Voltage/Current continuity

1) In the circuit below, the voltage source is defined as follows:

$$
V s=\left\{\begin{array}{cc}
0 & t<0 \\
10 V & 0<t
\end{array} \text { (the voltage source turns on at } \mathrm{t}=0\right. \text {) }
$$

a. What are the initial conditions for the circuit?
b. Determine the mathematical expression for the source.
c. At $t=0^{+}$, (just after the voltage source turns on), for the polarities indiated in the circuit, determine the voltage acorss each component and the current through each component.
d. At t goes to ${ }^{\infty}$, the polarities indicated in the circut, determine the voltage across each component and the current through each component.
2) RC series circuit

a) Exponential source input

$$
\mathrm{v}_{\mathrm{s}}(\mathrm{t})=5 \mathrm{e}^{-50 \mathrm{t}} \mathrm{u}(\mathrm{t})
$$

3) Circuit Analysis and Thevenin/Norton Circuits

In the above circuit,

1. The voltage source turns on at $t=0$ with a voltage of 20 V
2. Switch U1 closes at 15E-6s
3. The voltage source turns off at $t=25 \mathrm{E}-6$
a. Determine the voltage across C 1 as a function of time for $\mathrm{t}>0$.

For $0<t<15 E-6$
For 15E-6s<t<25E-6
For $\mathrm{t}>25 \mathrm{E}-6$

