What are some important Laplace transforms?
What is a transfer function?
What are poles?
What are zeros?
Why is the left half plane significant?
Review RLC series circuit: 2nd order differential equations
1)

RLC series circuits

In the above circuit, the voltage source is $V s=\left\{\begin{array}{cc}5 V & t<0 \\ 10 V & 0<t\end{array}\right.$

$$
\mathrm{L}_{1}:=1 \cdot 10^{-4} \mathrm{H} \quad \mathrm{C}_{1}:=1 \cdot 10^{-8} \mathrm{~F}
$$

a. For what range of resistor values is the circuit overdamped?

The circuit is overdamped when $\alpha>\omega 0$, giving

$$
\begin{array}{ll}
\alpha= & \frac{\mathrm{R}}{2 \mathrm{~L}} \\
& \frac{\mathrm{R}}{2 \mathrm{~L}}>\frac{1}{\sqrt{\mathrm{LC}}} \\
& \mathrm{R}>\frac{2 \mathrm{~L}}{\sqrt{\mathrm{LC}}}
\end{array}
$$

$$
\mathrm{R}>200
$$

b. For what resistor value is the circuit critically damped?

The circuit is critically damped when $\alpha=\omega 0$

$$
\mathrm{R}=\frac{2 \mathrm{~L}}{\sqrt{\mathrm{LC}}} \quad \mathrm{R}=200 \Omega
$$

c. For what range of resistor values is the circuit underdamped?

The circuit is underdamped when $\alpha<\omega 0$

$$
\mathrm{R}<200 \Omega
$$

Determine the voltage across the capacitor as a function of time, $\mathrm{Vc}(\mathrm{t})$, when
d. $R=2000 \Omega$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{d}}:=2000 \Omega \quad \text { (circuit will be overdamped) } \\
\alpha:=\frac{\mathrm{R}_{\mathrm{d}}}{2 \mathrm{~L}_{1}} \\
\alpha=1 \times 10^{7} \frac{1}{\mathrm{~s}} \\
\omega_{0}:=\frac{1}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}} \\
\omega_{0}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
\mathrm{~s}_{1 \mathrm{~d}}:=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}} \\
\mathrm{~s}_{1 \mathrm{~d}}=-5.013 \times 10^{4} \frac{1}{\mathrm{~s}} \\
\mathrm{~s}_{2 \mathrm{~d}}:=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} \\
\mathrm{~s}_{2 \mathrm{~d}}=-1.995 \times 10^{7} \frac{1}{\mathrm{~s}}
\end{gathered}
$$

Overdamped takes the form of two decaying exponentials

$$
\mathrm{V}_{\mathrm{c}}(\mathrm{t})=\mathrm{A}_{1} \cdot \exp \left(-5.013 \cdot 10^{4} \mathrm{t}\right)+\mathrm{A}_{2} \cdot \exp \left(-1.99 \cdot 10^{7} \mathrm{t}\right)+\mathrm{A}_{3}
$$

The t goes to $\infty D C$ steady state solution give the $A 3$ term $A 3=10$
The inital conditions give

$$
\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{A}_{1} \cdot \mathrm{e}^{0}+\mathrm{A}_{2} \cdot \mathrm{e}^{0}+10=5
$$

$$
\mathrm{dV}_{\mathrm{C}}\left(0^{+}\right)=\frac{\mathrm{I}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{C}}=0=-5.01 \cdot 10^{4} \cdot \mathrm{~A}_{1}-1.99 \cdot 10^{7} \cdot \mathrm{~A}_{2}
$$

this equation is the derivative of the one above it, the left side comes from the definition of the capacitor and the series condition of the RLC

$$
\begin{aligned}
& \mathrm{M}_{1}:=\left(\begin{array}{cc}
1 & 1 \\
-5.01 \cdot 10^{4} & -1.99 \cdot 10^{7}
\end{array}\right) \\
& \mathrm{C}_{\mathrm{d}}:=\binom{-5}{0} \\
& \mathrm{X}_{1}:=\mathrm{M}_{1}{ }^{-1} \cdot \mathrm{C}_{\mathrm{d}} \\
& \mathrm{v}_{\mathrm{CN}}=\mathrm{K}_{1} \mathrm{e}^{\mathrm{s}_{1} \mathrm{t}}+\mathrm{K}_{2} \mathrm{e}^{\mathrm{s}_{2} \mathrm{t}} \\
& \mathrm{X}_{1}=\binom{-5.013}{0.013}
\end{aligned}
$$

$$
\mathrm{A}_{1 \mathrm{~d}}:=-5.013
$$

$$
\mathrm{A}_{2 \mathrm{~d}}:=0.013
$$

$$
\mathrm{A}_{3}:=10
$$

$$
V_{c}(t)=-5.013 \cdot \exp \left(-5.013 \cdot 10^{4} t\right)+0.013 \cdot \exp \left(1.99 \cdot 10^{7} t\right)+10
$$

Determine the voltage across the capacitor as a function of time, $\mathrm{Vc}(\mathrm{t})$, when
e. $R=200 \Omega$
$\mathrm{R}_{\mathrm{e}}:=200 \Omega \quad$ we know from above that this is critically damped

$$
\begin{aligned}
& \alpha:=\frac{\mathrm{R}_{\mathrm{e}}}{2 \mathrm{~L}_{1}} \\
& \alpha=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \omega_{\mathrm{m}}^{\mathrm{a}}: \\
& :=\frac{1}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}} \\
& \omega_{0}=1 \times 10^{6} \frac{1}{\mathrm{~s}}
\end{aligned}
$$

$$
V_{c}(t)=A_{1} \cdot \exp \left(-1 \cdot 10^{6} t\right)+A_{2} \cdot t \cdot \exp \left(-1 \cdot 10^{6} t\right)+A_{3}
$$

The t goes to $\infty \mathrm{DC}$ steady state solution give the A 3 term, $\mathrm{A} 3=10$

The initial conditions give

$$
\begin{gathered}
\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{A}_{1} \mathrm{e}^{0}+\mathrm{A}_{2} \cdot 0 \cdot \mathrm{e}^{0}+10=5 \\
\mathrm{~A}_{1}+10=5 \\
\mathrm{~A}_{1}:=-5 \\
\mathrm{dV}_{\mathrm{C}}\left(0^{+}\right)=\frac{\mathrm{I}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{C}}=0=-1 \cdot 10^{6} \cdot \mathrm{~A}_{1}+\mathrm{A}_{2} \\
0=-5 \cdot\left(-1 \cdot 10^{6}\right)+\mathrm{A}_{2} \\
\mathrm{~A}_{2}=-5 \cdot 10^{6} \\
\mathrm{~V}_{\mathrm{c}}(\mathrm{t})=-5 \cdot \exp \left(-1 \cdot 10^{6} \mathrm{t}\right)-5 \cdot 10^{6} \cdot \exp \left(-1 \cdot 10^{6} \mathrm{t}\right)+10
\end{gathered}
$$

Determine the voltage across the capacitor as a function of time, $\operatorname{Vc}(\mathrm{t})$, when
f. $R=20 \Omega$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{f}}:=20 \Omega \quad \begin{array}{l}
\text { we know from above that this is } \\
\text { underdamped }
\end{array} \\
& \alpha:=\frac{\mathrm{R}_{\mathrm{f}}}{2 \mathrm{~L}_{1}} \\
& \alpha=1 \times 10^{5} \frac{1}{\mathrm{~s}} \\
& \omega_{0}:=\frac{1}{\sqrt{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}} \\
& \omega_{0}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \beta:=\sqrt{\omega_{0}^{2}-\alpha^{2}} \\
& \beta=9.95 \times 10^{5} \frac{1}{\mathrm{~s}}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{c}}(\mathrm{t})=\exp ^{-1 \cdot 10^{5} \mathrm{t}} \cdot\left(\left(\mathrm{~A}_{1} \cdot \cos \left(9.95 \cdot 10^{5} \mathrm{t}\right)+\mathrm{A}_{2} \cdot \sin \left(9.95 \cdot 10^{5} \mathrm{t}\right)\right)+\mathrm{A}_{3}\right.
$$

The t goes to ∞ DC steady state solution give the $A 3$ term $A 3=10$
The initial conditions give

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=\mathrm{A}_{1}+10=5 \quad \begin{array}{c}
\cos (0)=1 \\
\sin (0)=0
\end{array} \\
& \mathrm{~A}_{1}=-5 \\
& \frac{\mathrm{dV}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{dt}}=\frac{\mathrm{I}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{C}}=\frac{\mathrm{I}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{C}}=0=-1 \cdot 10^{5} \cdot \mathrm{~A}_{1}+9.95 \cdot 10^{5} \mathrm{~A}_{2} \\
& -5 \cdot\left(-1 \cdot 10^{5}\right) \cdot \mathrm{A}_{1}+9.95 \cdot 10^{5} \mathrm{~A}_{2}=0 \\
& \mathrm{~A}_{2}=0.503
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{c}}(\mathrm{t})=\exp ^{-1 \cdot 10^{5} \mathrm{t}} \cdot\left(\left(-5 \cdot \cos \left(9.95 \cdot 10^{5} \mathrm{t}\right)+0.503 \cdot \sin \left(9.95 \cdot 10^{5} \mathrm{t}\right)\right)+10\right.
$$

2) Find the Laplace transform of the following function
$\mathrm{f}(\mathrm{t})=(5 \cdot \exp (-5 \mathrm{t})-10 \mathrm{t} \cdot \exp (-5 \mathrm{t})+10) \mathrm{u}(\mathrm{t})$
multiply it out
$5 \cdot \exp (-5 \mathrm{t}) \cdot \mathrm{u}(\mathrm{t})-10 \mathrm{t} \cdot \exp (-5 \mathrm{t}) \cdot \mathrm{u}(\mathrm{t})+10 \cdot \mathrm{u}(\mathrm{t})$ $\exp (-\alpha \mathrm{t}) \mathrm{u}(\mathrm{t}) \quad$ mean +5

$$
\frac{5}{s+5}+\frac{-10}{(s+5)^{2}}+\frac{10}{s}
$$

3). $\quad F(s)=\frac{2 s+1}{s^{3}+6 s^{2}+8 s}$

What are the poles and zeros

$$
\begin{array}{lll}
\text { Zeros } & 2 \mathrm{~s}+1=0 & \mathrm{~s}=\frac{-1}{2} \\
\text { Poles } & \mathrm{s}\left(\mathrm{~s}^{2}+6 \mathrm{~s}+8\right) & \mathrm{z}=-0.5 \\
& \mathrm{~s}(\mathrm{~s}+4)(\mathrm{s}+2) & \mathrm{p}_{1}=0 \\
& & \mathrm{p}_{2}=-4 \\
& & \mathrm{p}_{3}=-2
\end{array}
$$

Write $F(s)$ as

$$
\frac{2(s+0.5)}{s \cdot(s+2) \cdot(s+4)}
$$

Draw the pole zero diagram
poles are on the real axis and negative overdamped response
No imaginary term
pole at zero implies a DC term

Using partial fraction expansion find $f(t)$ including values for all A coefficients

$$
\begin{gathered}
\frac{2(s+0.5)}{s \cdot(s+2) \cdot(s+4)}=\frac{A_{1}}{s}+\frac{A_{2}}{s+2}+\frac{A_{3}}{s+4} \\
L^{-1} \cdot\{F(s)\}=L^{-1} \cdot\left(\frac{A_{1}}{s}+\frac{A_{2}}{s+2}+\frac{A_{3}}{s+4}\right) \quad \text { break into parts } \\
L^{-1}\left(\frac{A_{1}}{s}\right)+L^{-1}\left(\frac{A_{2}}{s+2}\right)+L^{-1} \cdot\left(\frac{A_{3}}{s+4}\right)=A_{1} \cdot u(t)+A_{2} \cdot e^{-2 t} u(t)+A_{3} \cdot e^{-4 t} u(t) \\
\mathbf{1}=\left(A_{1}+A_{2} \cdot e^{-2 t}+A_{3} \cdot e^{-4 t}\right) \cdot u(t)
\end{gathered}
$$

Use the cover up rule

Find A1, multiply both sides by s (denominator of $A 1$ term), evaluate at the pole, $s=0$
A_{1}

$$
\begin{gathered}
\frac{2(s+0.5) \cdot s}{s \cdot(s+2) \cdot(s+4)}=A_{1}+\frac{A_{2} \cdot s}{s+2}+\frac{A_{3} \cdot s}{s+4} \quad \text { at } s=0 \\
\frac{1}{8}=A_{1} \quad A_{1}=0.125
\end{gathered}
$$

Find A2, multiply by $s+2$, evaluate at -2
A2

$$
\begin{gathered}
\frac{2(s+0.5)(\mathrm{s}+2)}{\mathrm{s} \cdot(\mathrm{~s}+2) \cdot(\mathrm{s}+4)}=\mathrm{A}_{1}(\mathrm{~s}+2)+\frac{\mathrm{A}_{2} \cdot(\mathrm{~s}+2)}{\mathrm{s}+2}+\frac{\mathrm{A}_{3} \cdot(\mathrm{~s}+2)}{\mathrm{s}+4} \quad \text { at } \mathrm{s}=-2 \\
\mathrm{~A}_{2}=0.75
\end{gathered}
$$

Find $A 3$, multiply by $s+4$, evaluate at $s=-4$

$$
\mathrm{A}_{3}=-0.875
$$

$F(s)=\frac{0.125}{s}+\frac{0.75}{s+2}-\frac{0.875}{s+4}$
$f(t)=\left(0.125+0.75 e^{-2 t}-0.875 \cdot e^{-4 t}\right) \cdot u(t)$
poles are real and negative, exponentially decaying terms

What happens with a pole at +4

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~s})=\frac{\mathrm{A}_{1}}{\mathrm{~s}-4} \\
& L^{-1}=A_{1} \cdot \mathrm{e}^{4 \mathrm{t}} \quad \text { not decaying!!! } \quad \text { Not stable }
\end{aligned}
$$

For a stable response poles must be in the left half of the pole zero diagram
Real component of a pole must be negative
3) $\quad \mathrm{F}(\mathrm{s})=\frac{\mathrm{s}+1}{(\mathrm{~s}+4) \cdot(\mathrm{s}+3) \cdot(\mathrm{s}+2)}$

Zeros $\quad-1$
Poles $\quad-2,-3,-4$

$$
\frac{s+1}{(s+4) \cdot(s+3) \cdot(s+2)}=\frac{A_{1}}{s+4}+\frac{A_{2}}{s+3}+\frac{A_{3}}{s+2}
$$

Find A1 using the cover up rule

$$
\frac{\mathrm{s}+1}{(\mathrm{~s}+3) \cdot(\mathrm{s}+2)}=\mathrm{A}_{1} \quad \text { at } \mathrm{s}=-4 \quad \mathrm{~A}_{1}=\frac{-4+1}{(-4+3) \cdot(-4+2)}=-1.5
$$

Find A2 using the cover up rule

$$
\frac{s+1}{(s+4) \cdot(s+2)}=A_{2} \quad \text { at } s=-3 \quad A_{2}=\frac{-3+1}{(-3+4) \cdot(-3+2)}=2
$$

Find A3 using the cover up rule

$$
\begin{gathered}
\frac{s+1}{(s+4)(s+3)}=A_{3} \quad \text { at } s=-2 \quad A_{3}=\frac{-2+1}{(-2+4)(2+3)}=0 \cdot-0.5 \\
f(t)=(-1.5 \cdot \exp (-4 t)+2 \cdot \exp (-3 t)-0.5 \exp (-2 t)) \cdot u(t)
\end{gathered}
$$

Pole zero diagram

