What is the damping ratio, ζ ?
How do overdamped, critically damped, and underdamped circuits behave?

Review 1)

1) Second order circuits

a) $\mathrm{H}(\mathrm{s})=\mathrm{VC}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=10.1 \mathrm{k} \Omega$

																-					
																\#					
																					-1...

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{c}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{T}}(\mathrm{~s})}=\frac{\frac{1}{\mathrm{sC}}}{\mathrm{R}_{\mathrm{T}}+\mathrm{sL}+\frac{1}{\mathrm{sC}}}=\frac{1}{\mathrm{sCR}_{\mathrm{T}}+\mathrm{sC} \cdot \mathrm{sL}+\frac{\mathrm{sC}}{\mathrm{~s}_{\mathrm{C}}}}=\frac{1}{\mathrm{~s}^{2} \cdot \mathrm{LC}+\mathrm{sCR}_{\mathrm{T}}+1} \quad \begin{aligned}
& \text { divide top and } \\
& \text { bottom by } \mathrm{LC}
\end{aligned}
$$

$$
H(s)=\frac{1}{\frac{L C}{s^{2}+\frac{R_{T}}{L} s+\frac{1}{L C}}}
$$

Also can write as (will use later)

$$
\mathrm{H}(\mathrm{~s})=\frac{\omega_{0}^{2}}{\mathrm{~s}^{2}+2 \cdot \zeta \omega_{0} \cdot s+\omega_{0}^{2}}
$$

$$
2 \zeta \omega_{0}=\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}} \quad \omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}}
$$

$\zeta>1$	overdamped case	real poles	two different real poles
$\zeta=1$	critically damped	double pole	-6db at ωc attenuation of gain!
$\zeta<1$	underdamped	complex pole	can get resonance!

$\mathrm{H}(\mathrm{s})$ as s goes to $0 \quad \frac{\frac{1}{\mathrm{LC}}}{\frac{1}{\mathrm{LC}}}=1 \quad \mathrm{H}(\mathrm{j} \omega)=\frac{\frac{1}{\mathrm{LC}}}{\frac{1}{\mathrm{LC}}}=1$
$H(s)$ as s goes to $\infty \quad \frac{\frac{1}{L C}}{s^{2}} \quad$ goes to $0 \quad H(j \omega)=\frac{1}{\frac{L C}{\omega^{2}}} \quad$ goes to 0

This is a low pass filter and a rolloff of 40 db also known as the slope of the stopband at the pole $\omega^{\wedge} 2$ or $s^{\wedge} 2=2 * 20 \log ()$

RLC series vout $=\mathrm{V}$ c second order low pass filter

$$
\begin{array}{ll}
\text { If } \mathrm{R}_{1}:=10.1 \mathrm{k} \Omega \quad \mathrm{~L}_{1}:=1 \mathrm{mH} & \mathrm{C}_{1}:=1 \mathrm{nF} \quad \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
\mathrm{H}(\mathrm{~s})=\frac{10^{12}}{\mathrm{~s}^{2}+1.01 \cdot 10^{7} \mathrm{~s}+10^{12}} & \alpha:=\frac{1.01 \cdot 10^{7}}{2}=5.05 \times 10^{6} \\
\omega_{0}:=\sqrt{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
\zeta:=\frac{\alpha}{\omega_{0}}=5.05 \mathrm{~s} \quad \text { This is >1 so OVERDAMPED }
\end{array}
$$

$$
H(j \omega)=\frac{10^{12}}{10^{5} \cdot 10^{7}} \cdot \frac{1}{\left(1+\frac{j \omega}{10^{5}}\right) \cdot\left(1+\frac{\mathrm{j} \omega}{10^{7}}\right)}
$$

zero: none pole $10^{\wedge} 5,10^{\wedge} 7$

$$
\begin{array}{cccc}
& \frac{10^{12}}{\left(10^{5}\right) \cdot\left(10^{7}\right)}=1 & \omega<10^{5} 1 & 20 \cdot \log (1)=0 \\
10^{5}<\mathrm{s}<10^{7} & \frac{10^{12}}{(\mathrm{~s}) \cdot\left(10^{7}\right)} & \frac{10^{5}}{\mathrm{~s}} & 10^{5}<\omega<10^{7} \\
\mathrm{~s}>10^{7} & \frac{10^{12}}{(\mathrm{~s}) \cdot(\mathrm{s})} & \frac{10^{12}}{\mathrm{~s}^{2}} & \omega>10^{7} \\
\frac{1}{10^{5}} & -20 \frac{\mathrm{db}}{\mathrm{dec}} \\
\end{array}
$$

Overdamped case: two different real poles
b) $\mathrm{H}(\mathrm{s})=\mathrm{VL}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=10.1 \mathrm{k} \Omega$

$$
H(s)=\frac{s^{2}}{s^{2}+\frac{R}{L} \cdot s+\frac{1}{L C}}
$$

$$
H(j \omega)=\frac{(j \omega)^{2}}{\left(1+\frac{j \omega}{10^{5}}\right) \cdot\left(1+\frac{j \omega}{10^{7}}\right)}
$$

Hs when s goes to 0 $\frac{\mathrm{s}^{2}}{\frac{1}{\mathrm{LC}}}=0$

Hs when s goes to ∞

$$
\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}}=1
$$

This is an overdamped, second order high pass filter

$$
\begin{aligned}
& \text { If } \quad \mathrm{R}_{\text {mh }}:=10.1 \mathrm{k} \Omega \quad \text { Linn }:=1 \mathrm{mH} \\
& \mathrm{C}_{1}:=1 \mathrm{nF} \quad \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
& H(s)=\frac{s^{2}}{s^{2}+1.01 \cdot 10^{7} s+10^{12}} \\
& H(s)=\frac{s^{2}}{\left(s+10^{5}\right) \cdot\left(s+10^{7}\right)} \\
& H(j \omega)=\frac{1}{10^{5} \cdot 10^{7}} \cdot \frac{(j \omega)^{2}}{\left(1+\frac{j \omega}{10^{5}}\right) \cdot\left(1+\frac{j \omega}{10^{7}}\right)} \\
& \text { zero: double } 0 \\
& \text { pole 10^5, 10^7 } \\
& \mathrm{s}<10^{5} \quad \frac{\mathrm{~s}^{2}}{\left(10^{5}\right) \cdot\left(10^{7}\right)} \\
& 10^{5}<\mathrm{s}<10^{7} \quad \frac{\mathrm{~s}^{2}}{(\mathrm{~s}) \cdot\left(10^{7}\right)} \quad \frac{\mathrm{s}}{10^{7}} \\
& \mathrm{~s}>10^{7} \quad \frac{\mathrm{~s}^{2}}{(\mathrm{~s}) \cdot(\mathrm{s})}=1
\end{aligned}
$$

c) $\mathrm{H}(\mathrm{s})=\mathrm{VR}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=10.1 \mathrm{k} \Omega$

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Vout $=\mathrm{V}_{\mathrm{R}}$

$$
H(s)=\frac{\frac{R}{L} s}{s^{2}+\frac{R}{L} \cdot s+\frac{1}{L C}}
$$

$H(s)$ as s goes to $\infty \quad \frac{\frac{R}{L} s}{s^{2}}=0$

Check the "middle" rewrite as

$$
\begin{array}{cc}
\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}} & \text { where } \\
2 \alpha=\frac{\mathrm{R}}{\mathrm{~L}} \\
\omega_{0}=\frac{1}{\mathrm{LC}}
\end{array}
$$

Look at resonant frequency
$H(s)$ as s goes to j $\omega 0$

$$
\frac{2 \cdot \alpha \cdot\left(j \omega_{0}\right)}{-\omega_{0}^{2}+2 \alpha\left(j \omega_{0}\right)+\omega_{0}^{2}}=1 \quad \text { At the resonant frequency }
$$

Second order bandpass filter where $\omega 0$ is the resonant frequency

$$
\begin{aligned}
& \text { If } \quad \mathrm{R}_{\mathrm{m}}:=10.1 \mathrm{k} \Omega \quad \quad \mathrm{~L} \mathrm{~L}_{n}:=1 \mathrm{mH} \quad \mathrm{C}_{1 m}:=1 \mathrm{nF} \quad \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
& H(s)=\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}} \\
& H(s)=\frac{1.01 \cdot 10^{7} s}{s^{2}+1.01 \cdot 10^{7} s+1 \cdot 10^{12}} \\
& H(s)=\frac{1.01 \cdot 10^{7} s}{\left(s+10^{5}\right)\left(s+10^{7}\right)} \\
& H(s)=\frac{1.01 \cdot 10^{7} s}{\left(s+10^{5}\right) \cdot\left(s+10^{7}\right)} \\
& \text { zero: } 0 \\
& \text { pole } 10^{\wedge} 5,10^{\wedge} 7 \\
& \mathrm{~s}<10^{5} \quad 1.01 \cdot 10^{7} \cdot \frac{\mathrm{~s}}{\left(10^{5}\right) \cdot\left(10^{7}\right)} \quad \omega<10^{5} \quad 1.01 \cdot 10^{-5} \cdot \frac{\omega}{1 \cdot 1} \quad 20 \frac{\mathrm{db}}{\mathrm{dec}} \quad 20 \log (1)=0 \\
& 10^{5}<\mathrm{s}<10^{7} \quad 1.01 \cdot 10^{7} \cdot \frac{\mathrm{~s}}{(\mathrm{~s}) \cdot\left(10^{7}\right)} \frac{1.01 \cdot 10^{7}}{10^{7}} \quad 10^{5}<\omega<10^{7} \quad 1.01 \cdot 10^{-5} \cdot \frac{\omega}{\frac{\omega}{10^{5}}}=1.01 \cdot 10^{-5} \cdot 1.01 \cdot 10^{5} \\
& \mathrm{~s}>10^{7} \quad 1.01 \cdot 10^{7} \cdot \frac{\mathrm{~s}}{(\mathrm{~s}) \cdot(\mathrm{s})}=\frac{1.01 \cdot 10^{7}}{\mathrm{~s}} \quad \omega>10^{7} \quad 1.01 \cdot 10^{-5} \cdot \frac{\omega}{\frac{\omega^{2}}{10^{5} \cdot 10^{7}}} \quad-20 \frac{\mathrm{db}}{\mathrm{dec}}-
\end{aligned}
$$

Overdamped, bandpass filter

2) Second order circuits TEAM ASSIGNMENT

a. $\mathrm{H}(\mathrm{s})=\mathrm{VC}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\boldsymbol{R}=\mathbf{2 k} \Omega$

$$
\mathrm{R}_{2 \mathrm{a}}:=2 \mathrm{k} \Omega
$$

$H(s)=\frac{1}{\frac{L C}{s^{2}+\frac{R_{T}}{L} s+\frac{1}{L C}}}$

$$
\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}}
$$

$$
\frac{\mathrm{R}_{2 \mathrm{a}}}{\mathrm{~L}_{1}}=2 \times 10^{6} \frac{1}{\mathrm{~s}}
$$

$H(s)=\frac{10^{12}}{s^{2}+2 \cdot 10^{6}+10^{12}}$
$H(s)=\left(\frac{10^{6}}{s+10^{6}}\right)^{2}$
$H(s)=\left(\frac{10^{6}}{s+10^{6}}\right)\left(\frac{10^{6}}{s+10^{6}}\right)$
equivalent to two cascaded first order filters

Zeros: none
This is a critically damped second order circuit Poles 10^6 double
critically damped low pass filter

$$
\begin{aligned}
& \text { If } \quad \mathrm{R}_{1 \mathrm{l}}:=2 \mathrm{k} \Omega \quad \quad \mathrm{~L} \mathrm{~L}_{n}:=1 \mathrm{mH} \quad \quad \mathrm{C} 1 \mathrm{~m}:=1 \mathrm{nF} \quad \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
& H(s)=\frac{10^{12}}{s^{2}+2 \cdot 10^{6} s+10^{12}} \\
& \underset{\mathrm{~m}}{\mathrm{\alpha}}:=\frac{2 \cdot 10^{6}}{2}=1 \times 10^{6} \\
& \omega_{m} a_{n}:=\sqrt{\frac{1}{L_{1} \cdot \mathrm{C}_{1}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \zeta_{\infty}:=\frac{\alpha}{\omega_{0}}=1 \mathrm{~s} \quad \text { This is }=\mathbf{1} \text { crictically damped } \\
& H(s)=\frac{10^{12}}{\left(s+10^{6}\right)^{2}} \\
& \text { zero: none } \\
& H(j \omega)=\frac{10^{12}}{10^{12}} \cdot \frac{1}{\left(1+\frac{j \omega}{10^{6}}\right)^{2}} \\
& \text { pole: double 10^6 } \\
& s<10^{6} \quad \frac{10^{12}}{\left(10^{6}\right)^{2}}=1 \quad \omega<10^{6} \quad 1 \quad 20 \cdot \log (1)=0 \\
& \begin{array}{lll}
\mathrm{s}>10^{6} & \frac{10^{12}}{\left(\mathrm{~s}^{2}\right)} & \frac{10^{12}}{\mathrm{~s}^{2}} \\
\text { correction }-6 \mathrm{db} & \omega>10^{7} & \frac{1}{\frac{\omega^{2}}{10^{5} \cdot 10^{7}}}
\end{array} \\
& \text { correction -6 db }
\end{aligned}
$$

Critically damped case: double poles, Low pass filter

b. $\mathrm{H}(\mathrm{s})=\mathrm{VL}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=2 \mathrm{k} \Omega$

$$
H(s)=\frac{s^{2}}{s^{2}+\frac{R}{L} \cdot s+\frac{1}{L C}}
$$

$$
H(\mathrm{j} \omega)=\frac{(\mathrm{j} \omega)^{2}}{\left(1+\frac{\mathrm{j} \omega}{10^{5}}\right) \cdot\left(1+\frac{\mathrm{j} \omega}{10^{7}}\right)}
$$

$$
\text { If } \quad \mathrm{R}_{1 \mathrm{l}}:=2 \mathrm{k} \Omega \quad \quad \mathrm{~L}_{1}:=1 \mathrm{mH} \quad \mathrm{C}_{4 n}:=1 \mathrm{nF} \quad \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}}
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{s}^{2}}{\mathrm{~s}^{2}+2 \cdot 10^{6} \mathrm{~s}+10^{12}}
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{s}^{2}}{\left(\mathrm{~s}+10^{6}\right)^{2}}
$$

$$
H(\mathrm{j} \omega)=\frac{1}{10^{12}} \cdot \frac{(\mathrm{j} \omega)^{2}}{\left(1+\frac{\mathrm{j} \omega}{10^{6}}\right)^{2}}
$$

$$
\begin{aligned}
& \text { zero: double } 0 \\
& \text { pole: double pole 10^6 } \\
& \omega<10^{6} \quad \frac{1}{10^{12}} \frac{\omega^{2}}{1} \\
& 40 \frac{\mathrm{db}}{\mathrm{dec}} \\
& 20 \log (1)=0 \\
& s>10^{6} \quad \frac{s^{2}}{s^{2}}=1 \\
& \omega>10^{6} \quad \frac{1}{10^{12}} \cdot\left[\frac{\omega^{2}}{\frac{\omega^{2}}{\left(10^{6}\right)^{2}}}\right] \quad \text { consant } \quad 0 \mathrm{db}
\end{aligned}
$$

correction -6 db

Critically damped case: double poles, high pass filter

3) Underdamped cases of the RLC series circuit

a.) $\mathrm{H}(\mathrm{s})=\mathrm{VC}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=1 \mathrm{k} \Omega$

$$
\begin{aligned}
& H(s)=\frac{1}{\frac{L C}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}} \\
& \text { If } \quad \mathrm{R}_{\mathrm{m}} \mathrm{l}:=1 \mathrm{k} \Omega \\
& \mathrm{~L}_{\mathrm{mu}}:=1 \mathrm{mH} \\
& \mathrm{C}_{1 \mathrm{l}}:=1 \cdot 10^{-9} \mathrm{~F} \\
& \frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
& H(s)=\frac{10^{12}}{s^{2}+10^{6} s+10^{12}} \\
& \alpha:=\frac{10^{6}}{2}=5 \times 10^{5} \\
& {\underset{m}{o n}}^{\omega_{n}}:=\sqrt{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \quad \text { This is the resonant frequency } \\
& \varsigma_{n}:=\frac{\alpha}{\omega_{0}}=0.5 \mathrm{~s} \quad \begin{array}{l}
\text { This is }<1 \text { this is a very } \\
\text { specific }
\end{array}
\end{aligned}
$$

H (s) s goes to 0 goes to 1
$H(s)$ so goes to infinity goes to $0 \quad \frac{10^{12}}{\mathrm{~s}^{2}} \quad-40 \frac{\mathrm{db}}{\mathrm{dec}}$

At the limits you can start like a critically damped bode plot.
Critically damped $\omega 0=\omega c u t o f f$ (were the same)

$$
\text { At wo evaluate }\left|H\left(j \omega_{o}\right)\right| \quad \begin{aligned}
& \text { so our } H(s) \\
& \text { convert to } H(j \omega)
\end{aligned} \quad H(s)=\frac{1}{\frac{\frac{L C}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}}=\frac{\frac{1}{(j \omega)^{2}+2 \alpha \cdot j \omega+\frac{1}{L C}}}{21}
$$

$$
\text { remember } \quad \omega_{\mathrm{o}}^{2}=\frac{1}{\mathrm{LC}}
$$

$$
\frac{\omega_{\mathrm{o}}^{2}}{2}=\frac{\omega_{\mathrm{o}}^{2}}{} \quad \text { remember } \quad 0.5=\frac{\alpha}{\omega_{\mathrm{o}}} \quad \text { so } \quad \alpha=0.5 \omega_{\mathrm{o}}
$$

$$
-\omega_{\mathrm{o}}^{2}+2 \alpha j \omega_{\mathrm{o}}+\omega_{\mathrm{o}}^{2}{ }^{2}=\overline{2 \alpha \omega_{\mathrm{o}} \cdot \mathrm{j}}
$$

$$
\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\right|=\frac{\omega_{\mathrm{o}}}{2 \times 0.5 \omega_{\mathrm{o}} \cdot \mathrm{j}}=\frac{1}{\mathrm{j}} \quad-\mathrm{j} \quad \sqrt{-1^{2}}
$$

$$
\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\right|=1
$$

$$
20 \log \left(\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\right|\right)=0 \mathrm{db} \quad \text { so we have a known point at wo and we ELIMINATED the }
$$ correction or gain loss so we have a better passband. It was -6dB

Damping ratio of 0.5 gives you a flat passband with a 40 db rolloff, better than cascaded first order filte b.) $\mathrm{H}(\mathrm{s})=\mathrm{VC}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=1.41 \mathrm{k} \Omega$
$\mathrm{H}(\mathrm{s}) \mathrm{s}$ goes to 0 goes to 1 Still a low pass filter
$H(s)$ so goes to infinity goes to 0

$$
\begin{aligned}
\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\right| & =\frac{1}{\sqrt{2}} \\
20 \log \left(\frac{1}{\sqrt{2}}\right) & =-3.01 \quad \mathrm{~dB}
\end{aligned}
$$

$$
\frac{\omega_{\mathrm{o}}^{2}}{-\omega_{\mathrm{o}}^{2}+2 \alpha j \omega_{\mathrm{o}}+\omega_{\mathrm{o}}^{2}}=\frac{\omega_{\mathrm{o}}^{2}}{2 \alpha \omega_{\mathrm{o}} \cdot j}
$$

So now this point is -3 dB at wo

$$
\begin{aligned}
& \text { now } \quad \alpha=\frac{1}{\sqrt{2}} \omega_{\mathrm{o}} \quad \frac{\omega_{\mathrm{o}}}{2 \cdot \frac{1}{\sqrt{2}} \omega_{\mathrm{oj}}} \\
& -\frac{\sqrt{2}}{2} \mathrm{j} \quad\left(\sqrt{\frac{\sqrt{2}}{2}}\right)^{2}=0.707 \quad \frac{1}{\sqrt{2}}
\end{aligned}
$$

c.) $\mathrm{H}(\mathrm{s})=\mathrm{VC}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=1.41 \mathrm{k} \Omega$

$$
\begin{aligned}
& H(s)=\frac{1}{\frac{L C}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}} \\
& \text { If } \quad \mathrm{R}_{1 n}:=100 \Omega \\
& \mathrm{~L}_{\mathrm{mln}}:=1 \mathrm{mH} \\
& \mathrm{C}_{\mathrm{w}}:=1 \cdot 10^{-9} \mathrm{~F} \\
& \frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}}=1 \times 10^{5} \frac{1}{\mathrm{~s}} \\
& \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}} \\
& H(s)=\frac{10^{12}}{s^{2}+10^{5} s+10^{12}} \\
& \alpha:=\frac{\frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}}}{2}=5 \times 10^{4} \frac{1}{\mathrm{~s}} \\
& \omega_{\mathrm{m}_{\mathrm{n}}}:=\sqrt{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \quad \text { This is the resonant frequency }
\end{aligned}
$$

$$
\begin{aligned}
& H(s)=\frac{1}{\frac{L C}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}} \\
& \text { If } \quad \mathrm{R}_{\mathrm{mln}}:=1.41 \mathrm{k} \Omega \\
& \mathrm{~L}_{\mathrm{ml}}:=1 \mathrm{mH} \\
& \mathrm{C}_{\mathrm{Cln}}:=1 \cdot 10^{-9} \mathrm{~F} \\
& \frac{\mathrm{R}_{1}}{\mathrm{~L}_{1}}=1.41 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}=1 \times 10^{12} \frac{1}{\mathrm{~s}^{2}} \\
& H(s)=\frac{10^{12}}{s^{2}+1.41 \times 10^{6} s+10^{12}} \\
& \underset{\mathrm{~N}}{\mathrm{\alpha}}:=\frac{1.41 \times 10^{6}}{2}=7.05 \times 10^{5} \\
& \omega_{m a n}:=\sqrt{\frac{1}{L_{1} \cdot \mathrm{C}_{1}}}=1 \times 10^{6} \frac{1}{\mathrm{~s}} \\
& \text { This is the resonant frequency } \\
& \zeta_{n}:=\frac{\alpha}{\omega_{0}}=0.705 \mathrm{~s} \quad \frac{1}{\sqrt{2}} \\
& \text { This is < } 1 \text { this is less } \\
& \text { underdamped than the } \\
& \text { previous }
\end{aligned}
$$

$$
\zeta_{S_{1}}:=\frac{\alpha}{\omega_{0}}=0.05
$$

This is $\ll 1$ this is very

 underdampedH (s) s goes to 0 goes to 1
$\mathrm{H}(\mathrm{s})$ so goes to infinity goes to $0 \quad-40 \frac{\mathrm{db}}{\mathrm{dc}}$

$$
\begin{gathered}
\left|\mathrm{H}\left(\mathrm{j} \omega_{\mathrm{o}}\right)\right|=10 \\
20 \log (10)=20
\end{gathered}
$$

dB

So now this point is 20 dB at wo

$$
\text { now } \quad \alpha=0.05 \omega_{\mathrm{o}} \quad \frac{\omega_{\mathrm{o}}}{2 \cdot 0.05 \omega_{\mathrm{oj}}}=\frac{1}{0.1 \mathrm{j}}
$$

$$
2 \cdot 0.05=0.1
$$

This creates a peak, a large one and is not necessarily a good low pass filter

$$
-10 \mathrm{j} \quad \sqrt{(-10)^{2}}=10
$$ A flat passband is ideal remember.

Basic process summary for second order circuits:

Overdamped
Critically damped

Bode plots
Find real poles, regions, analyze

Underdamped	Use critically damped approximation at the limits
Find correction at wo	
$1>\zeta>0.5$	Correction is a -db of some value
$\zeta=0.5$	Correction is 0db $\zeta<0.5$
Correction is positive db (Strongly underdamped which means there is a peak)	

