Questions:

- a. What is instantaneous power?
- b. What is real power?
- c. What is reactive power?
- d. What is total power?
- e. What is rms voltage? rms current?
- f. How do we determine total power produced by a source?
- g. What is the power factor?
- h. What does it mean if the power factor is 'leading'? 'lagging'?

Problem 1)

At 440 V (rms) a two-terminal load draws 3 kVA of apparent power at a lagging power factor of 0.9. Find the following:

a. Irms

b. P

c. Q

d. the load impedance

Draw the power triangle or the load.

 $V_{\text{rms}} := 440V$ $S_{\text{A}} := 3000V \cdot \text{A}$ a. $I_{rms} := \frac{\left|S_{A}\right|}{V_{rms}}$ note: apparent power is magnitude of S $I_{rms} = 6.818 A$ (rms) $\cos\theta := 0.9$ remember $\cos\theta = pf$ since real power/apparent b. $P := V_{rms} \cdot I_{rms} \cdot \cos\theta$ power $P = 2.7 \cdot kW$ c. For $\cos \theta = 0.9$ lagging Need to find sinθ for Q Lagging means $\theta > 0$, first quadrant $a\cos(0.9) = 0.451$ sin(0.451) = 0.436 $Q := V_{rms} \cdot I_{rms} \cdot 0.436$

$$Q = 1.308 \times 10^{3}$$
[**W**AR]

d. Load impedance

Problem 2)

In the above circuit, the total source power, S, is 60kVA (magnitude) with a 60 Hz, $3kV_{RMS}$ source voltage. The power factor for the entire parallel load is 0.9 (90%). The loads are described as:

Z1: Purely resistive heating element, 300 Ω with a current of 10A RMS.

Z2: Induction motor with small real loos, R=20Ω, L=0.79 H

Z3: Unknown load

Load 1: Purely resistive heating element 300 Ω with a current of 10A RMS

 $I_{RMS} = 10$ $Z_{1} = 300 = 300 \angle 0^{\circ} \qquad \text{note: } \theta \text{ is } 0 \text{ degrees because it is purely resistive. There is not j or imaginary part in for a purely resistive load.}$ $S_{1} = I_{RMS}^{2} \cdot |Z_{primary}| \cdot \cos\theta_{Zprimary} + j(I_{RMS})^{2} \cdot |Z_{primary}| \sin\theta_{Zprimary}$ $S_{1} = 10^{2} \cdot |300| \cdot \cos(0^{\circ}) + j \cdot 10^{2} \cdot |300| \cdot \sin(0^{\circ})$

 $S_1 = 30000 + j0$

Load 2: Induction Motor with small real loss, R=20Ω, L=0.79 H

$$Z_2 = Z_R + Z_{IND}$$
 Now there is a real AND imaginary part to the load.

$$Z_{R} = 20\Omega$$
 $Z_{IND} := 377 \cdot 0.79j$
 $Z_{IND} = 297.83i$ Mathcad turns j
into i

$$Z_2 = 20 + j298 = 298.5 \angle 86.1^\circ = |Z_{EQ}| \cdot \angle \theta$$

$$|Z_{EQ}| = 298.5 \quad \theta = 86.1$$

$$S_{2} = \frac{V_{RMS}^{2}}{|Z_{EQ}|} \cdot \cos\theta_{ZEQ} + j \frac{V_{RMS}^{2}}{|Z_{EQ}|} \cdot \sin\theta_{ZEQ}$$
$$S_{2} = \frac{(3000^{2})}{|298.5|} \cdot \cos(86.1^{\circ}) + j \cdot \left[\frac{(3000^{2})}{|298.5|} \cdot \sin(86.1^{\circ})\right]$$

0

 $S_2 = 2000 + j30000$

P₂ = 2000W
Q₂ = 30000VAR

$$|S_2| = 30067$$

pf = $\frac{P_1}{|S_1|} = 0.067$
 $\sqrt{30000^2 + 2000^2} = 3.00666 \times 10^4$

To get the unknown load we need the total power, then we can subtract S1 and S2 from it.

Summary	chart
---------	-------

Phase Voltage	P[W]	Q [VAR]	S	ISI [VA]	pf
Load 1	30000	0	30000	30000	1
Load 2	2000	30000	2000+j30000	300067	0.067
Load 3	22000	-3847	22000-j3847	22334	0.9851
Source	54000	26153	54000+j26153	60000	0.9

Determine VR2.

You can do this two ways: Referral to secondary and referal to primary (check to see if they are equivalent)

#1 Refer primary to secondary

#2 Refer secondary to primary

$$V_{s} = 10 < 0 deg$$

 $Z_{s} = R_{1} = 5$

$$Z_{\text{Leq}} = \frac{Z_{\text{L}}}{N^2} = \frac{500}{10^2} = 5$$

Voltage divider

$$V_{\text{RLeq}} = \frac{5}{5+5} \cdot 10 < 0$$

 $V_{RLeq} = 5 < 0$

This is V1! So must use $V_2 = N \cdot V_1$ $V_2 = 10.5 < 0$ so they are equivalent

Finding voltage across the load, refer primary to secondary.....

