1)

a). In the above circuit, find a differential equation for the current through L2, IL2(t). The source is an arbitrary source. (Hint: Consider applying KCL at A and determine an expression for VA in terms of IL2.)

KCL at A: $\quad \frac{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}}+\mathrm{I}_{\mathrm{L} 1}+\mathrm{I}_{\mathrm{L} 2}=0$

Using the differential relationship between current and voltage in a capacitor

$$
\mathrm{I}_{\mathrm{L} 1}=\frac{1}{\mathrm{~L} 1} \cdot \int \mathrm{~V}_{\mathrm{L} 1} \mathrm{dt}
$$

Recognizing that VL1=VA

$$
\mathrm{I}_{\mathrm{L} 1}=\frac{1}{\mathrm{~L} 1} \cdot \int \mathrm{~V}_{\mathrm{A}} \mathrm{dt}
$$

Substituting and rearranging

$$
\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{R}_{1}}+\frac{1}{\mathrm{~L} 1} \cdot \int \mathrm{~V}_{\mathrm{A}} \mathrm{dt}+\mathrm{I}_{\mathrm{L} 2}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}}
$$

Recognizing that VA $=$ VR2 + VL2. Applying ohm's law and the differential relationship between current and the voltage in an inductor.
$\mathrm{V}_{\mathrm{A}}=\mathrm{I}_{\mathrm{L} 2} \cdot \mathrm{R}_{2}+\mathrm{L}_{2} \cdot \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}$
substituting

$$
\frac{1}{\mathrm{R}_{1}} \cdot\left(\mathrm{I}_{\mathrm{L} 2} \cdot \mathrm{R}_{2}+\mathrm{L}_{2} \cdot \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}\right)+\frac{1}{\mathrm{~L} 1} \cdot \int\left(\mathrm{I}_{\mathrm{L} 2} \cdot \mathrm{R}_{2}+\mathrm{L}_{2} \cdot \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}\right) \mathrm{dt}+\mathrm{I}_{\mathrm{L} 2}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{1}}
$$

Differentiating to get rid of the integral term

$$
\frac{1}{\mathrm{R}_{1}} \cdot\left(\mathrm{R}_{2} \cdot \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}+\mathrm{L}_{2} \cdot \frac{\mathrm{~d}^{2} \mathrm{I}_{\mathrm{L} 2}}{\mathrm{dt}^{2}}\right)+\frac{1}{\mathrm{~L} 1} \cdot\left(\mathrm{I}_{\mathrm{L} 2} \cdot \mathrm{R}_{2}+\mathrm{L}_{2} \cdot \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}\right)+\frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}=\frac{1}{\mathrm{R}_{1}} \cdot \frac{\mathrm{dV}_{\mathrm{S}}}{\mathrm{dt}}
$$

Rearranging

$$
\frac{\mathrm{L}_{2}}{\mathrm{R}_{1}} \cdot \frac{\mathrm{~d}^{2} \mathrm{I}_{\mathrm{L} 2}}{\mathrm{dt}^{2}}+\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}+1\right) \frac{\mathrm{dI}_{\mathrm{L} 2}}{\mathrm{dt}}+\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}} \cdot \mathrm{I}_{\mathrm{L} 2}=\frac{1}{\mathrm{R}_{1}} \frac{\mathrm{dV}_{\mathrm{s}}}{\mathrm{dt}}
$$

For the differential equation, determine symbolic expressions for the attenuation constant, α, and the resonant frequency, $\omega 0$, in terms of $\mathrm{R} 1, \mathrm{R} 2, \mathrm{~L} 1$ and L 2 .

$$
\begin{array}{ccc}
2 \alpha=\frac{\mathrm{R}_{2}}{\mathrm{~L}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{~L} 1}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{2}} & \text { so } & \alpha=\frac{1}{2} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{~L}_{2}}+\frac{\mathrm{R}_{1}}{\mathrm{~L} 1}\right. \\
\omega_{0}^{2}=\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}} & \text { so } & \omega_{0}=\sqrt{\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{~L}_{1} \cdot \mathrm{~L}_{2}}}
\end{array}
$$

2) RLC series circuits

In the above circuit, Vs is a step function source and that turns on at $t=0$. Determine the form of the solution for the following conditions (you do not need to solve for the coefficients A1, A2, and A3). Indicate the damping for each case and include calculations of the attenuation constant and resonant frequency in your solution.
a). $\begin{aligned} \quad & \mathrm{R}_{1}:=10 \Omega \\ \alpha & :=\frac{\mathrm{R}_{1}}{2 \cdot \mathrm{~L}_{1}}\end{aligned}$
$\alpha=500 \frac{1}{\mathrm{~s}} \quad$ don't use units
$\omega_{0}:=\sqrt{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}$
$\omega_{0}=1 \times 10^{4} \frac{1}{\mathrm{~s}}$
$\alpha<\omega_{0} \quad$ therefor the circuit is (strongly) underdamped and the solution takes the form

$$
\beta:=\sqrt{\omega_{0}^{2}-\alpha^{2}}=9.987 \times 10^{3} \frac{1}{\mathrm{~s}}
$$

$f(t)=e^{-500 t} \cdot\left(A_{1} \cdot \cos (9987 t)+A_{2} \cdot \sin (9987 t)\right)+A_{3}$

A3 is because Vs is a step function!
b).

$$
\begin{aligned}
& \mathrm{R}_{1 \mathrm{~b}}:=200 \Omega \quad \mathrm{~L}_{1 \mathrm{~b}}:=1 \cdot 10^{-2} \mathrm{H} \quad \mathrm{C}_{1 \mathrm{~b}}:=1 \cdot 10^{-6} \mathrm{~F} \\
& \alpha_{\mathrm{b}}:=\frac{\mathrm{R}_{1 \mathrm{~b}}}{2 \mathrm{~L}_{1 \mathrm{~b}}}
\end{aligned}
$$

$$
\alpha_{b}=1 \times 10^{4} \frac{1}{\mathrm{~s}}
$$

$$
\omega_{0 b}:=\sqrt{\frac{1}{\mathrm{~L}_{1 b} \cdot \mathrm{C}_{1 b}}}
$$

$$
\omega_{0 b}=1 \times 10^{4} \frac{1}{\mathrm{~s}}
$$

$$
\alpha=\omega_{0} \quad \text { therefore the circuit is critically damped }
$$

$$
f(t)=A_{1} \cdot \exp \left(-10^{4} t\right)+A_{1} \cdot t \cdot \exp \left(-10^{4} t\right)+A_{3}
$$

c) $\mathrm{R}_{1 \mathrm{c}}:=1000 \Omega \quad \mathrm{~L}_{1 \mathrm{c}}:=1 \cdot 10^{-2} \mathrm{H} \quad \mathrm{C}_{1 \mathrm{c}}:=1 \cdot 10^{-6} \mathrm{~F}$

$$
\begin{aligned}
& \alpha_{c}:=\frac{\mathrm{R}_{1 \mathrm{c}}}{2 \mathrm{~L}_{1 \mathrm{c}}}=5 \times 10^{4} \frac{1}{\mathrm{~s}} \\
& \omega_{0 \mathrm{c}}:=\sqrt{\frac{1}{\mathrm{~L}_{1 \mathrm{c}} \cdot \mathrm{C}_{1 \mathrm{c}}}} \\
& \omega_{0 \mathrm{c}}=1 \times 10^{4} \frac{1}{\mathrm{~s}} \\
& \alpha>\omega_{0} \quad \text { therefore the circuit is overdamped }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}_{1}:=-\alpha_{\mathrm{c}}+\sqrt{{\alpha_{\mathrm{c}}{ }^{2}-\omega_{0 c}^{2}}^{2}}=-1.01 \times 10^{3} \frac{1}{\mathrm{~s}} \\
& \mathrm{~s}_{2}:=-\alpha_{\mathrm{c}}-\sqrt{{\alpha_{\mathrm{c}}{ }^{2}-\omega_{0 c}^{2}}^{2}}=-9.899 \times 10^{4} \frac{1}{\mathrm{~s}} \\
& \mathrm{f}(\mathrm{t})=\mathrm{A}_{1} \cdot \exp \left(-9.899 \times 10^{4} \mathrm{t}\right)+\mathrm{A}_{2} \cdot \exp \left(-1.01 \times 10^{3} \mathrm{t}\right)+\mathrm{A}_{3}
\end{aligned}
$$

Electric Circuits

