S-domain analysis with initial conditions

The method of analysis is the same as circuits with no inital conditions. At some point, you'll need to substitute in the correct s-domian values for the intial condition sources. The are DC sources that appear at the time of a switch, like a step function, so they should be N/s. Therefore, you'll need to account for another s (or more than one s) in your ratio. See example below.

In the circuit above, the voltage source is 5 V for $\mathrm{t}<0$ and 10 V for $\mathrm{t}>0$.
a. Draw the s-domain equivalent circuit. Include the intial conditions in your s-domain circuit. Label your component values using symbolic notation (i.e. sL1).

$\mathrm{I}_{\mathrm{L}}(0-)=\mathrm{I}_{\mathrm{L}}(0+)=0 \quad \begin{aligned} & \text { DC steady state for components so capacitor is open so the current in } \\ & \text { series circuit in } 0 .\end{aligned}$

$$
\mathrm{v}_{\mathrm{C}}(0-)=\mathrm{v}_{\mathrm{C}}(0+)=5 \mathrm{v} \quad \begin{aligned}
& \text { The voltage across the capacitor must be } \\
& 5 \mathrm{~V}, \text { the value of the source at } t<0 .
\end{aligned}
$$

b. Using impedances, determine the transfer function for the voltage across C1. Use symbolic numbers in your expression.

$$
\mathrm{V}_{\mathrm{C}}(\mathrm{~s})=\frac{\frac{1}{\mathrm{sC}_{1}}}{\mathrm{R}_{1}+\frac{1}{\mathrm{sC}_{1}}+\frac{1}{\mathrm{~s} \cdot \mathrm{~L}_{1}}} \cdot\left(\mathrm{~V}_{1}(\mathrm{~s})+\mathrm{L} \cdot \mathrm{I}(0-)-\frac{\mathrm{V}_{\mathrm{C}}(0-)}{\mathrm{s}}\right)+\frac{\mathrm{V}_{\mathrm{C}}(0-)}{\mathrm{s}}
$$

This is a voltage divider. The voltage sources must be accounted for.

You can insert intial conditions s-domain values here. If we were looking for the Vc(t), then you'd do partial fraction expansion and the inverse laplace transform after the following.

$$
\mathrm{V}_{\mathrm{C}^{(s)}}=\frac{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}} \cdot\left(\frac{10}{\mathrm{~s}}+0-\frac{5}{\mathrm{~s}}\right)+\frac{5}{\mathrm{~s}}
$$

c. Using your result from part b., determine the transfer function for the current through the capacitor.

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})-\frac{\mathrm{V}_{\mathrm{C}}(0-)}{\mathrm{s}}}{\frac{1}{\mathrm{sC}_{1}}}
$$

Using ohm's law where current is related to capacitor impedance Zc=1/sC by Vc =Zc Ic

The voltage source is subtracted from Vc to measure current through capacitor and use ohm's law.

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\frac{\mathrm{s}}{\mathrm{~L}_{1}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}} \cdot\left(\mathrm{~V}_{1}(\mathrm{~s})+\mathrm{L}_{1} \cdot \mathrm{I}(0-)-\frac{\mathrm{v}_{\mathrm{C}}(0-)}{\mathrm{s}}\right)
$$

You can insert intial condition values here.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\frac{\mathrm{s}}{\mathrm{~L}_{1}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}\left(\frac{10}{\mathrm{~s}}+0-\frac{5}{\mathrm{~s}}\right) \\
& \mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\frac{\mathrm{s}}{\mathrm{~L}_{1}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}\left(\frac{5}{\mathrm{~s}}\right)
\end{aligned}
$$

Electric Circuits

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\frac{5}{\mathrm{~L}_{1}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}
$$

d. Using the transfer function from part c. for $R 1=5 k \Omega$, determine teh current through the capacitor as a function of time for $t>0$.

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{5 \cdot 10^{6}}{\left(\mathrm{R}_{1}:=5 \mathrm{k} \Omega\right.} & \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{18} \frac{1}{2} \\
\mathrm{~s}^{2}+5 \cdot 10^{9} \mathrm{~s}+10^{18} \mathrm{~s}+10^{18}=0 & \frac{5}{\mathrm{~L}_{1}}=5 \times 10^{6} \frac{1}{\mathrm{H}} \\
500000000 \cdot \sqrt{21}-2500000000=-2.087 \times 10^{8} & \frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}}=5 \times 10^{9} \frac{1}{\mathrm{~s}} \\
-500000000 \cdot \sqrt{21}-2500000000=-4.791 \times 10^{9}
\end{array}
$$

Partial fraction expansion

$$
\frac{5 \cdot 10^{6}}{\left(s+2.09 \cdot 10^{8}\right) \cdot\left(s+4.8 \cdot 10^{9}\right)}=\frac{\mathrm{A}_{1}}{\left(s+2.09 \cdot 10^{8}\right)}+\frac{\mathrm{A}_{2}}{\left(s+4.8 \cdot 10^{9}\right)}
$$

For A1

$$
\frac{5 \cdot 10^{6}}{\left(-2.09 \cdot 10^{8}+4.8 \cdot 10^{9}\right)}=1.089 \times 10^{-3}
$$

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\left(1.1 \cdot 10^{-3}\right)}{\left(s+2.09 \cdot 10^{8}\right)}+\frac{\left(-1.1 \times 10^{-3}\right)}{\left(s+4.8 \cdot 10^{9}\right)}
$$

$I_{C}(t)=1.1 \cdot 10^{-3} \cdot e^{-2.09 \cdot 10^{8}}{ }^{t}-1.1 \cdot 10^{-3} \cdot e^{4.8 \cdot 10^{9} t}$

For A2

$$
\frac{5 \cdot 10^{6}}{\left(-4.8 \cdot 10^{9}+2.09 \cdot 10^{8}\right)}=-1.089 \times 10^{-3}
$$

Electric Circuits
Prof. Shayla Sawyer
ECSE 2010 CP15 solution

