSV I sinθ=

Equivalent ways of 

expressing Reactive Power





2

RMSP I Z cosθ=

2

RMSI  R( )ω=

RMS RMSV I cosθ=

Equivalent ways of 

expressing Real Power





[Watts]

[VAR's]

REACTIVE POWER

� Notes on Reactive Power:

�Real Power = P is always > 0

�Reactive Power = Q can be >
0 or < 0

�For Inductive Load, X > 0 => 
Q > 0

�For Capacitive Load, X < 0 => 
Q < 0

REACTIVE POWER APPARENT POWER

2 2

RMS RMSMagnitude of S S P Q V I= = + =

S "Apparent Power" [Volt-Amperes]= =>

RMS RMSS Product of V  x I  at Terminals=

POWER TRIANGLE

θ

RMS RMSS V I=
RMS RMSP S cos V I cosθ θ= =

RMS RMSQ S sin V I sinθ θ= =

S

[ ]Real Power; Watts

[ ]Reactive Power; VAR's

[ ]Apparent Power; VA

Angle of Zθ =

Imaginary

Real

Complex Power, S

P

jQ

S P jQ= +
POWER FACTOR

θ

S

Imaginary

RealP

jQ

S

P Real Power
cos

S Apparent Power
θ = = Power Factor pf= =
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POWER FACTOR

For Capacitive Loads, 0;θ <

For Inductive Loads, 0;θ > cos 0θ >

cos 0θ >

Need a Way to Distinguish

V / VV
I /

Z Z Z

φ
φ θ

θ
= = = −

If 0; Lagging Power Factor (I lags V)θ > ⇒

If 0; Leading Power Factor (I leads V)θ < ⇒

POWER FACTOR

Power Factor:

    Define pf cos ;     0 pf 1

        

θ= ≤ ≤

Must distinguish between 0, 0:θ θ≥ ≤

0;  X 0; Q 0; I lags V;     lagging pfθ ≥ ≥ ≥

0;  X 0; Q 0; I leads V ;  leading pfθ ≤ ≤ ≤

e.g:   pf .8 lagging  Inductive Load

         pf .8 leading  Capacitive Load

        

= =>

= =>

� Coupled Inductors

� Ideal Transformer

� Transformer Circuit

� Power Transfer

� Impedance Matching

� Mutual Inductance (Tee Model)

117sawyes@rpi.edu                             www.rpi.edu/~sawyes 

sV

+

−

sZ

1I 2I
1:N

L
Z

LV

+

−

1V

+

−

2V

+

−

2 Choices for the Equivalent Circuit

Refer Secondary Circuit to the Primary

OR

Refer Primary Circuit to the Secondary

TRANSFORMER CIRCUIT
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REFERRAL TO PRIMARY

Equivalent to Basic Transformer Circuit

Can Now Do AC Steady State Circuit Analysis

sV

+

−

s
Z

L

2

Z

N

1I

1V

+

−
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REFERRAL TO SECONDARY

Equivalent to Basic Transformer Circuit

Can Now Do AC Steady State Circuit Analysis

sNV

+

−

2

sN Z

L
Z

2I

2 LV V

+

=

−
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POWER TRANSFER

sV

*

L, L sFor Maximum Power to Z Choose Z Z=

L s L s
R R  and X X=> = = −

s
Z s s s

Z R jX= +

LZ

L L L
Z R jX= +
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1L 2L

M

• •

1v

+

−

2v

+

−

1i 2i

1 2
1 1

di di
v L M

dt dt
= +

1 2
2 2

di di
v M L

dt dt
= +

MUTUAL INDUCTANCE

1L 2L

M 1L M−
2L M−

M

• •

Transformer-like Model Tee Model

If Dots on Opposite Sides M M=> → −

Some Inductors in Tee Model May Be Negative!

TEE MODEL

AC Steady State: Frequency Response

1st ORDER LOW PASS FILTER

R

C
outv

+

−
in

v

+

−

out c

in c

V (s) 1 RC
H(s)

V (s) s 1 RC s

ω

ω
= = =

+ +
Low Pass Filter=>

Low Frequencies "Pass"; High Frequencies "Stopped"

1st ORDER HIGH PASS FILTER

out

in c

V (s) s s
H(s)

V (s) s 1 RC s ω
= = =

+ +
High Pass Filter=>

inv

+

−

R

C

out
v

+

−

High Frequencies "Pass"; Low Frequencies "Stopped"



22

cL

cH cL

s
H(s) K

s s

ω

ω ω

  
=   

+ +  

cL cH

H H L L

Let's Design Such that 

        R C R C

ω ω

⇒

�

�

cL

2 2 2 2

cH cL

H(j ) K
ωω

ω
ω ω ω ω

  
  =
  + +  

High Pass Low Pass

>

>

dB
K

ω
cH

ω
cL

ω

10log  scale

Gain in dB

20 dB/decade+

BANDPASS FILTER

cH
.1ω

cL
10ω

dBK 20−

20 dB/decade−

Passband

Stopband Stopband

cL cHω ω�

cL cHBandwidth ω ω= −

>

stFor Low Frequencies Looks Like a 1  Order Low Pass⇒

cLA
L H

B cL cH

R s
H(s) H (s) H (s) 1

R s s

ω

ω ω

  
= + = + +  

+ +  

st
For High Frequencies Looks Like a 1  Order High Pass⇒

cH cL

L L H H

Let's Design Such that 

          R C R C

ω ω

⇒

�

�

>

>

dB
K

ω
cL

ω
cH

ω

10log  scale

Gain in dB

BANDGAP OR NOTCH FILTER

cH cLω ω�

dB
20 

dec
−

Stopband

Passband Passband

dB
20 

dec
+

cL cHω ω

cH cLBandwidth ω ω= −

>

Overdamped
1)Find Poles

2)Identify Regions

3)Build Straight Line 
Approximations

4)Add corrections (-3db)

131

Critically Damped
1)Find Poles

2)Identify Regions

3)Build Straight Line 
Approximations

4)Add corrections (-6db)

132
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Underdamped LPF, HPF
1)Start with critically 

damped case  ωc= ωo

2)Sketch Straight Line 
Approximations away from 
ωo

3)At ωo 20 log abs H(j ωo)=20 
log(1/(2 ζ))   > -6 dB relative 
to passband 133

Underdamped BPF
1. Asymptotes take the form of 

inverted V

2. Each side of V has 20 dB rolloff

3. At ωo 20 log abs H(j ωo)=0 dB ALWAYS

4. The point of the inverted V is 20 log abs 
H(j ωo) away from 0dB

5. Use 20 log(2 ζ) to find this point pulling 
V up or down relative to 0dB making it 
narrow or wide

134

� First order filters
� Low pass: (no zeros), 1 pole

� High pass: 1 zero at origin, 1 pole

� Second order filters
� Low pass: 2 poles

� High pass: 2 zeros at origin, 2 pole

� Bandpass filter: 1 zero, 2 poles

� Notch filter: 

135

� ζ>1 Overdamped

� ζ=1 Critically damped

� ζ<1 Underdamped

�1>ζ>0.5  Correction is a –db of some value

� ζ=0.5 Correction is 0db

� ζ<0.5 Correction is +db (Strongly underdamped 
which means there is a peak!)
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ζ=α/ω
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Congratulations, you are officially 
electrical engineering students!

Now you must become electrical 
engineers/computer systems 

engineers/dual major 
engineers…….may the 

(electromagnetic) Force be with you…


