Lecture 22

questions
How does the orientation of the inductors affect transformer characteristics?
What is mutual inductance?
What is the coupling coefficient, k ?
What is the Tee model of mutual inductance?
How do real transformers behave?

Review 2)

Determine IR4.
V.s has a 10 V amplitude, and 60 Hz frequency

$$
\omega=2 \pi 60=377 \frac{\mathrm{rad}}{\mathrm{~s}} \quad \mathrm{~N}_{2}:=5
$$

$$
\frac{1}{377 \cdot 1.3 \cdot 10^{-4}}=20.404
$$

$$
Z_{C}=-j 20
$$

Refer primary to secondary

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{SEQ}}:=\mathrm{N}_{2} \cdot 10 \\
& \mathrm{v}_{\mathrm{SEQ}}=50 \\
& \mathrm{Z}_{\mathrm{SR}}:=\mathrm{N}_{2}{ }^{2} \cdot 10 \\
& \mathrm{Z}_{\mathrm{SR}}=250 \\
& \mathrm{Z}_{\mathrm{SC}}:=20 \mathrm{j} \cdot \mathrm{~N}_{2}{ }^{2}
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{SC}}=500 \mathrm{i} \quad \mathrm{Z}_{\mathrm{L}}=250 \Omega
$$

To find I2 get ZEQ for the entire circuit which is the Resistor Capacitor and Load Resistor in series

$$
\begin{aligned}
& \quad 500-500 \mathrm{j} \\
& \sqrt{500^{2}+(-500)^{2}}=707.107 \\
& \text { atan }\left(\frac{-500}{500}\right)=-45 \cdot \mathrm{deg} \\
& \mathrm{Z}_{\mathrm{EQ}}=707.1<-45 \mathrm{deg} \\
& \text { So I2 or IR4 is } \quad \frac{50<0}{707.1<-45}=0.071<45 \mathrm{deg} \quad \frac{500 \sqrt{2}<-45 \mathrm{deg}}{707.1}=0.071 \quad \frac{1}{10 \cdot \sqrt{2}}=0.071
\end{aligned}
$$

In the time domain: $\quad \mathrm{I}_{\mathrm{R} 4}=0.071 \cdot \cos (377 \mathrm{t}+45 \mathrm{deg})$

Problem 1)

Refer primary to secondary
Note: The middle is the secondary for the first part and the primary for the second part.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{SEQ} 2}:=\mathrm{N}_{3 \mathrm{a}} \cdot 15 \\
& \mathrm{v}_{\mathrm{SEQ} 2}=75 \\
& \mathrm{Z}_{\mathrm{SRR} \mathrm{~N}}=\mathrm{N}_{3 \mathrm{a}}{ }^{2} \cdot 4 \\
& \mathrm{Z}_{\mathrm{SR}}=100
\end{aligned}
$$

Can do Thevenin equivalent, make the load the inductor, so take it out and measure vout..

$$
\begin{aligned}
\mathrm{V}_{\mathrm{Th}} & :=\frac{75 \cdot 100}{200}=37.5 \\
\mathrm{~V}_{\mathrm{Th}} & =37.5<0 \\
\mathrm{R}_{\mathrm{th}} & =150 \Omega
\end{aligned}
$$

Refer to primary to secondary with thevenin equivalent attached to a step down transformer

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SEQ} 3}:=\mathrm{N}_{3 \mathrm{~b}} \cdot 37.5 \\
& \mathrm{~V}_{\mathrm{SEQ} 3}=18.75 \\
& \mathrm{Z}_{\mathrm{SR} 2}:=\mathrm{N}_{3 \mathrm{~b}}^{2} \cdot 150=37.5
\end{aligned}
$$

Using the voltage divider

$$
\frac{18.75}{37.5+18.75}=0.333
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R} 9}:=18.75 \cdot \frac{18.75}{37.5+18.75} \\
& \mathrm{~V}_{\mathrm{R} 9}=6.25 \quad \mathrm{\quad}<0 \mathrm{deg}
\end{aligned}
$$

Problem 2) Impedance Matching

a. Determine the winding ratio and the impedance Z such that the power delivered to the load is maximized relative to the source power.

$$
\begin{aligned}
\omega & :=2 \cdot \pi \cdot 60 \\
\omega & =376.991 \\
\mathrm{Z}_{\mathrm{L} 3} & =377 \cdot 0.25 \cdot \mathrm{j} \\
\mathrm{Z}_{\mathrm{L} 3} & =94.25 \mathrm{j}
\end{aligned}
$$

Referring the secondary to the primary, the equivalent circuit is

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{L}}=\frac{125+94.25 \mathrm{j}}{\mathrm{~N}^{2}} \\
& \mathrm{Z}_{\mathrm{S}}=5+\mathrm{Z}_{\text {unknown }}
\end{aligned}
$$

The power is maximized when $Z S=Z L^{*}$ where Zunknow is imaginary

Considering the real parts of Zs and ZL

$$
\frac{125}{\mathrm{~N}^{2}}=5 \quad \mathrm{~N}=5
$$

Considering the imaginary parts of ZS and Zl and the winding ratio

$$
\frac{-94.25 \mathrm{j}}{\mathrm{~N}^{2}}=\mathrm{Z}_{\text {unknown }} \quad \mathrm{Z}_{\text {unknown }}=-3.77 \mathrm{j} \Omega
$$

Problem 3) Tee Model

Draw the tee model equivalent for the circuit above.

$$
M_{2}:=0.01
$$

$\mathrm{M}_{1}:=0.005$
$\mathrm{L}_{2}:=0.01$
$\mathrm{L}_{1}:=0.01$
$\mathrm{L}_{4}:=0.1$
$\mathrm{L}_{2}-\mathrm{M}_{2}=0$
$\mathrm{L}_{3}-\mathrm{M}_{1}=0.035$
$\mathrm{L}_{1}-\mathrm{M}_{1}=5 \times 10^{-3}$
$\mathrm{L}_{4}-\mathrm{M}_{2}=0.09$

Electric Circuits

