Voltage/Current Continuity
1)

In the above circuit, the voltage is defined as follows:
$V 1=\left\{\begin{array}{cc}5 V & t<0 \\ 10 V & 0<t\end{array}\right.$ (the voltage source changes from 5 V to 10 V at $\mathrm{t}=0$)
$\mathrm{R}_{41}:=4 \mathrm{k} \Omega$
$\mathrm{R}_{51}:=2 \mathrm{k} \Omega$
$\mathrm{R}_{61}:=2 \mathrm{k} \Omega$
$C_{1}:=1 \mathrm{nF}$
$\mathrm{v}_{1 \mathrm{t} 0-}:=5 \mathrm{v} \quad \mathrm{v}_{1 \mathrm{t} 0+}:=10 \mathrm{v}$
a. Write V 1 in the format \qquad + (or -) \qquad $u(t) \quad$ (for example $2-2 u(t)$)
$u(t)$ is $1 t>0$ and 0 when $t<0$ so at $t<0$ you need 5 V and at $t>0$ you need $5+5 \mathrm{~V}$
Therefore, $5+5 u(t)$
b. Att $=0$ - (just before the voltage changes), determine the voltage across each component and the current through each component (use the polarities indicated in the circuit). Draw the circuit.

Component	Voltage	Current
R4		
R5		
R6		
C1		

There is DC steady state here so the capacitor is an open circuit, leaving R5 dangling and a voltage divider for R4 and R6.

$$
\begin{array}{lll}
\mathrm{V}_{\mathrm{R} 41}:=\frac{\mathrm{V}_{1 \mathrm{t} 0}-\mathrm{R}_{41}}{\mathrm{R}_{41}+\mathrm{R}_{61}} & \mathrm{~V}_{\mathrm{R} 51}:=0 & \mathrm{~V}_{\mathrm{R} 61}:=\frac{\mathrm{V}_{1 \mathrm{t} 0}-\mathrm{R}_{61}}{\mathrm{R}_{41}+\mathrm{R}_{61}} \\
\mathrm{~V}_{\mathrm{R} 41}=3.333 \mathrm{~V} & \mathrm{I}_{\mathrm{R} 51}:=0 & \mathrm{~V}_{\mathrm{R} 61}:=1.667 \mathrm{~V} \\
\mathrm{I}_{\mathrm{C} 41}:=\frac{\mathrm{V}_{\mathrm{R} 61}}{\mathrm{R}_{41}} & \mathrm{I}_{\mathrm{R} 61}:=\frac{\mathrm{V}_{\mathrm{R} 61}}{\mathrm{R}_{61}} \quad \text { voltage divider across } \mathrm{R} 6 \\
\mathrm{I}_{\mathrm{R} 41}=0.833 \cdot \mathrm{~mA} & \mathrm{I}_{\mathrm{R} 61}=0.833 \cdot \mathrm{~mA} & \mathrm{I}_{\mathrm{C} 1}:=0 \\
& &
\end{array}
$$

c.At $t=0+$ (just after the voltage changes), determine the voltage across each component and the current through each component for the polarities indicated in the circuit. Draw the circuit.

Component	Voltage	Current
R4		
R5		
R6		
C1		

$$
\begin{aligned}
\mathrm{v}_{\mathrm{C}}(0-) & =\mathrm{v}_{\mathrm{C}}(0+)=1.667 \mathrm{v} \quad \text { Treat it like a voltage source } \\
\mathrm{v}_{\mathrm{C} 12} & :=1.66 \mathrm{v}
\end{aligned}
$$

Mesh analysis

$$
-10+4 \mathrm{k} \cdot \mathrm{i}_{1}+1.667+2 \mathrm{k} \cdot \mathrm{i}_{1}-2 \mathrm{k} \cdot \mathrm{i}_{2}=0
$$

(1) $\quad 6 \mathrm{k} \cdot \mathrm{i}_{1}-2 \mathrm{k} \cdot \mathrm{i}_{2}=8.33$

$$
-1.667+2 \mathrm{k} \cdot \mathrm{i}_{2}+2 \mathrm{k} \cdot \mathrm{i}_{2}-2 \mathrm{k} \cdot \mathrm{i}_{1}=0
$$

(2) $\quad-2 \mathrm{k} \cdot \mathrm{i}_{1}+4 \mathrm{k} \cdot \mathrm{i}_{2}=1.667$

$$
M_{1}:=\left(\begin{array}{cc}
6 \cdot 10^{3} & -2 \cdot 10^{3} \\
-2 \cdot 10^{3} & 4 \cdot 10^{3}
\end{array}\right) \quad \mathrm{C}_{2}:=\binom{8.33}{1.667}
$$

$$
\mathrm{M}_{1}^{-1} \cdot \mathrm{C}_{2}=\binom{1.833 \times 10^{-3}}{1.333 \times 10^{-3}} \quad \mathrm{i}_{1}:=1.833 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{R} 4 \mathrm{~b}}:=\mathrm{i}_{1} \quad \mathrm{I}_{\mathrm{R} 6 \mathrm{~b}}:=\mathrm{i}_{2}
$$

$$
\mathrm{I}_{\mathrm{R} 4 \mathrm{~b}}=1.833 \times 10^{-3} \mathrm{~A} \quad \mathrm{I}_{\mathrm{R} 6 \mathrm{~b}}=1.33 \times 10^{-3} \mathrm{~A}
$$

$$
\mathrm{V}_{\mathrm{R} 4 \mathrm{~b}}:=\mathrm{R}_{41} \cdot \mathrm{I}_{\mathrm{R} 4 \mathrm{~b}}=7.332 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{R} 6 \mathrm{~b}}:=\mathrm{R}_{61} \cdot \mathrm{I}_{\mathrm{R} 6 \mathrm{~b}}=2.66 \mathrm{v}
$$

$$
\mathrm{V}_{\mathrm{R} 5 \mathrm{~b}}:=\mathrm{V}_{\mathrm{R} 6 \mathrm{~b}}-\mathrm{V}_{\mathrm{C} 12} \quad \text { In series with } \mathrm{R} 5
$$

$$
\mathrm{V}_{\mathrm{R} 5 \mathrm{~b}}=1 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 5 \mathrm{~b}}:=\frac{\mathrm{V}_{\mathrm{R} 5 \mathrm{~b}}}{\mathrm{R}_{51}}=0.5 \cdot \mathrm{~mA} \quad \mathrm{I}_{\mathrm{C} 12}:=\mathrm{I}_{\mathrm{R} 5 \mathrm{~b}}=0.5 \cdot \mathrm{~mA}
$$

2) First order circuits (Differential Equations)

In the above circuit, the source turns on at $t=0$ with a voltage of 15 V , $\mathrm{Vs}=15 \mathrm{u}(\mathrm{t}) \mathrm{V}$. Additionally, at $\mathrm{t}=20 \mathrm{~s}$ the switch in series with C 2 is closed. You can (should) ignore C 2 for part a) of this problem.
$\mathrm{v}_{\mathrm{s}}:=15 \mathrm{v} \quad \mathrm{R}_{12}:=10 \Omega$
$\mathrm{R}_{22}:=10 \Omega$
$R_{32}:=10 \Omega$
$C_{12 b}:=2 \mathrm{~F}$
$c_{62}:=6 \mathrm{~F}$
a) For $0<t<20 \mathrm{~s}$, determine the voltage across C 1 as a function of time, $\mathrm{Vc}(\mathrm{t})$. If you do any circuit reduction/transformation, include a drawing of your circuit.

Find thevenin circuit, take off capacitor load and find voltage above R2

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Th} 2}:=\mathrm{V}_{\mathrm{s}} \cdot \frac{\mathrm{R}_{22}}{\mathrm{R}_{12}+\mathrm{R}_{22}}=7.5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{Th}}:=\frac{\mathrm{R}_{12} \cdot \mathrm{R}_{22}}{\mathrm{R}_{12}+\mathrm{R}_{22}}+\mathrm{R}_{32} \\
& \mathrm{R}_{\mathrm{Th}}=15 \Omega \\
& \mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{\mathrm{RC}}}+\mathrm{A}_{2}
\end{aligned}
$$

final condtion t goes to ∞

$$
7.5=\mathrm{A}_{2}
$$

initial condition t goes to 0

$$
\begin{aligned}
& \mathrm{A}_{1}+\mathrm{A}_{2}=0 \\
& \mathrm{~A}_{1}=-7.5
\end{aligned}
$$

$$
v_{C}(t)=-7.5 \cdot e^{\frac{-t}{30}}+7.5
$$

b) For $\mathrm{t} \boldsymbol{2 0}$ s, determine the votlage across C 1 as a function of time. Use the resistor and capacitor values in your solution. If you do any circuit reduction/transformation, include a drawing of your circuit.

$$
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{\frac{-(\mathrm{t}-20)}{\mathrm{RC}}}+\mathrm{A}_{2}
$$

You have two capacitors in parallel which are easy to combine so do so and use it as a load. The voltage across both of them should be the same.

Draw new circuit below

final condition t goes to infinity

$$
7.5=0+\mathrm{A}_{2}
$$

initial condition at $\mathrm{t}=20$

What is $V c(t)$ when $t=0$ from part a ?

$$
-7.5 \cdot \mathrm{e}^{\frac{-20}{30}}+7.5=3.649
$$

$$
\mathrm{A}_{1}+\mathrm{A}_{2}=3.65
$$

$$
\mathrm{A}_{1}=-3.85
$$

$$
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=-3.85 \cdot \mathrm{e}^{\frac{-(\mathrm{t}-20)}{\mathrm{RC}}}+7.5
$$

3) Secord order differential equations

In the above circuit, the source current is 20 mA for $\mathrm{t}<0$ and 0 for $\mathrm{t}>0$ (the source turns off at $\mathrm{t}=0$).

$$
\mathrm{R}_{13}:=100 \Omega \quad \mathrm{~L}_{13}:=1 \cdot 10^{-2} \mathrm{H} \quad \mathrm{C}_{13}:=1 \cdot 10^{-10} \mathrm{~F}
$$

a) What is the initial $(\mathrm{t}=0+$) current through the inductor? What is the $(\mathrm{t}=0+$) voltage across the inductor?

DC steady state short through inductor, open circuit across the capacitor

$$
\mathrm{I}_{\mathrm{L}}(0-)=\mathrm{I}_{\mathrm{L}}(0+)=20 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{C}}(0)=\mathrm{V}_{\mathrm{L}}(0)=0
$$

b) What is the DC steady state current through the inductor as $t->\infty$?

The source is off so the current is 0 through the inductor
c) Symbolically, what is the differential equation defining the current through the inductor?

Directly from crib sheet $\quad \frac{\mathrm{d}^{2} \mathrm{I}_{\mathrm{L}}}{\mathrm{dt}^{2}}+\frac{1}{\mathrm{RC}} \cdot \frac{\mathrm{dI}_{\mathrm{L}}}{\mathrm{dt}}+\frac{1}{\mathrm{LC}} \cdot \mathrm{I}_{\mathrm{L}}=\frac{1}{\mathrm{LC}} \cdot \mathrm{I}_{\mathrm{L}}$
d) For $\mathrm{R} 1=100 \Omega$, determine the current through the inductor as a function of time for $t>0$.

$$
\alpha:=\frac{1}{2 \cdot \mathrm{R}_{13} \cdot \mathrm{C}_{13}}=5 \times 10^{7} \frac{1}{\mathrm{~s}} \quad \omega_{\mathrm{o}}:=\sqrt{\frac{1}{\mathrm{~L}_{13} \cdot \mathrm{C}_{13}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}}
$$

Circuit is overdamped

$$
\begin{aligned}
& I_{L}(t)=A_{1} \cdot e^{-s_{1} \cdot t}+A_{2} \cdot e^{-s_{2} \cdot t}+A_{3} \\
& s_{1}:=-\alpha+\sqrt{\alpha^{2}-\omega_{o}^{2}} \\
& s_{1}=-1 \times 10^{4} \frac{1}{\mathrm{~s}}
\end{aligned} s_{2}:=-\alpha-\sqrt{\alpha^{2}-\omega_{o}^{2}}{ }^{2} \quad s_{2}=-9.999 \times 10^{7} \frac{1}{\mathrm{~s}} .
$$

$$
\mathrm{I}_{\mathrm{L}}(\mathrm{t})=\mathrm{A}_{1} \cdot \mathrm{e}^{-1 \cdot 10^{4} \mathrm{t}}+\mathrm{A}_{2} \cdot \mathrm{e}^{-10 \cdot 10^{7}}+\mathrm{A}_{3}
$$

Use initial and final conditions
final conditions, dc steady state so A3 must $=0$
$\mathrm{I}_{\mathrm{L}}(0+) \quad$ initial condition

$$
\begin{aligned}
& \mathrm{A}_{1}+\mathrm{A}_{2}=0.02 \\
& \frac{\mathrm{dI}_{\mathrm{L}}(0+)}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}(0+)}{\mathrm{L}}=0 \quad \text { from defnition of an inductor } \\
& -1 \cdot 10^{4} \cdot \mathrm{~A}_{1}-10 \cdot 10^{7} \mathrm{~A}_{2}=0
\end{aligned}
$$

Two equations two unknowns

$$
\begin{gathered}
A_{1}=0.02 \quad A_{2}=-2 \cdot 10^{6} \\
I_{L}(t)=0.02 \cdot e^{-1 \cdot 10^{4} t}+-2 \cdot 10^{6} \cdot e^{-10 \cdot 10^{7}}
\end{gathered}
$$

4) Second order, s- domain and Laplace

At $t=0, \mathrm{U} 1$ closes and U2 opens

$$
\mathrm{L}_{14}:=0.25 \mathrm{H} \quad \mathrm{C}_{14}:=4 \cdot 10^{-8} \mathrm{~F}
$$

a) Draw the s-domain equivalent circuit. Include all intial conditions and label your component values using symbolic notation (i.e. sL1)

$$
\mathrm{i}(0-)=10 \mathrm{~mA} \quad 0.25 \mathrm{H} \cdot 10 \mathrm{~mA}=2.5 \times 10^{-3} \mathrm{~Wb} \quad \mathrm{~V}_{\mathrm{C}}(0-)=0
$$

b) Using impedances, determine the transfer function for the current through the capactor, C1. Use symbolic values in your expression (R, L, C, I1, I2)

Start with KCL with top node as $\mathrm{Vc}(\mathrm{s})$, the voltage ac ross the capacitor (and its intial condition source) 11 just provides initial contions. I2(s) will be used in the equation below.

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})}{\mathrm{R}}+\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})+\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}+\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})-\frac{\mathrm{v}_{\mathrm{C}}(0)}{\mathrm{s}}}{\frac{1}{\mathrm{sC}}}=\mathrm{I}_{2}(\mathrm{~s}) \\
& \mathrm{I}_{2}(\mathrm{~s})=\frac{1}{\mathrm{R}} \cdot \mathrm{~V}_{\mathrm{C}}(\mathrm{~s})+\frac{1}{\mathrm{sL}} \cdot \mathrm{~V}_{\mathrm{C}}(\mathrm{~s})+\mathrm{sC} \cdot \mathrm{~V}_{\mathrm{C}}(\mathrm{~s})+\frac{\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}-\mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}}(0)
\end{aligned}
$$

$$
\mathrm{I}_{2}(\mathrm{~s})=\mathrm{V}_{\mathrm{C}}(\mathrm{~s}) \cdot\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{sL}}+\mathrm{sC}\right)+\frac{\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}-\mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}}(0) \quad \text { solve for } \mathrm{Vc}(\mathrm{~s}) \text { then we'll use ohms law }
$$

$$
\mathrm{v}_{\mathrm{C}}(\mathrm{~s})=\frac{1}{\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{sL}}+\mathrm{sC}\right)} \cdot\left(\mathrm{I}_{2}(\mathrm{~s})-\frac{\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}+\mathrm{C} \cdot \mathrm{v}_{\mathrm{C}}(0)\right)
$$

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})}{\frac{1}{\mathrm{sC}}}=\frac{\mathrm{sC}}{\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{sL}}+\mathrm{sC}\right)} \cdot\left(\mathrm{I}_{2}(\mathrm{~s})-\frac{\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}+\mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}}(0)\right) \quad \frac{\mathrm{sC} \cdot \mathrm{RsL}}{\mathrm{sL}+\mathrm{R}+\mathrm{RLCs}^{2}}=\frac{\mathrm{s}^{2} \mathrm{RLC}}{\mathrm{RLC} \cdot\left(\frac{1}{\mathrm{RC}} \mathrm{~s}+\frac{1}{\mathrm{LC}}+\mathrm{s}^{2}\right)}
$$

$$
\mathrm{I}^{(\mathrm{s})}=\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{RC}} \mathrm{~s}+\frac{1}{\mathrm{LC}}} \cdot\left(\mathrm{I}_{2}(\mathrm{~s})-\frac{\mathrm{L} \cdot \mathrm{i}(0)}{\mathrm{sL}}+\mathrm{C} \cdot \mathrm{~V}_{\mathrm{C}}(0)\right) \quad \mathrm{I}_{2}(2)=\frac{-0.01}{\mathrm{~s}} \quad \text { step function! }
$$

Apply initial conditions

$$
\begin{aligned}
& \frac{s^{2}}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}} \cdot\left(\frac{-0.01}{s}-\frac{0.25 \cdot 0.01}{s \cdot 0.25}+\mathrm{C} \cdot 0\right) \\
& \frac{s^{2}}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}} \cdot\left(\frac{-0.02}{s}\right) \\
& I^{I}(s)=\frac{-0.02 s}{s^{2}+\frac{1}{R C} s+\frac{1}{L C}}
\end{aligned}
$$

SKIP THIS ONE, too long

c) Find the current through the capacitor as a function of time for $\mathrm{R} 1=12.5 \mathrm{k}$. Is this circuit underdamped, overdamped or cricially damped.

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{-0.02 \mathrm{~s}}{\mathrm{~s}^{2}+2000 \mathrm{~s}+1 \cdot 10^{8}}
$$

$$
\frac{1}{12.5 \cdot 10^{3} \cdot C_{14}}=2 \times 10^{3} \frac{1}{\mathrm{~F}}
$$

$$
s^{2}+2000 s+1 \cdot 10^{8}
$$

$$
\binom{-1000+3000 \mathrm{i} \cdot \sqrt{11}}{-1000-3000 \mathrm{i} \cdot \sqrt{11}} \quad 3000 \cdot \sqrt{11}=9.95 \times 10^{3}
$$

$$
\begin{array}{ll}
\text { complex conjugate poles } & -1000+9.95 \mathrm{j} \cdot 10^{3} \\
& -1000-9.95 \mathrm{j} \cdot 10^{3}
\end{array} \text { Underdamped }
$$

PFE

$$
\mathrm{I}_{C^{(s)}}=\frac{-0.02 \mathrm{~s}}{\left(\mathrm{~s}+1000-9.995 \mathrm{j} \cdot 10^{3}\right)\left(\mathrm{s}+1000+9.995 \mathrm{j} \cdot 10^{3}\right)}=\frac{A_{1}}{\left(s+1000-9.995 \mathrm{j} \cdot 10^{3}\right)}+\frac{A_{2}}{\left(s+1000+9.995 \mathrm{j} \cdot 10^{3}\right)}
$$

For A1

$$
\begin{aligned}
& \frac{-0.02 s \cdot\left(s+1000-9.995 \mathrm{j} \cdot 10^{3}\right)}{\left(s+1000-9.995 \mathrm{j} \cdot 10^{3}\right)\left(s+1000+9.995 \mathrm{j} \cdot 10^{3}\right)} \quad \text { for } \mathrm{s}=-1000+9.995^{\star} 10^{\wedge} 3 \\
& \frac{-0.02 \cdot\left(-1000+9.995 \mathrm{j} \cdot 10^{3}\right)}{-1000+9.995 \mathrm{j} \cdot 10^{3}+1000+9.995 \mathrm{j} \cdot 10^{3}}=-0.01-1.001 \mathrm{i} \times 10^{-3}
\end{aligned}
$$

A2 is its complex conjugate so $\quad-0.01+1.001 \mathrm{j} \cdot 10^{3}$

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{t})=-0.01-1.001 \mathrm{j} \cdot 10^{-3} \cdot \mathrm{e}^{-\left(-1000+9.995 \mathrm{j} \cdot 10^{3}\right)_{\mathrm{t}}}-0.01+1.001 \mathrm{j} \cdot 10^{3} \cdot \mathrm{e}^{-\left(-1000-9.995 \mathrm{j} \cdot 10^{3}\right)_{\mathrm{t}}}
$$

d) Find the current through the capacitor as a function of time for $\mathrm{R} 1=0.25 \mathrm{k}$. Is this circuit underdamped, overdamped or cricially damped.

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{0.02 \mathrm{~s}}{\mathrm{~s}^{2}+1 \cdot 10^{5} \mathrm{~s}+1 \cdot 10^{8}} & \frac{1}{0.25 \cdot 10^{3} \cdot \mathrm{C}_{14}}=1 \times 10^{5} \frac{1}{\mathrm{~F}} \\
\mathrm{~s}^{2}+1 \cdot 10^{5} \mathrm{~s}+1 \cdot 10^{8}=0 & 20000 \cdot \sqrt{6}-50000=-1.01 \times 10^{3} \\
\binom{20000 \cdot \sqrt{6}-50000}{-20000 \cdot \sqrt{6}-50000} & -20000 \cdot \sqrt{6}-50000=-9.899 \times 10^{4}
\end{array}
$$

Overdamped

PFE

$$
\mathrm{I}_{\mathrm{C}}(\mathrm{~s})=\frac{0.02 \mathrm{~s}}{\left(\mathrm{~s}+1.01 \cdot 10^{3}\right) \cdot\left(\mathrm{s}+9.899 \cdot 10^{4}\right)}=\frac{\mathrm{A}_{1}}{\mathrm{~s}+1.01 \cdot 10^{3}}+\frac{\mathrm{A}_{2}}{\left(\mathrm{~s}+9.89 \cdot 10^{4}\right)}
$$

For A1

$$
\frac{0.02\left(-1.01 \cdot 10^{3}\right)}{\left(-1.01 \cdot 10^{3}+9.899 \cdot 10^{4}\right)}=-2.062 \times 10^{-4}
$$

For A2

$$
\frac{0.02\left(-9.899 \cdot 10^{4}\right)}{\left(-9.899 \cdot 10^{4}+1.01 \cdot 10^{3}\right)}=0.02
$$

$$
I_{C}(t)=-2.062 \cdot 10^{-4} \cdot e^{-1.01 \cdot 10^{3}} t+0.02 \cdot e^{-9.899 \cdot 10^{4} t}
$$

