

AGENDA

- Active Filter Building Blocks: SallenKey Configuration
-FINAL EXAM DETAILS
-Hand back EXAM 3
- Preliminary Exam 3 regrade
-Brief Overview of Topics (on your own)

SALLEN-KEY LOW PASS

(b) OP AMP realization

From Textbook, Thomas, Rosa, and Toussaint, pg. 739
(2) RensselaerO

SALLEN-KEY HICH PASS

(b) OP AMP realization

From Textbook, Thomas, Rosa, and Toussaint, pg. 744 (4)Rensselaer○

SALLEN-KEY LOW PASS

$\mathrm{H}(\mathrm{s})=\frac{\mathrm{K} \omega_{0}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2}}$
$\mathrm{~K}=\mu=1+\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}} \quad \omega_{0}=\frac{1}{\sqrt{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{R}_{2} \mathrm{C}_{2}}}$
$2 \zeta=\sqrt{\frac{\mathrm{R}_{2} \mathrm{C}_{2}}{\mathrm{R}_{1} \mathrm{C}_{1}}}+\sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{2}}{\mathrm{R}_{2} \mathrm{C}_{1}}}+(1-\mu) \sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{R}_{2} \mathrm{C}_{2}}}$
$2^{\text {nd }}$ Order Low Pass Filter

SALLEN-IEY LOW PASS: EQUAL ELEMENT

If Choose $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R} ; \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$

$$
\omega_{0}=\frac{1}{\mathrm{RC}} \quad \zeta=\frac{3-\mu}{2}=1-\frac{\mathrm{R}_{\mathrm{A}}}{2 \mathrm{R}_{\mathrm{B}}}
$$

Note: Cannot Make $\zeta>1$
For $\mathrm{R}_{\mathrm{A}}=0 \Rightarrow \zeta=1 \Rightarrow$ Critically Damped
For $\mathrm{R}_{\mathrm{A}}<2 \mathrm{R}_{\mathrm{B}} \Rightarrow 0<\zeta<1 \Rightarrow$ Underdamped
For $\mathrm{R}_{\mathrm{A}}=2 \mathrm{R}_{\mathrm{B}} \Rightarrow \zeta=0 \Rightarrow$ Oscillator For $\mathrm{R}_{\mathrm{A}}>2 \mathrm{R}_{\mathrm{B}} \Rightarrow \zeta<0 \Rightarrow$ Unstable

FINHL EXAM STRUCTURE

1) Short Answer (25 points) Any conceptual question from any unit!
2) Unit 1: Basic Circuit Analysis (25 points)
3) Unit 2:Transient Response (25 points)
4) First order transient
5) Laplace second order
6) Unit 3: AC Steady State and Power (25 points)
7) Complex Power
8) Transformer
9) Unit 4: AC Steady State Frequency Response (25 points)
10) First/Second Order Bode plots with corrections and SLA
11) Cascading filters
12) Filter Design Problem (25 points)

EXHM DETALLS

- Monday, May 18th, Sage 3303, 11:30-2:30 pm
- Bring a calculator (no wireless, no cell phones please)
- One new crib sheet +3 previous crib sheets, front and back!
- Folks with approved extra time, meet in my office before test .

ADVICE ON FINAL EXAM AND BEYOND....

1) Final Exam
a) Do homework 10 all questions as a review
b) Try to take some time to match process with theory
2) After Circuits....
3) Stay ahead of the professor (read book/videos/go online.... anything)
4) It takes practice to match theory to analytical (give yourself enough time!)
5) Always check your exams for missed concepts
6) Stay engaged and ask questions during lecture...after lecture

Congratulations, you are officially electrical engineering students!

Now you must become electrical engineers/computer systems engineers/dual major engineers.......may the

REVIEW: LECTURE 1

- Passive Sign Convention
- Voltage Reference Point - Ground
- Linear Resistor - Ohm's Law
- Open/Short Circuits - Ideal Switches
- Ideal Voltage and Current Sources
- Reference Marks
- Kirkoff's Laws

CHECK SLIDES...

-If you don't have Lecture 1 down, you're in trouble!!
I'll skip.

REVIEW: LECTURE 2

- Series and Parallel Connections
- Equivalent Circuits
- Series and Parallel Resistors
- Voltage and Current Dividers

CHECK SLIDES...

-If you don't have Lecture 2 down, you're still in trouble!!
I'll skip.

REVIEW: LECTURE 3

SUMMARY

- Node Voltage Analysis:
- Label All Node Voltages, Known and Unknown, Identifying Variables ($\mathrm{v}_{1}, \mathrm{v}_{2}$, etc.)
- Node Analysis
- Mesh Analysis
\# of Unknown Node Voltages = \# of Nodes - \# of Voltage Sources - 1 (Reference)
- Write a KCL at Each Unknown Node Voltage
- Best to Use: Sum of Currents Out of Node = 0
- Express i's in terms of Node Voltages
- Solve Algebraic Equations for Node Voltages - Use MAPLE, MATLAB, Cramer's Rule, etc.
- Solve for Currents Using Ohm's Law

NODE ANALYSIS -SOLVING PROCEDURE

1. Identify all nodes
2. Choose a reference node (ground)
. Label the unknown nodes
3. Locate all voltage sources
4. Determine either absolute or relative voltages based on the voltage sources
5. Write a KCL equation for each node
6. Use Ohm's Law to rewrite the currents as voltage differences over resistance
7. If a voltage source is on one of the current paths, 'follow' it to the next node to get an expression for current.
8. Set up the linear system
9. Solve the matrix

SUMMARY

- Mesh Current Analysis:
- Label and Define ALL Mesh Currents Unknown Mesh Currents and Currents from Current Sources
- \# of Unknown Mesh Currents = \# of Meshes \# of Current Sources;
- Write a KVL aroundEach Unknown Mesh Current
- Sum of Voltages due to All Mesh Currents = 0 - Best to Go Backwards Around Current Arrow
- Solve Algebraic Equations for Mesh Currents (Maple, Cramer's Rule, etc.)
- Solve for Voltages Using Ohms Law

MESH ANALYSIS-WITH CURRENT SOURCES SEE PG 97

Method 1: Use source transformation to replace current source and parallel resistance the with an equivalent voltage source and series resistance

Method 2: If current source is contained in only one mesh, then that mesh current is determined by the source current and is no longer an unknown. Write mesh equations around the
longer an unknown. Write mesh equations around the remaining meshes in the usual way and move known mesh
current to the source side of the equations in the final step.

Method 3: Create a supermesh by excluding the current source and any elements connected in series with it.

REVIEW: LECTURE 4

- Linearity
- Superposition Principle
- Superposition Example
- Dependent Sources

NODE ANHLYSIS-WITH VOLTAEE SOURCES SEE PG 84

Adding voltage sources to circuits modifies node analysis procedure because the current through a voltage source is not directly related to the voltage across it

Actually simplifies node analysis by reducing the number of equation required.

Method 1: Use source transformation to replace the voltage source and series resistance with an equivalent current source and parallel resistance

Method 2: Strategically select reference node and write node equations at the remaining N -2 non-reference nodes in the
usual way (can be used whether or not there is a resistance in series with voltage source)

Method 3: Combine nodes to make a supernode Rensselaer

MESH ANHIYSIS -SOLVING PROCEDURR

1. Identify all loops
2. Locate all current sources
3. If possble, simplify the problem by redrawing the circuit with current sources on the 'outside'
4. Label the currents in each loop
5. Assign the current directly if a current source is on the 'outside'
6. Assign a relative current expression if the curren source is shared by two loops.
7. Write a KVL expression for each loop
8. If a current source is shared by two loops, combine them to form a larger loop.
9. Use Ohm's Law to write the KVL in terms of currents
10. Set up the linear system
11. Solve the matrix

LINERRITY

- If have multiple inputs
- Input $=x_{1}+x_{2}+x_{3}$
- Output must be additive
$-\mathrm{y}=\mathrm{k}_{1} \mathrm{x}_{1}+\mathrm{k}_{2} \mathrm{x}_{2}+\mathrm{k}_{3} \mathrm{x}_{3}$
-Leads to Superposition Principle
- Can use only for multiple inputs to a linear circuit
sawyes@rpi.edu www.rpi.edu-sawyys

Rensselaer-
-

SUPERPOSTTION

- Find Output due to each independent source with all other independent sources set $=0$; then Add to find Total Output:
- Source of 0 is called a "dead source"
- "Dead" voltage source $=0 \mathrm{~V}=$ Short Circuit
- "Dead" current source $=0 \mathrm{~A}=$ Open Circuit
\qquad

DEPENDENT SOURCES

- Symbol:
- Diamond = Symbol for Dependent Source
- Circle = Symbol for Independent Source
- 4 Types of Dependent Sources
- Voltage Controlled Voltage Source (VCVS), E
- Current Controlled Current Source (CCCS), F
- Voltage Controlled Current Source (VCCS), G
- Current Controlled Voltage Source (CCVS), H
\qquad www.pp.edu-sawyes
Rensselaer (3)

REVIEW: LECTURE 5

- Wheatstone bridge
- Norton/Thevinin equivalent circuits

WHEATSTONE BRIDGE

When Bridge is Balanced, $\mathrm{i}_{\mathrm{M}}=0 ; \mathrm{v}_{\mathrm{M}}=0$
Meter Draws No Current

WHEATSTONE BRIDGE

Bridge Balanced
Solve for R_{u} $R_{u}=\frac{R_{2} R_{3}}{R_{1}}$
sawyes@pi.eou www.pp.edu-sawyes

Rensselaer(3)

THEVENINS THEOREM

Any Source Network
May be Replaced with its
Thevenin Equivalent Circuit

THEVENIN'S THEOREM

NORTON'S THEOREM

$\mathrm{i}_{\mathrm{N}}=\mathrm{i}_{\mathrm{sc}}=$ Short Circuit Current
$i_{N}=i_{s c}=$ Current Flowing from + to - when $v=0$
$\mathrm{R}_{\mathrm{N}}=$ Norton Resistance
sawyes@ni.edu
Rensselaer ©

EQUIVALENT CIRCUITS

Thevenin Equivalent Circuit Norton Equivalent Circuit From Source Conversions: $i_{N}=\frac{v_{T}}{R_{T}}$ and $R_{N}=R_{T}$ $\mathrm{v}_{\mathrm{T}}=\mathrm{v}_{\mathrm{oc}}=$ Open Circuit Voltage $\mathrm{i}_{\mathrm{N}}=\mathrm{i}_{\mathrm{sc}}=$ Short Circuit Current
sawyes@rpi.edu www.ppi.edu/sawyes
(8) Rensselaer(B)

THEVENIN/NORTON SOURCES-SOLVING PROCEDURE

1. Thevenin-Remove the load

Find the voltage ($\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{TH}}$) between the two nodes where the load was connected, using any method
2. Norton - Remove the load and connect a short circuit (wire) between the two nodes where the load was attached
Find the current ($I_{s c}=I_{N}$ through that short circuit (wire), using any method
2. Note: the short circuit may 'combine' nodes. Recognize that you can do KCL at a node to find current through an individual wir connecting components.
3. Resistance-Remove the load

Apply a test voltage source, $\mathrm{V}_{\text {test }}$, at the nodes where the load was
attached
2. Short circuit all other independent voltage sources and open circuit all other independent current sources.
3. Find the current through that source, $I_{\text {}}$
4. $\mathbf{R}_{\mathrm{EQ}}=\mathbf{R}_{\mathrm{N}}=\mathbf{R}_{\mathrm{TH}}=\mathrm{V}_{\text {test }} / \mathrm{I}_{\text {test }}$
4. Note: only two of these are needed since $\mathbf{V}_{\mathrm{TH}}=\left(\mathrm{R}_{\mathrm{TH}}\right)\left(\mathrm{I}_{\mathrm{N}}\right)$
www.ppi.edu/-sawyes
Rensselaer (38

MAXIMUM SIGNAL TRANSFER

For Maximum Power Transfer; Choose $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{T}}$ Best You Can Do
sawyes@rpi.edu
(2) Rensselaer (39)

REVIEW: LECTURE 6

- Amplifier circuit model
- Ideal Operational Amplifiers (Op Amps)

OPERATIONAL AMPLIFIERS

```
- An Operational Amplifier is a High Gain
    Voltage Amplifier that can be used to perform
    Mathematical Operations:
    - Addition and Subtraction
    - Differentiation and Integration
    - Other Functions as Well
    - Op Amps are the building blocks for many,
    many electronic circuits

\section*{TRANSFER CHARACTERISTIC}


\section*{IDEAL OP AMP}


Ideal Op Amp has a Virtual Short at Input
\[
\mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{N}} ; \mathrm{i}_{\mathrm{p}}=\mathrm{i}_{\mathrm{N}}=0
\]
(2) Rensselaer(3)

\section*{IDEHL OP AMP}


Since \(\mathrm{R}_{1} \rightarrow \infty\), Ideal Op Amp Draws No Current! Since \(\mathrm{A} \rightarrow \infty, \mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{N}}\) in Linear Range
\[
\begin{array}{ll}
\text { sawyes@pi.edu } & \text { www.rpi.edu/-sawyes }
\end{array}
\]
(4)Rensselaer (a)

\section*{ZERO CROSSING DETECTOR}


COMPARATOR


\section*{OP AMP CIRCUITS}
- For most Op Amp circuits, we add negative feedback:
- Circuit connection between \(v_{O}\) and \(v_{N}\)
- Helps to keep Op Amp in Linear Range
- This will help keep \(\mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{N}}\)
- Output, \(\mathrm{v}_{\mathrm{O}}=A\left(\mathrm{v}_{\mathrm{p}}-\mathrm{v}_{\mathrm{N}}\right)\), will be finite, as long as its magnitude is less than \(\mathrm{V}_{\mathrm{CC}}\)
- Output can never be greater than \(\pm \mathrm{V}_{\mathrm{CC}}\)


\section*{Suniling amplifier}



\section*{REVIEW: LECTURE 8}
- Signals and waveforms
- DC waveforms
- Unit step functions
- Ramp functions
- Exponential functions
- Sinusoidal functions


\section*{EXPONENTIAL FUNCTION}

\section*{SINUSOIDAL WHVEFORM}

See Pages 219-226 Thomas and Rosa
\[
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{A}} \cos (\omega \mathrm{t}+\phi)
\]

Amplitude \(=\mathrm{V}_{\mathrm{A}}\); volts
Angular Frequency \(=\omega=2 \pi\) f; radians \(/ \mathrm{sec}\)
\[
\begin{aligned}
& \mathrm{f}=\text { Frequency }=\frac{1}{\mathrm{~T}_{0}} ; \text { hertz } \\
& \text { http://www.analyzema } \\
& \mathrm{T}_{0}=\text { Period; seconds } \\
& \phi=\text { Phase Angle; degrees }
\end{aligned}
\]

\section*{REVIEW: LECTURE 9}
- First order RC and RL circuits
- Already a solved problem!
- Get RC and RL into the form of the solved problem
- Find Thevenin Equivalent circuit
- Find \(\tau\)
-Find coefficients
-Need \(t \rightarrow \infty\) and initial condition \(\mathrm{t}=0+\)

\section*{sawyeserpl.ec}

\section*{DYNAMIC CIRCUITS}
\[
y(t)=y_{H}+y_{P}
\]

Homogeneous Response + Particular Response
\[
y(t)=y_{N}+y_{F}
\]

Natural Response + Forced Response
\[
\mathrm{y}_{\mathrm{N}}=\mathrm{y}_{\mathrm{H}} ; \quad \mathrm{y}_{\mathrm{F}}=\mathrm{y}_{\mathrm{P}}
\]
\[
\mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{zI}}+\mathrm{y}_{\mathrm{zs}}
\]

Zero-Input Response + Zero-State Response

\section*{RC CIRCUITS}

Solution to Any Current or Voltage in Any Circuit Containing 1 C plus R's, Independent Sources and Dependent Sources, with a Switched DC Input:
\[
\begin{array}{cl}
\mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{SS}}+\left(\mathrm{y}_{0}-\mathrm{y}_{\mathrm{SS}}\right) \mathrm{e}^{-\left(\mathrm{t}-\mathrm{t}_{0}\right) / \tau} & \text { for } \mathrm{t} \geq \mathrm{t}_{0} \\
\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C} & \text { Can Find } \mathrm{y}_{0}, \mathrm{y}_{\mathrm{SS}}, \tau \\
\mathrm{R}_{\text {eq }}=\text { Equivalent Resistance Seen at Terminals of } \mathrm{C}
\end{array}
\]

Rensselaer

\section*{REVIEW: LECTURE 10}


\section*{RL CIRCUITS}

Solution to Any Current or Voltage in Any Circuit Containing 1 L plus R's, Independent Sources and Dependent Sources, with a Switched DC Input:
\[
\begin{array}{|cl}
\hline \mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{SS}}+\left(\mathrm{y}_{0}-\mathrm{y}_{\mathrm{SS}}\right) \mathrm{e}^{-\left(\mathrm{t}-\mathrm{t}_{0}\right) / \tau} & \text { for } \mathrm{t} \geq \mathrm{t}_{0} \\
\tau=\frac{\mathrm{L}}{\mathrm{R}_{\text {eq }}} & \text { Can Find } \mathrm{y}_{0}, \mathrm{y}_{\mathrm{SS}}, \tau \\
\text { Directly From Circuit }
\end{array}
\]
\[
\mathrm{R}_{\mathrm{eq}}=\text { Equivalent Resistance Seen at Terminals of } \mathrm{L}
\]

Rensselaer

\section*{SERIES RLC CIRCUITS}

(2)RensselaerO

\section*{SERIES RLC CIRCUITS}
\[
\begin{array}{r}
\frac{\mathrm{d}^{2} \mathrm{v}_{\mathrm{C}}}{\mathrm{dt}^{2}}+\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}} \frac{\mathrm{~d} \mathrm{v}_{\mathrm{C}}}{\mathrm{dt}}+\frac{1}{\mathrm{LC}} \mathrm{v}_{\mathrm{C}}=\frac{1}{\mathrm{LC}} \mathrm{v}_{\mathrm{T}} \\
{\left[\frac{1}{\mathrm{LC}}\right]=\frac{1}{(\text { seconds })^{2}}=\omega_{0}^{2} \quad\left[\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}}\right]=\frac{1}{\text { seconds }}=2 \alpha} \\
\frac{\mathrm{~d}^{2} \mathrm{v}_{\mathrm{C}}}{\mathrm{dt}^{2}}+2 \alpha \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}}+\omega_{0}^{2} \mathrm{v}_{\mathrm{C}}= \\
\text { (20 Rensselaer } \mathrm{\omega}
\end{array}
\]

\section*{SERILS RLC CIRCUITS}
\[
\frac{\mathrm{d}^{2} \mathrm{v}_{\mathrm{CN}}}{\mathrm{dt}^{2}}+2 \alpha \frac{\mathrm{dv}_{\mathrm{CN}}}{\mathrm{dt}}+\omega_{0}^{2} \mathrm{v}_{\mathrm{CN}}=0
\]
\[
\text { Assume } \mathrm{v}_{\mathrm{CN}}(\mathrm{t})=\mathrm{Ke}^{\mathrm{st}}
\]
\[
\mathrm{s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}=0
\]

Characteristic Equation
Roots are \(\mathrm{s}_{1}, \mathrm{~s}_{2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}\)
\[
\mathrm{v}_{\mathrm{CN}}(\mathrm{t})=\mathrm{K}_{1} \mathrm{e}^{\mathrm{s}_{1} \mathrm{t}}+\mathrm{K}_{2} \mathrm{e}^{\mathrm{s}_{2} \mathrm{t}}
\]

Rensselaer

\section*{SERIES RLC CIRCUITS}

Case 1: \(\alpha^{2}>\omega_{0}^{2}: \quad 2\) Real, Unequal Roots
\[
\begin{array}{ll}
\mathrm{s}_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} & \alpha=\frac{\mathrm{R}_{\mathrm{T}}}{2 \mathrm{~L}} \\
\mathrm{~s}_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} & \omega_{0}^{2}=\frac{1}{\mathrm{LC}} \\
\mathrm{v}_{\mathrm{CN}}=\mathrm{K}_{\mathrm{i}} \mathrm{e}^{\mathrm{s}^{\mathrm{t}}}+\mathrm{K}_{2} \mathrm{e}^{\mathrm{s}_{2} \mathrm{t}} &
\end{array}
\]

2 Decaying Exponentials
Circuit is Overdamped
QRensselaro

\section*{SERIES RLC CIRCUITS}

\[
\mathrm{v}_{\mathrm{C}}\left(0^{+}\right) \text {and } \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}}\left(0^{+}\right) \quad \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}}\left(0^{+}\right)=\frac{1}{\mathrm{C}} \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)
\]

Rensselaer○

\section*{SERILS RLC CIRCUITS}
\[
\mathrm{s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}=0
\]

Roots are \(\mathrm{s}_{1}, \mathrm{~s}_{2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}\)
3 Possible Cases:
Case 1: \(\alpha^{2}>\omega_{0}^{2}\) : 2 Real, Unequal Roots
Case 2: \(\alpha^{2}=\omega_{0}^{2}: \quad 2\) Real, Equal Roots
Case 3: \(\alpha^{2}<\omega_{0}^{2}\) : 2 Complex Conjugate Roots
Rensselaer

\section*{SERIES RLC CIRCUITS}

Case 2: \(\alpha^{2}=\omega_{0}^{2}: \quad 2\) Real, Equal Roots
\[
\begin{array}{ll}
\mathrm{s}_{1}=-\alpha \\
\mathrm{s}_{2}=-\alpha & \alpha=\frac{\mathrm{R}_{\mathrm{T}}}{2 \mathrm{~L}} \quad \omega_{0}^{2}=\frac{1}{\mathrm{LC}}
\end{array}
\]
\[
\mathrm{v}_{\mathrm{CN}}=\mathrm{K}_{1} \mathrm{e}^{-\alpha \mathrm{t}}+\mathrm{K}_{2} \mathrm{te}^{-\alpha \mathrm{t}}
\]

Decaying Exponential + Exponentially Damped Ramp Circuit is Critically Damped
(6) Rensselaer○

\section*{SERIES RLC CIRCUITS}

Case 3: \(\alpha^{2}<\omega_{0}^{2}: 2\) Complex Conjugate Roots
\(\mathrm{s}_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}}=-\alpha+\mathrm{j} \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha+\mathrm{j} \beta\)
\(\mathrm{s}_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}}=-\alpha-\mathrm{j} \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha-\mathrm{j} \beta\)
\[
\begin{gathered}
\mathrm{v}_{\mathrm{CN}}=\mathrm{K}_{1} \mathrm{e}^{(-\alpha+\mathrm{j} \beta) \mathrm{t}}+\mathrm{K}_{2} \mathrm{e}^{(-\alpha-\mathrm{j} \beta) \mathrm{t}} \\
\mathrm{v}_{\mathrm{CN}}=\mathrm{A}^{-\alpha \mathrm{t}} \cos (\beta \mathrm{t}+\phi)
\end{gathered}
\]

Exponentially Damped Sinusoid
Circuit is Underdamped
Rensselaer

\section*{PARALLEL RLC CIRCUITS}

\section*{Parallel RLC Circuits}

LHS of Differential Equation is Same for Any Output
Natural Response for Any Output
\[
\frac{\mathrm{d}^{2} \mathrm{y}_{\mathrm{N}}}{\mathrm{dt}^{2}}+2 \alpha \frac{\mathrm{dy}}{\mathrm{~N}} \mathrm{dt}+\omega_{0}^{2} \mathrm{y}_{\mathrm{N}}=0
\]

Same as for Series RLC Circuits
Rensselaer@

\section*{PARALLEL RLC CIRCUITS}
\(\mathrm{i}_{\mathrm{N}}(\mathrm{t})\)

\[
\frac{\mathrm{d}^{2} \mathrm{i}_{\mathrm{L}}}{\mathrm{dt}^{2}}+2 \alpha \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}+\omega_{0}^{2} \mathrm{i}_{\mathrm{L}}=\omega_{0}^{2} \mathrm{i}_{\mathrm{N}}
\]
\[
\alpha=\frac{1}{2 \mathrm{R}_{\mathrm{T}} \mathrm{C}}
\]

Same Form of Equation as for Series RLC \(\omega_{0}^{2}=\frac{1}{\text { LC }}\)
Slightly Different \(\alpha\)
\[
\text { Slightly Different } \alpha
\]

\section*{PARALLEL RLC CIRCUITS}

Natural Response
\[
\frac{\mathrm{d}^{2} \mathrm{y}_{\mathrm{N}}}{\mathrm{dt}^{2}}+2 \alpha \frac{\mathrm{dy}}{\mathrm{~N}} \text { }+\omega_{0}^{2} \mathrm{y}_{\mathrm{N}}=0
\]

Characteristic Equation
\[
\mathrm{s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}=0
\]

Same Roots as for Series RLC
Overdamping, Critical Damping, Underdamping

\section*{REVIEW: LECTURE 12 AND 13}
- Laplace transforms
- Finding poles and zeros
- Partial Fraction Expansion
- Simple real poles
- Complex conjugate poles
- Double poles
- Relationship to differential equations
-S-domain impedances (zero and non-zero initial conditions)
sawyes@rpi.edu

\section*{LAPLACE TRANSFORMS}
\begin{tabular}{lcc}
\(\frac{\text { Signal }}{\text { Impulse }}\) & \(\frac{\mathrm{f}(\mathrm{t})}{\delta(\mathrm{t})}\) & \(\frac{\mathrm{F}(\mathrm{s})}{1}\) \\
Step & \(\mathrm{u}(\mathrm{t})\) & \(\frac{1}{\mathrm{~s}}\) \\
Constant & \(\mathrm{Au}(\mathrm{t})\) & \(\frac{\mathrm{A}}{\mathrm{s}}\) \\
Ramp & \(\mathrm{tu}(\mathrm{t})\) & \(\frac{1}{\mathrm{~s}^{2}}\) \\
& & Rensselaer (B)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{LAPLACE TRANSFORMS} \\
\hline Signal & \(\underline{f(t)}\) & \(\mathrm{F}(\mathrm{s})\) \\
\hline Exponential & \(\mathrm{e}^{-\alpha t} \mathbf{u}(\mathrm{t})\) & \(\frac{1}{s+\alpha}\) \\
\hline Damped Ramp & \(\left[t e^{-\alpha t}\right] u(t)\) & \(\frac{1}{(s+\alpha)^{2}}\) \\
\hline Cosine Wave & [ \(\cos \beta \mathrm{t}] \mathrm{u}(\mathrm{t})\) & \(\frac{\mathrm{s}}{\mathrm{s}^{2}+\beta^{2}}\) \\
\hline Damped Cosine & \(\left.\mathrm{e}^{-\alpha t} \cos \beta \mathrm{t}\right] \mathrm{u}(\mathrm{t})\) & \(\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\beta^{2}}\) \\
\hline ammemas m & & (28ensselaer (\%) \\
\hline
\end{tabular}

\section*{LAPLACE TRANSFORMS}


\section*{POLES AND ZEROS}
\[
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{b}_{\mathrm{m}} \mathrm{~s}^{\mathrm{m}}+\ldots \ldots .+\mathrm{b}_{\mathrm{l}} \mathrm{~s}+\mathrm{b}_{0}}{\mathrm{a}_{\mathrm{n}} \mathrm{~s}^{\mathrm{n}}+\ldots \ldots . .+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{0}}
\]

Factor F(s):
\(\mathrm{F}(\mathrm{s})=\mathrm{K} \frac{\left(\mathrm{s}-\mathrm{z}_{1}\right)\left(\mathrm{s}-\mathrm{z}_{2}\right)(\ldots . .)\left(\mathrm{s}-\mathrm{z}_{\mathrm{m}}\right)}{\left(\mathrm{s}-\mathrm{p}_{1}\right)\left(\mathrm{s}-\mathrm{p}_{2}\right)(\ldots . .)\left(\mathrm{s}-\mathrm{p}_{\mathrm{n}}\right)}\)
\(\mathrm{K}=\frac{\mathrm{b}_{\mathrm{m}}}{\mathrm{a}_{\mathrm{n}}}=\) Scale Factor
sawyes@rpi.edu
www.ppi.edu-sawyes
Rensselaer@

\section*{POLES AND ZEROS}
\[
\begin{aligned}
& \mathrm{F}(\mathrm{~s})=\mathrm{K} \frac{\left(\mathrm{~s}-\mathrm{z}_{1}\right)\left(\mathrm{s}-\mathrm{z}_{2}\right)(\ldots \ldots)\left(\mathrm{s}-\mathrm{z}_{\mathrm{m}}\right)}{\left(\mathrm{s}-\mathrm{p}_{1}\right)\left(\mathrm{s}-\mathrm{p}_{2}\right)(\ldots . .)\left(\mathrm{s}-\mathrm{p}_{\mathrm{n}}\right)} \\
& \text { At } \mathrm{s}=\mathrm{z}_{\mathrm{i}} \Rightarrow \mathrm{~F}(\mathrm{~s}) \rightarrow 0 \Rightarrow \text { Zeros of } \mathrm{F}(\mathrm{~s}) \\
& \text { At } \mathrm{s}=\mathrm{p}_{\mathrm{j}} \Rightarrow \mathrm{~F}(\mathrm{~s}) \rightarrow \infty \Rightarrow \text { Poles of } \mathrm{F}(\mathrm{~s})
\end{aligned}
\]

Poles and Zeros are "Critical Frequencies" of F(s)
Useful to Plot "Pole-Zero Diagram" in s-plane

\section*{PARTIAL FRAC'TION EXPANSION}

There are only 3 Types of Poles:
Simple, Real Poles: \((\mathrm{s}-4),=>\mathrm{p}_{1}=4\)

Real, Equal Poles: \((\mathrm{s}+3)^{2}, \quad \Rightarrow \mathrm{p}_{1}=\mathrm{p}_{2}=-3\)

Complex Conjugate Poles: \(\left(s^{2}+8 s+25\right)\)
\[
\Rightarrow p_{1}, p_{2}=-4 \pm j 3
\]

RensselaerO

\section*{PARTIAL FRACTION EXPANSION}

For \(\mathrm{m}<\mathrm{n}\) :
- Simple Real Poles

In General:
Expand: \(F(s)=\frac{A_{1}}{s-p_{1}}+\frac{A_{2}}{s-p_{2}}+\frac{A_{3}}{s-p_{3}}+\ldots .\).
\(A_{n}=\left.\left[\left(s-p_{n}\right) F(s)\right]\right|_{s=p_{n}} ; \quad\) Cover-Up Rule
\(\left.\Rightarrow f(t)=) A_{1} e^{p_{1} t}+A_{2} e^{p_{2} t}+A_{3} e^{p_{3} t}+\ldots ..\right) t \geq 0\)

\section*{PARTIIL FRACTION EXPANSION}
- Complex Conjugate Poles

In General:
Expand \(\mathrm{F}(\mathrm{s})=\frac{\mathrm{A}_{1}}{\mathrm{~s}-\mathrm{p}_{1}}+\ldots .+\frac{\mathrm{A}}{\mathrm{s}+\alpha-\mathrm{j} \beta}+\frac{\mathrm{A}^{*}}{\mathrm{~s}+\alpha+\mathrm{j} \beta}\)
Find \(\mathrm{A}_{1}\) and \(\mathrm{A}=|\mathrm{A}| \underline{\phi}\) from Cover-Up Rule \(\Rightarrow \mathrm{f}(\mathrm{t})=\mathrm{A}_{1} \mathrm{e}^{\mathrm{p}_{1} \mathrm{t}}+\ldots .+2|\mathrm{~A}| \mathrm{e}^{-\alpha \mathrm{t}} \cos (\beta \mathrm{t}+\phi) \quad \mathrm{t} \geq 0\)

Simple Poles Complex Poles
Rensselaer○

\section*{PARTILL PRACTION EXPANSION}
- Real, Equal Poles - Double Pole:

Expand \(F(s)=\frac{A_{1}}{s-p_{1}}+. .+\left[\frac{A_{n 1}}{s-p_{n}}+\frac{A_{n 2}}{\left(s-p_{n}\right)^{2}}\right]\)
\(\mathrm{A}_{\mathrm{n} 2}=\left.\left[\left(\mathrm{s}-\mathrm{p}_{\mathrm{n}}\right)^{2} \mathrm{~F}(\mathrm{~s})\right]\right|_{\mathrm{s}=\mathrm{p}_{\mathrm{n}}}\); Cover-Up Rule
Usually Find \(A_{n 1}\) from evaluating \(F(0)\) or \(F(1)\)
\(\Rightarrow f(t)=\left(A_{1} e^{p_{1} t}+\ldots .+A_{n 1} e^{p_{n} t}+A_{n 2} t^{p_{n} t}\right) t \geq 0\)
Simple Poles Repeated Poles

Rensselaer○

\section*{IIMPEDANCE}

Zero initial conditions

\(\mathrm{Z}=\) Impedance \(=\frac{\mathrm{V}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}\)
sawyeserpi.edu www.pp.edu-sawyes

Rensselaer (a)

NON-ZERO INITITLL CONDITIONS


\section*{REVIEW: LECTURE 14 CIRCUIT ANALYSIS}
- Essentially Unit 1 + Unit 2 in one problem

\section*{GENERAL PROCESS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{-Domain Circuit Analysis} \\
\hline \multirow[t]{4}{*}{Time domain (t domain) \(\checkmark\) Linear Circuit \(\downarrow\)} & \multicolumn{2}{|r|}{Complex frequency domain (s domain)} \\
\hline & Laplace Transform & \% \\
\hline & L & Circuit \\
\hline & & \(\downarrow\) \\
\hline Differential & Laplace Transform & Algebraic \\
\hline \[
\underset{\downarrow}{\text { equation }}
\] & L & \[
\stackrel{\text { equation }}{\downarrow}
\] \\
\hline Classical & & Algebraic \\
\hline techniques & & techniques \\
\hline \(\downarrow\) & & \\
\hline Response & Inverse Transform & Response \\
\hline waveform & \(\mathrm{L}^{-1}\) & trans \\
\hline
\end{tabular}

\section*{CIRCUITS WITH LAPLACE}
1. Find Initial Conditions
2. Determine Laplace Equivalent circuit
3. Use Unit l concepts (node/mesh/voltage dividers etc.) to find an expression for the parameter of interest (impedances)
a. "Clean up" expression to have \(\quad \mathrm{N}(\mathrm{s})\)
4. Find poles (zeros, Unit 3) D(s)
5. Partial fraction expansion
a. Cover up rule for coefficients or \(F(0), F(1)\)
6. Inverse Laplace gives time domain response

Rensselaer


\section*{LECTURE 18.1 REVIEW}
- Transfer Functions
- Phasors
- Phasor Math

\section*{PHASORS}
- 3 Ways to Express Phasors

Rectangular Form; \(\underline{X}=X_{r}+j X_{i}\)
Polar Form; \(\quad \underline{X}=|X| / \underline{\phi_{X}}\)
Euler Form; \(\quad \underline{X}=|X| e^{j j_{X}}\)
- Will Need to Be Able to Easily

Convert Between the 3 Different Forms

Rensselaer (3)

\section*{LECTURE 19.1 ACENDA}
- Kirkoff's laws for phasors
- AC steady state impedence

\section*{K'S LAWS FOR PHASORS}
```

- KCL:

```
    - If \(\mathrm{i}_{1}+\mathrm{i}_{2}=\mathrm{i} ;=>\underline{\mathrm{I}}_{1}+\underline{\mathrm{I}}_{2}=\underline{\mathrm{I}}\)
- KVL:
    . If \(\mathrm{v}_{1}+\mathrm{v}_{2}=\mathrm{v} ;=>\underline{\mathrm{V}}_{1}+\underline{\mathrm{V}}_{2}=\underline{\mathrm{V}}\)
- K's Laws Work for Phasors!
- Complex Addition, not Simple Addition

\section*{AC STEADY STATE IMPEDANCE}
\[
\begin{aligned}
& \mathrm{Z}_{\mathrm{R}}=\mathrm{R} \Omega \\
& \mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{~L} \Omega \\
& \mathrm{Z}_{\mathrm{C}}=-\frac{\mathrm{j}}{\omega C}=\frac{1}{\mathrm{j} \omega \mathrm{C}} \Omega
\end{aligned}
\]

\section*{AC STEADY STATE IMPEDANCE}
- In General, \(\mathrm{V}=\mathrm{Z} \underline{\mathrm{I}}\) in HC Steady State:
. Z = IC SS Impedance
. Units of Ohms
- Ohm’s Law for IC Steady State
- \(\mathrm{Y}=\) IC Steady State Admittance
\(=1 / \mathrm{Z}\) (Units of mhos)

\section*{AC STEADY STATE IMPEDANCE}
\(\underline{V}=\) ZÍ; Ohm's Law for AC Steady State
\(\mathrm{Z}=\mathrm{R}(\omega)+\mathrm{jX}(\omega)=\mathrm{AC}\) Steady State Impedance
\(\mathrm{R}(\omega)=\mathrm{AC}\) Steady State Resistance
\(\mathrm{X}(\omega)=\) AC Steady State Reactance
\(\mathrm{Y}=\mathrm{G}(\omega)+\mathrm{jB}(\omega)=\) AC Steady State Admittance
\(\mathrm{G}(\omega)=\) AC Steady State Conductance
\(\mathrm{B}(\omega)=\mathrm{AC}\) Steady State Susceptance

\section*{LECTURE 20.1 ACENDA}
- AC Thevenin/Norton circuits
- AC node equations
- AC mesh equations-(not on the test)
- AC bridge circuits-(not on the test)


\section*{AC SOURCE CONVERSIONS}


\section*{LECTURE 21.1}
- Review AC Power
- Complex Power
- Real Power
- Reactive Power
- Apparent Power
- Power Factor


\section*{IIMPEDANCE BRIDGES}

Parallel voltage dividers
\(\mathrm{V}_{. \mathrm{M}}=\mathrm{V}_{. \mathrm{A}}-\mathrm{V}_{. \mathrm{B}}=\left(\frac{\mathrm{Z}_{.2}}{\mathrm{Z}_{.1}+\mathrm{Z}_{.2}}\right) \cdot \mathrm{V}_{. \mathrm{s}}-\left(\frac{\mathrm{Z}_{. \mathrm{u}}}{\mathrm{Z}_{.3}+\mathrm{Z}_{. \mathrm{u}}}\right) \cdot \mathrm{V}_{. \mathrm{s}}\)
\(\mathrm{v}_{. \mathrm{M}}=\left[\frac{\mathrm{Z}_{2} \cdot \mathrm{Z}_{.3}-\mathrm{Z}_{1 .} \cdot \mathrm{Z}_{. \mathrm{u}}}{\left(\mathrm{Z}_{.1}+\mathrm{Z}_{.2}\right) \cdot\left(\mathrm{Z}_{.3}+\mathrm{Z}_{. \mathrm{u}}\right)}\right] \cdot \mathrm{V}_{. \mathrm{s}} \quad \begin{gathered}\mathrm{VM} \text { is zero when } \\ \mathrm{Z}_{2} \mathrm{Z}_{3}=\mathrm{Z}_{1} \mathrm{Z}_{\mathrm{u}}\end{gathered}\) \(\mathrm{Z}_{. \mathrm{u}}=\frac{\mathrm{Z}_{.2} \cdot \mathrm{Z}_{.3}}{\mathrm{Z}_{.1}}=\mathrm{R}_{. \mathrm{X}}+\mathrm{j} \mathrm{X}_{. \mathrm{X}}\)
sawyes@pi.edu www.pp.edu/-sawyes Rensselaer(0)

\section*{REACTIVE POWER}

Define \(\mathrm{P}=\) "Real Power" \(=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\mathrm{RMS}} \cos \theta\)
P is Measured in Watts

Define \(\mathrm{Q}=\) "Reactive Power" \(=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \sin \theta\)
Q is Measured in VAR's
(Volt-Amperes-Reactive)

\section*{REACTIVE POWER}
- \(\mathbf{Q}\) is a Measure of the Rate of Change of Energy Stored in the Reactive Elements (L, C):
aPower companies must worry about Q since they supplied this energy
aSupplied Q over their Lines => Real Cost
_Power companies want customers to have Low \(\mathbf{Q}\)

RensselaerO

\section*{REACTIVE POWER}
\[
\begin{align*}
& \mathrm{P}=\mathrm{I}_{\text {RMS }}^{2}|\mathrm{Z}| \cos \theta \\
& =I_{\text {RMS }}^{2} R(\omega) \quad\left\{\begin{array}{l}
\text { Equivalent ways of } \\
\text { expressing Real Power }
\end{array}\right. \\
& =\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \cos \theta  \tag{Watts}\\
& \mathrm{Q}=\mathrm{I}_{\mathrm{RMS}}^{2}|\mathrm{Z}| \sin \theta \\
& =\mathrm{I}_{\mathrm{RMS}}^{2} \mathrm{X}(\omega) \\
& \{\text { Equivalent ways of } \\
& =\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta
\end{align*}
\]

RensselaerO

\section*{REACTIVE POWER}
- Notes on Reactive Power:
\(\square\) Real Power \(=P\) is always \(\geq 0\)
\(\square\) Reactive Power = Q can be \(\geq\) 0 or \(\leq 0\)
\(\square\) For Inductive Load, X > 0 => Q > 0
-For Capacitive Load, X < 0 => Q < \(\mathbf{0}\)

Rensselaer

\section*{POWER TRIANGLE}


\section*{APPRRENT POWER}

Magnitude of \(\underline{S}=|S|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}\)
\(|S|=\) "Apparent Power" => [Volt-Amperes]
\(|S|=\) Product of \(V_{\text {RMS }} \times I_{\text {RMS }}\) at Terminals

Rensselaer

\section*{POWER FACTOR}


RensselaerO

\section*{POWER FACTOR}

For Inductive Loads, \(\theta>0 ; \cos \theta>0\)
For Capacitive Loads, \(\theta<0 ; \cos \theta>0\)
\[
\begin{aligned}
& \text { Need a Way to Distinguish } \\
& \underline{I}=\frac{\underline{V}}{\mathrm{Z}}=\frac{|\mathrm{V}| / \underline{\phi}}{|\mathrm{Z}| \underline{\theta}}=\frac{|\mathrm{V}|}{|\mathrm{Z}|} / \phi-\theta
\end{aligned}
\]

If \(\theta>0 ; \Rightarrow\) Lagging Power Factor (I lags V)

If \(\theta<0 ; \Rightarrow\) Leading Power Factor (I leads \(\underline{\mathrm{V}}\) )
RensselaerO

\section*{LECTURE 22.1}
- Coupled Inductors
- Ideal Transformer
- Transformer Circuit
- Power Transfer
- Impedance Matching
- Mutual Inductance (Tee Model)

Rensselaer:()

\section*{REFERRAL TO PRIMIRY}


Equivalent to Basic Transformer Circuit Can Now Do AC Steady State Circuit Analysis sawyes@rpi.edu www.ppi.edu-sawyys
(2) Rensselaer:(0)

\section*{POWER FACTOR}

Power Factor:
Define pf \(=\cos \theta ; \quad 0 \leq \mathrm{pf} \leq 1\)
Must distinguish between \(\theta \geq 0, \theta \leq 0\) :
\(\theta \geq 0 ; \mathrm{X} \geq 0 ; \mathrm{Q} \geq 0 ; \underline{\mathrm{I}}\) lags \(\underline{\mathrm{V}}\); lagging pf
\(\theta \leq 0 ; \mathrm{X} \leq 0 ; \mathrm{Q} \leq 0 ; \underline{\mathrm{I}}\) leads \(\underline{\mathrm{V}}\); leading pf
e.g: pf \(=.8\) lagging \(\Rightarrow\) Inductive Load
\(\mathrm{pf}=.8\) leading \(=>\) Capacitive Load
(4)RensselaerO

\section*{TRANSFORIER CIRCUIT}


\section*{REFERRAL TO SECONDARY}


Equivalent to Basic Transformer Circuit Can Now Do AC Steady State Circuit Analysis

\section*{POWER TRANSFER}


For Maximum Power to \(\mathrm{Z}_{\mathrm{L}}\) Choose \(\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{s}}^{*}\)
\[
\Rightarrow R_{L}=R_{s} \text { and } X_{L}=-X_{s}
\]

\section*{MUTUAL INDUCTANCE}

\[
\begin{aligned}
& \mathrm{v}_{1}=\mathrm{L}_{1} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{M} \frac{\mathrm{di} \mathrm{i}_{2}}{\mathrm{dt}} \\
& \mathrm{v}_{2}=\mathrm{M} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}
\end{aligned}
\]

\section*{1st ORDER LOW PASS FILTER}

\(\mathrm{H}(\mathrm{s})=\frac{\mathrm{V}_{\text {out }}(\mathrm{s})}{\mathrm{V}_{\text {in }}(\mathrm{s})}=\frac{1 / \mathrm{RC}}{\mathrm{s}+1 / \mathrm{RC}}=\frac{\omega_{\mathrm{c}}}{\mathrm{s}+\omega_{\mathrm{c}}} \Rightarrow>\) Low Pass Filter Low Frequencies "Pass"; High Frequencies "Stopped" Rensselaer○

\section*{\({ }^{\text {st }}\) ORDER HICH PASS FILTER}

\(H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{s}{s+1 / R C}=\frac{s}{s+\omega_{c}}=>\) High Pass Filter High Frequencies "Pass"; Low Frequencies "Stopped" Rensselaer

\section*{LOW PASS + HICH PASS}
\[
\mathrm{H}(\mathrm{~s})=\mathrm{K}\left(\frac{\mathrm{~s}}{\mathrm{~s}+\omega_{\mathrm{cH}}}\right)\left(\frac{\omega_{\mathrm{cL}}}{\mathrm{~s}+\omega_{\mathrm{cL}}}\right)
\]
\[
|\mathrm{H}(\mathrm{j} \omega)|=|\mathrm{K}|\left(\frac{\omega}{\sqrt{\omega^{2}+\omega_{\mathrm{cH}}^{2}}}\right)\left(\frac{\omega_{\mathrm{cL}}}{\sqrt{\omega^{2}+\omega_{\mathrm{cL}}^{2}}}\right)
\]

High Pass Low Pass
Let's Design Such that \(\omega_{c \mathrm{c}}>\omega_{\mathrm{cH}}\) \(\Rightarrow R_{H} C_{H}>R_{L} C_{L}\)

RensselaerO

\section*{LOW PASS + HICH PASS}
\(H(s)=H_{L}(s)+H_{H}(s)=\left(1+\frac{R_{A}}{R_{B}}\right)\left(\frac{\omega_{c L}}{s+\omega_{c L}}+\frac{s}{s+\omega_{c H}}\right)\)
For Low Frequencies \(\Rightarrow\) Looks Like a \(1^{\text {st }}\) Order Low Pass
For High Frequencies \(\Rightarrow\) Looks Like a \(1^{\text {st }}\) Order High Pass Let's Design Such that \(\omega_{\mathrm{cH}}>\omega_{\mathrm{cL}}\) \(\Rightarrow R_{\mathrm{L}} \mathrm{C}_{\mathrm{L}}>\mathrm{R}_{\mathrm{H}} \mathrm{C}_{\mathrm{H}}\)
\(2^{N D}\) ORDER PROCESS SUMMMARY

\section*{Overdamped}
1)Find Poles
2)Identify Regions
3)Build Straight Line Approximations
4)Add corrections (-3db)

Rensselaer(0)


\section*{BANDGAP OR NOTCH FIITER}
\[
\omega_{\mathrm{ch}}>\omega_{\mathrm{cL}}
\]


\section*{\(2^{\text {ND }}\) ORDER PROCESS SUMMMARY}

\section*{Critically Damped}
1)Find Poles
2)Identify Regions
3)Build Straight Line Approximations
4)Add corrections (-6db)

Rensselaer()

\section*{\(2{ }^{\text {ND }}\) ORDER PROCESS SUMMMRY} Underdamped LPF, HPF
1)Start with critically damped case \(\omega_{\mathrm{c}}=\omega_{o}\)
2)Sketch Straight Line Approximations away from \(\omega_{0}\)
3)At \(\omega_{o} 20 \log\) abs \(\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)=20\) \(\log (1 /(2 \zeta))>-6 \mathrm{~dB}\) relative to passband (2)ensselaer:(0)

\section*{\(2^{W}\) ORDER PROCESS SUMMARY Underdamped BPF}
1. Asymptotes take the form of inverted V
2. Each side of \(V\) has 20 dB rolloff
3. At \(\omega_{\mathrm{o}} 20 \log\) abs \(\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)=0 \mathrm{~dB}\) ALWAYS
4. The point of the inverted V is \(20 \log\) abs \(\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\) away from 0 dB
5. Use \(20 \log (2 \zeta)\) to find this point pulling V up or down relative to 0 dB making it narrow or wide

Rensselaer (13)

\section*{FILTER TYPE SUMMARY (FROM H(S))}
- First order filters
- Low pass: (no zeros), 1 pole
- High pass: 1 zero at origin, l pole
- Second order filters
- Low pass: 2 poles
- High pass: 2 zeros at origin, 2 pole
- Bandpass filter: 1 zero, 2 poles
- Notch filter:

\section*{Congratulations, you are officially electrical engineering students!}

Now you must become electrical engineers/computer systems engineers/dual major engineers.......may the (electromagnetic) Force be with you...

\section*{DAMPING RATIO}
- \(\zeta>1\) Overdamped
- \(\zeta=1\) Critically damped
- \(\zeta<1\) Underdamped
\(-1>\zeta>0.5\) Correction is a -db of some value
- \(\zeta=0.5\) Correction is 0 db
\(-\zeta<0.5\) Correction is +db (Strongly underdamped which means there is a peak!)```

