How do overdamped, critically damped, and underdamped bandpass circuits relate to each other?
Is an underdamped bandpass circuit useful?

Exam 3 Review

Review 1)
A load consisting of a $2.5 \mathrm{k} \Omega$ resistor in parallel with a $2 \mu \mathrm{~F}$ capacitor is connected across a $440-\mathrm{V}$ (rms), 60 Hz voltage source. Find the complex power delivered to the load and the load power factor. State whether the power factor is leading or lagging.

Review 2:

a. Determine the current produced by the source.
b. Determine the current through R2.
c. Determine the current through R3.

Underdamped circuit $\zeta<0.5$

Low Pass and High Pass Circuit

Critically damped at extremes
Find value of Gain in dB at ω_{0} Last week we plugged j ω_{0} into our transfer function and made a substitution for α using $\alpha=\zeta^{*} \omega 0$ then found

$$
\left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|
$$

Look back at notes and you'll find that

$$
\left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|=\frac{1}{2 \zeta} \quad \text { Finally take } \quad 20 \log \left(\left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|\right)
$$

i.e. $\zeta=0.5$ gave $\left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|=1$

$$
\begin{array}{ll}
\zeta=\frac{1}{\sqrt{2}} & \left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|=0.707 \\
\zeta=0.05 & \left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|=20
\end{array}
$$

Process Summary (fill in below!)

Problem 1)

1) Second order circuits

a) $\mathrm{H}(\mathrm{s})=\mathrm{VR}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=2 \mathrm{k} \Omega$

a.) $\mathrm{H}(\mathrm{s})=\mathrm{VR}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=2 \mathrm{k} \Omega$
b) $\mathrm{H}(\mathrm{s})=\mathrm{VR}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=10.1 \mathrm{k} \Omega \quad(\zeta=5.05)$

b) $\mathrm{H}(\mathrm{s})=\mathrm{VR}(\mathrm{s}) / \mathrm{V}(\mathrm{s})$ when $\mathrm{R}=100 \Omega$

Introduction to Filter design

First order
 filters

Low pass filter
form

High pass filter
form

Second order filters

Low pass filter form

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\left(\frac{\mathrm{~s}}{\omega_{0}}\right)^{2}+2 \cdot \zeta\left(\frac{\mathrm{~s}}{\omega_{0}}\right)+1}
$$

High pass filter form

$$
H(s)=\frac{K\left(\frac{s}{\omega_{0}}\right)^{2}}{\left[\left(\frac{s}{\omega_{0}}\right)^{2}+2 \cdot \zeta\left(\frac{s}{\omega_{0}}\right)+1\right]}
$$

2 zeros at orgin 2 poles

Bandpass filter form

$$
H(s)=\frac{K\left(\frac{s}{\omega_{0}}\right)}{\left[\left(\frac{\mathrm{s}}{\omega_{0}}\right)^{2}+2 \cdot \zeta\left(\frac{\mathrm{~s}}{\omega_{0}}\right)+1\right]}
$$

$$
\frac{2 \alpha s}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

1 zero

2 poles

Bandstop (notch filter form)

$$
H(s)=\frac{K \cdot\left[\left(\frac{s}{\omega_{0}}\right)^{2}+1\right]}{\left[\left(\frac{\mathrm{s}}{\omega_{0}}\right)^{2}+2 \cdot \zeta\left(\frac{\mathrm{~s}}{\omega_{0}}\right)+1\right]}
$$

$$
\frac{s^{2}+\omega_{0}^{2}}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

3) Filter Design

Design a filter that meets the specifications below. You need to pick values for any resistors, capacitors or inductors in your circuit.

$\omega[\mathrm{rad} / \mathrm{s}]$	$\|\mathrm{H}(\mathrm{s})\|$ in dB
10	-25
100	-5
1000	12
1 E 4	15
1 E 5	15
1 E 6	15

