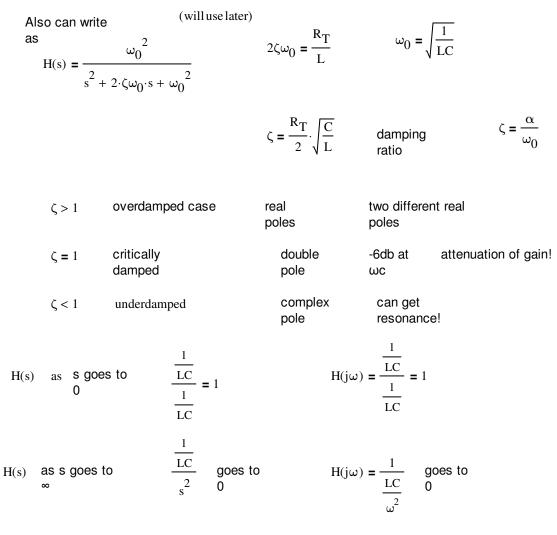

What is the damping ratio, ζ ?

How do overdamped, critically damped, and underdamped circuits behave? Review


1) Second order circuits

a) H(s) = VC(s)/V(s) when $R=10.1k\Omega$

$$H(s) = \frac{V_{c}(s)}{V_{T}(s)} = \frac{\frac{1}{sC}}{R_{T} + sL + \frac{1}{sC}} = \frac{1}{sCR_{T} + sC \cdot sL + \frac{sC}{sC}} = \frac{1}{s^{2} \cdot LC + sCR_{T} + 1}$$
 divide top
and bottom
by LC
$$H(s) = \frac{1}{\frac{LC}{s^{2} + \frac{R_{T}}{L}s + \frac{1}{LC}}}$$

This is a low pass filter and a rolloff of 40db pole ω^2 or $s^2 = 2 \times 20 \log 100$ ()

also known as the slope of the stopband at the

RLC series vout = Vc second order low pass filter

If
$$R_1 := 10.1k\Omega$$
 $L_1 := 1mH$ $C_1 := 1nF$ $\frac{1}{L_1 \cdot C_1} = 1 \times 10^{12} \frac{1}{s^2}$
 $H(s) = \frac{10^{12}}{s^2 + 1.01 \cdot 10^7 s + 10^{12}}$ $\alpha := \frac{1.01 \cdot 10^7}{2} = 5.05 \times 10^6$
 $\omega_0 := \sqrt{\frac{1}{L_1 \cdot C_1}} = 1 \times 10^6 \frac{1}{s}$
 $\zeta := \frac{\alpha}{\omega_0} = 5.05 s$ This is > 1 so OVERDAMPED

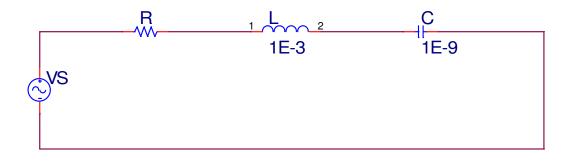
so

$$H(s) = \frac{10^{12}}{(s+10^5).(s+10^7)} \qquad H(j\omega) = \frac{10^{12}}{10^5 \cdot 10^7} \cdot \frac{1}{(1+\frac{j\omega}{10^5}).(1+\frac{j\omega}{10^7})}$$
zero: none
pole 10^5, 10^7
$$s < 10^5 \qquad \frac{10^{12}}{(10^5).(10^7)} = 1 \qquad \omega < 10^5 \qquad 1 \qquad 20 \cdot \log(1) = 0$$

$$10^5 < s < 10^7 \qquad \frac{10^{12}}{(s).(10^7)} \qquad \frac{10^5}{s} \qquad 10^5 < \omega < 10^7 \qquad \frac{1}{\frac{\omega}{10^5}} \qquad -20 \frac{db}{dec}$$

$$s > 10^7 \qquad \frac{10^{12}}{(s) \cdot (s)} \qquad \frac{10^{12}}{s^2} \qquad \omega > 10^7 \qquad \frac{1}{\frac{\omega^2}{10^5 \cdot 10^7}} \qquad -40 \frac{db}{dec}$$
Overdamped case: two different real

poles

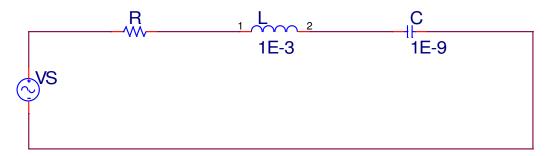

b) H(s) = VL(s)/V(s) when R=10.1k\Omega

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		 <u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ </u>	
	1 1 1 1 1 1 1 1 1 1		
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	<u>↓ </u>	 ↓ ↓ ↓ ↓ ↓ ↓	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
+ + + + + + + + + + + + + + + + + + + +			
	<u>}</u>	 	4 + + + + + + + + + + + + + + + + + + +
	1 1 1 1 1 1 1 1 1 1		
	<u>↓ </u>	 	
	{	 1 + + + + + + + + + + + + + + + + + + +	
	{	 1 1 1 1 1 1 1 1 1 1	

c) H(s)=VR(s)/V(s) when R=10.1k Ω

	4	 	
	4	 	
	4	 	
+	++		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	 	
	4	 	
	1 1 1 1		
	4	 	
	1 1 1 1 1 1 1 1		
	4	 	
	4	 	
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	 	
	╉╾╾╍╵╾╍╵╾┙╘╼╵╘┙╘┙╵┙╟╋		

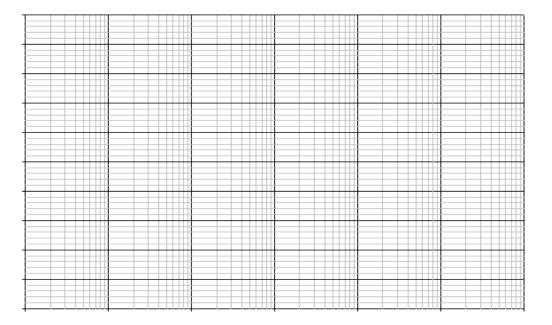
2) Second order circuits TEAM ASSIGNMENT


a. H(s) = VC(s)/V(s) when $R=2k\Omega$

	1		
+ + + + + + + + + + + + + + + + + + + +			

b. H(s) = VL(s)/V(s) when $R = 2k\Omega$

1				


3) Underdamped cases of the RLC series circuit

a.) H(s) = VC(s)/V(s) when R = $1k\Omega$

		++++
		++++
		+++ 1
		+
		<u>+++</u>
+	 ++	

b.) H(s) = VC(s)/V(s) when R = 1.41k\Omega

c.) H(s) = VC(s)/V(s) when R = 100Ω

			+ + + + + + + + + + + + + + + + + + + +