1) In the circuit below, the voltage source is defined as follows:

$$
V s=\left\{\begin{array}{cc}
0 & t<0 \\
10 V & 0<t
\end{array} \text { (the voltage source turns on at } \mathrm{t}=0\right. \text {) }
$$

a. What are the initial conditions for the circuit?

The source is zero for $\mathrm{t}<0$, indicting that the intial conditions are zero.
b. Determine the mathematical expression for the source.
$\mathrm{Vs}=10 \mathrm{u}(\mathrm{t})$
c. At $t=0^{+}$, (just after the voltage source turns on), for the polarities indiated in the circuit, determine the voltage acorss each component and the current through each component.

At $t=0+$, the source is 10 V . We enforce the continuity condition for inductors to get $\mathrm{IL}\left(0^{+}\right)=\mathrm{IL}\left(0^{-}\right)$and for capacitors $\mathrm{VC}\left(0^{+}\right)=\mathrm{VC}(0-)$. since the initial conditions are zero, the current through the inductor at $\mathrm{t}=0+$, must be zero, effectively an open circuit and the voltage across the capaictor at $t=0+$ must be zero, effectively a short circuit. The $t=0+$ circuit can be drawn as

Circuit analysis gives the following results

Component	Voltage	Current
R1	10 V	5 mA
R2	0	0
C1	0 (continuity)	5 mA
L1	0	0 (continuity)

d. At t goes to ∞, the polarities indicated in the circut, determine the voltage across each component and the current through each component.

As t goes to ∞ for a step function source, we approach the DC steady state conditions. At DC steady state, a capacitor acts as an open circuit and an inductor acts as a short circuit.

When t goes to ∞ the circuit can be drawn as

Circuit analysis gives the following results

Component	Voltage	Current
R1	4 V	2 mA
R2	6 V	2 mA
C1	6 V	0 (open circuit)
L1	0 (short circuit)	2 mA

Voltage across R1 is a voltage divider

$$
10 \mathrm{~V} \cdot \frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=4 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}:=\frac{4 \mathrm{~V}}{2 \mathrm{k} \Omega}=2 \mathrm{~mA}
$$

Voltage across R2 is a voltage divider

$$
10 \mathrm{~V} \cdot \frac{3 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=6 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{R} 2}:=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=2 \mathrm{~mA}
$$

Voltage across capacitor
Same a voltage across $\mathrm{R} 2=6 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C} 1}:=0 \mathrm{~mA} \quad$ (opencircuit)

$$
\mathrm{V}_{\mathrm{L} 1}:=0 \text { short circuit } \quad \mathrm{I}_{\mathrm{lL}}:=\mathrm{I}_{\mathrm{R} 1}=2 \mathrm{~mA}
$$

2) $R C$ series circuit

a) Exponential source input

$$
\begin{aligned}
& t:=0,0.001 . .0 .2 \\
& v_{s}(t)=5 e^{-50 t} u(t) \\
& v_{s}(t):=5 \cdot e^{-50 t}
\end{aligned}
$$

exponential source that turns on at $\mathrm{t}=0$

Initial conditions

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{c}}\left(0^{-}\right)=0 & \text { still this way because of the step function } \\
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{\tau}}+\mathrm{A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}} & \text { VCF must look like input } \\
\text { VCN }+ \text { VCF } & \tau:=100 \cdot 1 \times 10^{-4} \\
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{-100 t}+\mathrm{A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}} & \tau=0.01 \quad \frac{1}{\tau}=100
\end{array}
$$

subsitute VCF into diff eq. formed by KVL

$$
\mathrm{RC} \frac{\mathrm{dv}_{\mathrm{CF}}}{\mathrm{dt}}+\mathrm{v}_{\mathrm{CF}}=\mathrm{v}_{\mathrm{s}}
$$

$$
\begin{aligned}
& 0.01 \cdot \frac{\mathrm{~d}}{\mathrm{dt}} \cdot\left(\mathrm{~A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}}\right)+\mathrm{A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}}=5 \cdot \mathrm{e}^{-50 \mathrm{t}} \\
& -0.5 \cdot \mathrm{~A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}}+\mathrm{A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}}=5 \cdot \mathrm{~A}_{2} \cdot \mathrm{e}^{-50 \mathrm{t}}
\end{aligned}
$$

Divide out e^{\wedge}-50t

$$
-0.5 \mathrm{~A}_{2}+\mathrm{A}_{2}=5
$$

$$
\mathrm{A}_{2} \cdot(-0.5+1)=5
$$

$$
\mathrm{A}_{2}=10
$$

Find A1 using inital conditions

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{-100 \mathrm{t}}+10 \cdot \mathrm{e}^{-50} & \\
\mathrm{v}_{\mathrm{c}}\left(0^{-}\right)=\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)=0 & \mathrm{v}_{\mathrm{c}}(\mathrm{t}):=-10 \mathrm{e}^{-100 \mathrm{t}}+10 \mathrm{e}^{-50 \mathrm{t}} \\
\mathrm{~A}_{1}+10=0 & \mathrm{~A}_{1}=-10
\end{array}
$$

3) Circuit Analysis and Thevenin/Norton Circuits

In the above circuit,

1. The voltage source turns on at $t=0$ with a voltage of 20 V
2. Switch U1 closes at 15E-6s
3. The voltage source turns off at $t=25 \mathrm{E}-6$
a. Determine the voltage across C 1 as a function of time for $\mathrm{t}>0$.

For $0<t<15 E-6$

Find the thevenin equivalent then solve the simple RC circuit with a step function source
$\mathrm{R}_{\text {Thevenin }}=\frac{12 \mathrm{k} \cdot 12 \mathrm{k}}{24 \mathrm{k}}+4 \mathrm{k}=10 \mathrm{k}$
$\mathrm{V}_{\text {Thevenin }}=20 \cdot \frac{12 \mathrm{k}}{24 \mathrm{k}}=10 \mathrm{~V}$

The simple RC circuit with a step function source has a solution of the form

$$
v_{C 1}=A_{1} \cdot e^{\frac{-t}{2 \cdot 10^{-5}}}+A_{2}
$$

$$
\begin{aligned}
& \tau:=10 \cdot 10^{3} \cdot 2 \cdot 10^{-9} \\
& \tau=2 \times 10^{-5}
\end{aligned}
$$

Since the source is a step function, the DC steady state as t goes to ∞ is Vthevenin, giving A2 (note: what happens to the capacitor at DC steady state? open circuit)

$$
\mathrm{A}_{2}=10 \mathrm{~V}
$$

The intial conditions are zero giving

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}}\left(0^{+}\right) & =0=\mathrm{A}_{1}+\mathrm{A}_{2} \\
\mathrm{~A}_{1} & =-10 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{C} 1}(\mathrm{t})=-10 \exp \left(\frac{-\mathrm{t}}{2 \times 10^{-5}}\right)+10 \mathrm{~V}
$$

For $15 \mathrm{E}-6 \mathrm{~s}<\mathrm{t}<25 \mathrm{E}-6$

Switch closes and now a 8k resistor is added

$$
\begin{aligned}
\tau_{1} & :=4.4 \cdot 10^{3} \cdot 2 \cdot 10^{-9} \\
\tau_{1} & =8.8 \times 10^{-6}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{c} 2}(\mathrm{t})=\mathrm{A}_{3} \cdot \mathrm{e}^{\frac{-\left(\mathrm{t}-15 \cdot 10^{-6}\right)}{8.88 \cdot 10^{-6}}}+\mathrm{A}_{4}
$$

Since the source is a step function source, the DC steady state as t approaches ∞ is VThevenin giving

$$
\mathrm{A}_{4}=4.4 \mathrm{v}
$$

Enforcing continuity conditions, $\mathrm{Vc} 1(15 \mathrm{E}-6-)=\mathrm{Vc} 2(15 \mathrm{E} 6+)=5.28$

$$
-10 \cdot \mathrm{e}^{\frac{-15 \cdot 10^{-6}}{2 \cdot 10^{-5}}}+10=5.276
$$

$$
5.28=\mathrm{A}_{3} \cdot \mathrm{e}^{0}+\mathrm{A}_{4}
$$

$$
5.28=\mathrm{A}_{3}+4.4
$$

For $t>25 \mathrm{E}$-6 \quad switch is sitll down so Rthev is the same

$$
\begin{array}{ll}
\mathrm{R}_{\text {Thevenin }}=4.4 \mathrm{k} & \text { the source is off } \\
\mathrm{V}_{\text {Thevenin }}=0 & \tau_{\mathrm{M} N \mathrm{n}}:=4.4 \cdot 10^{3} \cdot 2 \cdot 10^{-9} \\
& \frac{-\left(\mathrm{t}-25 \cdot 10^{-6}\right)}{8.88 \cdot 10^{-6}}+\mathrm{A}_{6}
\end{array}
$$

$$
\mathrm{A}_{6}=\mathrm{V} \text { thevenin }=0
$$

Enforcing the continity conditions

$$
\operatorname{V.c} 2\left(25 \cdot 10^{-6-}\right)=\operatorname{V} \cdot \mathrm{C} 3\left(25 \cdot 10^{-6+}\right)
$$

$$
0.84 \mathrm{e}^{-\left(\frac{25 \cdot 10^{-6}-15 \cdot 10^{-6}}{8.88 \cdot 10^{-6}}\right)}+4.44=4.712
$$

$$
V_{c 3}=4.71 \cdot e^{\frac{-\left(\mathrm{t}-25 \cdot 10^{-6}\right)}{8.88 \cdot 10^{-6}}}
$$

$$
V_{C}(t)=\left\{\begin{array}{cc}
-10 \exp \left(\frac{-t}{2 E-5}\right)+10 & 0<t<15 E-6 \\
5.28 \exp \left(\frac{-\left(t-15 \times 10^{-6}\right)}{8.888 E-6}\right) & 15 E-6<t<25 E-7 \\
4.71 \exp \left(\frac{-\left(t-25 \times 10^{-6}\right)}{8.888 E-6}\right) & 25 E-7<t
\end{array}\right.
$$

