How do overdamped, critically damped, and underdamped bandpass circuits relate to each other? Is an underdamped bandpass circuit useful?

Exam 3 Review

Review 1)

A load consisting of a $2.5k\Omega$ resistor in parallel with a 2 μ F capacitor is connected across a 440-V (rms), 60 Hz voltage source. Find the complex power delivered to the load and the load power factor. State whether the power factor is leading or lagging.

Review 2:

a. Determine the current produced by the source.

b. Determine the current through R2.

c. Determine the current through R3.

20 dB

0 dB

-20 dB

40 dB $\frac{\omega}{\omega_0}$

Underdamped circuit ζ <0.5 $|T(j\omega)|$ Low Pass and High Pass Circuit $|T(j\omega)|_{\rm dB}$ 10 $\zeta = 0.1$ = 0.05 Critically damped at extremes $\zeta = 0.2$ $\zeta = 0.5$ Find value of Gain in dB at ω_0 1 Last week we plugged $j\omega_0$ into our transfer function 1.0 and made a substitution for α using $\alpha{=}\zeta^{*}\omega0$ then 0.1 found $|H(j\omega_0)|$ -40 dB/decade 0.011111 10 0.11 Look back at notes and you'll find that (b) Pole

$$|H(j\omega_0)| = \frac{1}{2\zeta}$$

Finally take

 $20\log(|H(j\omega_0)|)$

i.e.
$$\zeta = 0.5$$
 gave $|H(j\omega_0)| = 1$
 $\zeta = \frac{1}{\sqrt{2}}$ $|H(j\omega_0)| = 0.707$
 $\zeta = 0.05$ $|H(j\omega_0)| = 20$

Process Summary (fill in below!)

Problem 1)

1) Second order circuits

a) H(s) = VR(s)/V(s) when $R=2k\Omega$

	 ++++	 +++ 1	
-			
	 ++++	 +++ 1	
		 +++ 1	
+	 	 	······

a.) H(s) = VR(s)/V(s) when $R = 2k\Omega$

b) H(s) = VR(s)/V(s) when $R=10.1k\Omega$ ($\zeta=5.05$)

			++++++
			+ + + + + + + + + + + + + + + + + + + +
		+++++++++++++++++++++++++++++++++++++++	
			+++++
			++++++
			++++++
			+++++
	+ + + + + + + + + + + + + + + + + + + +		

b) H(s) = VR(s)/V(s) when $R=100\Omega$

Т									
⊢								 	
⊢					 			 	
+			 		 			 	
H			 						
i –									
_								 	
H								 	
F									
+							+ + + +		
i –						i		 	
-									
L					 			 	
⊢					 			 	
H								 	
i –								 	
_								 	
-					 			 	
+			 		 		+ + + +	 	
H								 	
i-								 	
i –								 	
-								 	
-			 				+ + + +	 	
+	_	 	 	 					
-			 		 _			 	
E									
E									

Introduction to Filter design

<u>First order</u> <u>filters</u>		
Low pass filter form	$\frac{\omega_c}{s + \omega_c}$	1 pole
High pass filter form	$\frac{s}{s + \omega_c}$	1 zero at origin 1 pole

Second order filters

Low pass filter form

$$H(s) = \frac{K}{\left(\frac{s}{\omega_0}\right)^2 + 2 \cdot \zeta \left(\frac{s}{\omega_0}\right) + 1} \qquad \frac{\omega_0^2}{s^2 + 2\alpha s + \omega_0^2} \qquad 2 \text{ poles}$$

High pass filter form

$$H(s) = \frac{K\left(\frac{s}{\omega_0}\right)^2}{\left[\left(\frac{s}{\omega_0}\right)^2 + 2\cdot\zeta\left(\frac{s}{\omega_0}\right) + 1\right]}$$

 $\frac{s^2}{\left(s^2+2\alpha s+\omega_0^{-2}\right)}$

 $\frac{2\alpha s}{s^2 + 2\alpha s + \omega_0^2}$ 1 zero 2 poles

2 zeros at orgin

2 poles

Bandpass filter form

Bandstop (notch filter form)

$$H(s) = \frac{K \cdot \left[\left(\frac{s}{\omega_0}\right)^2 + 1\right]}{\left[\left(\frac{s}{\omega_0}\right)^2 + 2 \cdot \zeta\left(\frac{s}{\omega_0}\right) + 1\right]}$$

$$\frac{s^2+\omega_0^2}{s^2+2\alpha s+\omega_0^{-2}}$$

3) Filter Design

Design a filter that meets the specifications below. You need to pick values for any resistors, capacitors or inductors in your circuit.

ω [rad/s]	H(s) in dB
10	-25
100	-5
1000	12
1E4	15
1E5	15
1E6	15