
Electric Circuits
ECSE 2010

Fall 2014

What is the damping ratio, ζ? 
How do overdamped, critically damped, and underdamped circuits behave? 

Review 1)

1) Second order circuits
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a) H(s) = VC(s)/V(s) when R=10.1kΩ

 

H s( )
Vc s( )

VT s( )
=

1

sC

RT sL+
1

sC
+

=
1

sCRT sC sL⋅+
sC

sC
+

=
1

s
2

LC⋅ sCRT+ 1+
=

divide top and
bottom by LC

H s( )
1

LC

s2
RT

L
s+

1

LC
+

=

1 of 25

Prof. Shayla Sawyer
CP21 solution



Electric Circuits
ECSE 2010

Prof. Shayla Sawyer
CP20 solution

Fall 2014

will use later( )
Also can write as
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ζ 1> overdamped case real poles two different real poles

ζ 1= critically damped -6db at ωc attenuation of gain!
double pole

ζ 1< underdamped complex pole can get resonance!
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This is a low pass filter and a rolloff of 40db also known as the slope of the stopband at the 

pole ω^2 or s^2  = 2 *20 log ()

RLC series vout = Vc second order low pass filter
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 Overdamped case: two different real poles
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b) H(s) = VL(s)/V(s) when R=10.1kΩ
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This is an overdamped, second order high pass filter
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 Overdamped high pass filter, two different
 real poles
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c) H(s)=VR(s)/V(s) when R=10.1kΩ 
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Second order bandpass filter where ω0 is the resonant frequency
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 Overdamped, bandpass filter
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2) Second order circuits TEAM ASSIGNMENT
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a. H(s) = VC(s)/V(s) when R=2kΩ
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This is a critically damped second order circuit
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 Critically damped case: double poles, Low pass filter
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b. H(s) = VL(s)/V(s) when R = 2kΩ
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zero: double 0
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correction -6 db
 Critically damped case: double poles, high pass filter

3) Underdamped cases of the RLC series circuit
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a.) H(s) = VC(s)/V(s) when R = 1kΩ
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H s( ) s goes to 0 goes to 1
Still a low pass filter  

H s( ) so goes to infinity goes to 0
10
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s
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db
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At the limits you can start like a critically damped bode plot.  

Critically damped ωo = ωcutoff (were the
same)
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20 log H jωo( )( ) 0db= so we have a known point at ωo and we ELIMINATED the
correction or gain loss so we have a better passband.  It was -6dB.

Damping ratio of 0.5 gives you a flat passband with a 40 db rolloff, better than cascaded first order filter.

b.) H(s) = VC(s)/V(s) when R = 1.41kΩ
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c.) H(s) = VC(s)/V(s) when R = 1.41kΩ
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This is << 1 this is very
underdampedζ
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and is not necessarily a good low pass filter
A flat passband is ideal remember.
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Basic process summary for second order circuits:

Overdamped
Bode plots
Find real poles, regions, analyze

Critically damped

Underdamped Use critically damped approximation at the limits

Find correction at ωo

1 ζ> 0.5> Correction is a -db of some value

ζ 0.5= Correction is 0db

ζ 0.5<
Correction is positive db (Strongly underdamped which means there is a
peak)
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