1) Bode plots/Transfer functions

a. Draw magnitude and phase bode plots for the transfer function

$$
\mathrm{H}(\mathrm{~s})=0.01 \cdot \frac{\mathrm{~s} \cdot(\mathrm{~s}+100)}{(\mathrm{s}+1 \mathrm{E} 4)}
$$

In your magnitude plot, indicate corrections at the poles and zeros.

Step 1: Find poles, zeros

Zeros: 0, 100
Poles: 1E4

Step 2: Define regions and find either $\mathrm{H}(\mathrm{j} \omega)$ or $\mathrm{H}(\mathrm{s})$
s <100

$$
\frac{100 \cdot 0.01}{1 \cdot 10^{4}}=1 \times 10^{-4}
$$

$$
\begin{array}{r}
\mathrm{H}(\mathrm{~s})=\frac{0.01 \cdot \mathrm{~s} \cdot 100}{1 \cdot 10^{4}}=1 \cdot 10^{-4} \mathrm{~s} \quad+20 \mathrm{db} / \text { dec slope } \quad 100 \cdot 1 \cdot 10^{-4}=0.01 \\
\text { slope ends at } 20 \cdot \log (0.01)=-40
\end{array}
$$

$100<\mathrm{s}<10^{4}$

$$
\mathrm{H}(\mathrm{~s})=\frac{0.01 \cdot \mathrm{~s} \cdot \mathrm{~s}}{1 \cdot 10^{4}}=1 \cdot 10^{-6} \mathrm{~s}
$$

$+40 \mathrm{db} / \mathrm{dec}$ slope

$$
\frac{0.01}{1 \cdot 10^{4}}=1 \times 10^{-6}
$$

$$
20 \log \left[10^{-6} \cdot\left(1 \cdot 10^{4}\right)^{2}\right]=40
$$

$$
s>10^{4}
$$

$$
\mathrm{H}(\mathrm{~s})=\frac{0.01 \cdot \mathrm{~s} \cdot \mathrm{~s}}{\mathrm{~s}}=0.01 \mathrm{~s}
$$

$$
\begin{aligned}
& +20 \mathrm{db} / \mathrm{dec} \\
& \text { slope }
\end{aligned}
$$

Step 3: Make corrections

Correction at 100 is +3 db because it is a ZERO^1!
Correction at $10^{\wedge} 4$ is -3 db because it is a POLE^1!

$$
H(s)=10 \frac{s^{2}}{(s+100)(s+10000)}
$$

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Phase plots

$$
0.1 \omega_{\mathrm{c} 1}=10
$$

$\omega=10$

$$
\begin{aligned}
& \angle \mathrm{H}(\mathrm{j} 10)=0.01 \cdot \frac{\mathrm{j} 10 \cdot(\mathrm{j} 10+100)}{(10 \mathrm{j}+1 \mathrm{E} 4)} \quad \frac{\angle 0 \cdot(\angle 90)(\angle 0)}{\angle 0} \\
& \angle 0+\angle 90+\angle 0-\angle 0
\end{aligned}
$$

$10 \cdot \omega_{\mathrm{c} 1}=10^{3}$
$\omega=10^{3}$

$$
\begin{array}{rl}
\angle \mathrm{H}\left(\mathrm{j} 10^{3}\right)=0.01 \cdot \frac{\mathrm{j} 10^{3} \cdot\left(\mathrm{j} 10^{3}+100\right)}{\left(10^{3} \mathrm{j}+1 \mathrm{E} 4\right)} \quad \angle 0 \cdot(\angle 90)(\angle 90) \\
\angle 0 & \angle 180 \\
\angle 0+\angle 90+\angle 90-\angle 0 & 180-45=135
\end{array}
$$

$$
\omega=100 \quad \angle 135
$$

$$
0.1 \omega_{\mathrm{c} 2}=10^{3} \quad \text { already done } \quad \angle 180
$$

$$
\begin{aligned}
& 10 \omega_{\mathrm{c} 2}=10^{5} \\
& \angle \mathrm{H}\left(\mathrm{j} 10^{5}\right)=0.01 \cdot \frac{\mathrm{j} 10^{5} \cdot\left(\mathrm{j} 10^{5}+100\right)}{\left(10^{5} \mathrm{j}+1 \mathrm{E} 4\right)} \frac{\angle 0 \cdot(\angle 90)(\angle 90)}{\angle 90} \quad \angle 90 \\
& \omega=10^{4} \angle 0+\angle 90+\angle 90-\angle 90 \\
& \angle \mathrm{H}\left(\mathrm{j} 10^{4}\right)=0.01 \cdot \frac{\mathrm{j} 10^{4} \cdot\left(\mathrm{j} 10^{4}+100\right)}{\left(10^{4} \mathrm{j}+1 \mathrm{E} 4\right)}
\end{aligned} \quad \frac{\angle 0 \cdot(\angle 90)(\angle 90)}{\angle 45} \quad \angle 135 \quad 180-45=1350
$$

b. Determine the transfer function for the following magnitude and phase Bode plots (the plots are for the same circuit).

1. We have a 20 db pass band so

$$
\begin{aligned}
& 20 \log (\mathrm{~K})=20 \mathrm{db} \\
& \mathrm{~K}=10
\end{aligned}
$$

2. We have 40 db rolloff on the right where $\omega 0=1 \mathrm{E} 6 \mathrm{rad} / \mathrm{s}$, critically damped low pass filter, double pole there

$$
\frac{\left(10^{6}\right)^{2}}{\left(s+10^{6}\right)^{2}}=\left(\frac{\omega_{0}}{s+\omega_{0}}\right)^{2}
$$

3. 1st order high pass filter, 20db rolloff, $\omega 0=10^{\wedge} 4 \mathrm{rad} / \mathrm{s}$

$$
\frac{s}{s+10^{4}}=\frac{s}{s+\omega_{0}}
$$

Put all together

$$
H(s)=10 \cdot \frac{10^{12}}{\left(s+10^{6}\right)^{2}} \cdot \frac{s}{\left(s+10^{4}\right)}=\frac{10 \cdot 10^{12} s}{\left(s+10^{4}\right)\left(s+10^{6}\right)^{2}}
$$

2) 2nd order Bandpass Bode plots

a. Determine the transfer function for the above circuil $H(s)=\frac{V_{R}(s)}{V_{i n}(s)}$

$$
\begin{aligned}
& \mathrm{H}(\mathrm{~s})=\frac{2 \alpha \mathrm{~s}}{\mathrm{~s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}}=\frac{\frac{\mathrm{R}}{\mathrm{~L}} \cdot \mathrm{~s}}{\mathrm{~s}^{2}+\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}} \\
& \mathrm{R}_{2}:=20 \quad \mathrm{~L}_{2}:=1 \cdot 10^{-2} \quad \mathrm{C}_{2}:=1 \cdot 10^{-6}
\end{aligned}
$$

b. Determine α, ω_{0}, and ζ (damping ratio).

$$
\left.\left.\begin{array}{ll}
\frac{R_{2}}{L_{2}}=2 \times 10^{3} & \text { b) Band pass filter } \\
\text { 1. Asymptotes take the form of an inverted } V \\
\text { 2. Each has a } 20 \text { db rolloff }
\end{array}\right\} \begin{array}{ll}
\text { 3. At } \omega 0,20 \log \text { abs }(H(j))=0 \mathrm{db} \text { always }
\end{array}\right)
$$

c. Draw the Bode-magnitude plot. Indicate the magnitude (dB) of the transfer function at the resonant frequency.

Remember peak must always be at 0 db at ω, we have to figure out where the asymptotes will be,+20db/dec.
$H(s)$ s goes to $0 \quad H(s)=\frac{2 \alpha s}{\frac{1}{L C}} \quad+20 \mathrm{db} / \mathrm{dec}$
$H(s) \quad s$ goes to $\infty \quad H(s)=\frac{2 \alpha s}{s^{2}} \quad-20 d b / d e c$
$H\left(j \omega_{0}\right)=\frac{2 \alpha j \omega_{0}}{-\omega_{0}{ }^{2}+2 \alpha j \omega_{0}+\omega_{0}^{2}}=1 \quad$ always! at $\omega 0 \quad 2 \cdot \zeta \cdot \omega_{0}{ }^{2}{ }^{2}$
$201 \mathrm{dg}(3 \cdot)) \neq 4 \theta \frac{13.979 \quad s^{2}}{(s+100)(s+10000)}$

4) Design problems-Multiple Stages

Using only first order filters and opamp circuits for each stage, design a filter that meets the specifications below. You need to pick values for any resistors, capacitors or inductors in your circuit. Your circuit must consist of at least one inductor and at least one capacitor.
a. Lowpass filter with a cutoff frequency of 1 MHz (Note: this value is given in $\underline{\mathrm{Hz}}$).
b. In the passband, the gain must be $>10 \mathrm{~dB}$
c. The asymptotic slope of the stopbands should be $-60 \mathrm{~dB} /$ decade
d. You circuit must contain at least one inductor and at least one capacitor.
$\omega_{\mathrm{c}}:=2 \cdot \pi \cdot 1 \mathrm{MHz}$
$\omega_{\mathrm{c}}=6.283 \times 10^{6} \cdot \frac{\mathrm{rad}}{\mathrm{s}}$

$$
\mathrm{R}_{1}:=1.59 \mathrm{k} \Omega \quad \mathrm{C}_{1}:=1 \cdot 10^{-10}
$$

Gain $\quad 20 \log \cdot|K|>10 \mathrm{db}$
Slope indicates a triple pole

$$
\mathrm{R}_{3}:=6.28 \mathrm{k} \Omega
$$

$$
\mathrm{L}_{1}:=1 \cdot 10^{-3} \mathrm{H}
$$

Remember

$$
\begin{gathered}
\omega_{\mathrm{C}}=\frac{\mathrm{R}}{\mathrm{~L}} \quad \text { for inductor/resistor across resistor } \\
\omega_{\mathrm{C}}=\frac{1}{\mathrm{RC}} \quad \text { for capacitor/resistor across capacitor } \\
\mathrm{R}_{4}:=90 \mathrm{k} \Omega \quad \mathrm{R}_{5}:=10 \mathrm{k} \Omega
\end{gathered}
$$

$$
\frac{\mathrm{R}_{3}}{\mathrm{~L}_{1}}=6.28 \times 10^{6} \frac{1}{\mathrm{~s}}
$$

$$
\frac{1}{\mathrm{R}_{1} \cdot \mathrm{C}_{1}}=6.289 \times 10^{6} \frac{1}{\Omega}
$$

Gain

$$
\begin{aligned}
& \text { Amplifier }\left(1+\frac{\mathrm{R}_{4}}{\mathrm{R}_{5}}\right)=10 \quad \begin{array}{l}
\text { Note: Need to overcome the }-9 \mathrm{~dB} \text { loss at corner } \\
\text { frequency to get }>10 \mathrm{~dB} \text { to meet spec. So that is } \sim 20 \mathrm{~dB} \\
\text { needed }
\end{array} \\
& 20 \log (10)=20
\end{aligned}
$$

Also need to isolate first order use buffer filters

Solution 1:
Lowpass filter
Cutoff frequency of 6.28E6 rad/s
Rolloff of $60 \mathrm{~dB} /$ decade indicates a triple pole.
Three first order filters with amplifier stages for isolation.
-9 dB point relative to the passband at $6.28 \mathrm{E} 6 \mathrm{rad} / \mathrm{s}$
Passband gain of 20 dB to meet spec, $20 \log |\mathrm{~K}|=20 \rightarrow \mathrm{~K}=10$
$H(s)=K\left(\frac{\omega_{c}}{s+\omega_{c}}\right)^{3}$
LPF stage, RL circuit: Choose an RL circuit, $\mathrm{R}=6.28 \mathrm{k}, \mathrm{L}=1 \mathrm{E}-3$
LPF stage, RC circuit: Choose an RC circuit, $\mathrm{R}=1.59 \mathrm{k}, \mathrm{C}=1 \mathrm{E}-10$
Amplifier stage: Choose a non-inverting amplifier, R2=90k, R1=10k
Isolation amplifier stage: unity gain

If restriction of only first order filter was lifted....you could also do....
Solution 2:
Second order LPF cascaded with a first order LPF
Use an underdamped circuit with a damping ratio of 0.5 .
The gain term than needs to be 13 dB to satisfy the passband requirements, giving $20 \log |\mathrm{~K}|=13 \mathrm{~dB}, \mathrm{~K}=4.4 \backslash$

$$
\begin{array}{ll}
\mathrm{H}(\mathrm{~s})=\frac{1}{\frac{\mathrm{LC}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}}} & \omega_{0}=\omega_{\mathrm{c}}=6.283 \times 10^{6} \frac{\mathrm{rad}}{\mathrm{~s}} \\
& \omega_{0}=\sqrt{\frac{1}{\mathrm{~L}_{1} \cdot \mathrm{C}_{1}}}
\end{array}
$$

$$
\omega_{0}=\sqrt{\frac{1}{L_{1} \cdot C_{1}}} \quad \begin{aligned}
& \text { need at least a critically } \\
& \text { damped circuit, should use } \\
& \text { underdamped }
\end{aligned}
$$

chose L1 first if you like

$$
\mathrm{L}_{1 \mathrm{~b}}:=1 \cdot 10^{-4}
$$

$$
\sqrt{\frac{1}{1 \cdot 10^{-4} \cdot 2.53 \cdot 10^{-10}}}=6.287 \times 10^{6}
$$

$$
\frac{1}{\left(\omega_{0}^{2} \cdot \mathrm{~L}_{1}\right)}=\mathrm{C}_{1}
$$

$$
\frac{1}{\left[\left(6.283 \times 10^{6}\right)^{2} \cdot \mathrm{~L}_{1 \mathrm{~b}}\right]}=2.533 \times 10^{-10}
$$

$$
\zeta=\frac{\alpha}{\omega_{0}} \quad \text { For better filter make } \zeta=0.5
$$

$$
\alpha_{b}:=0.5 \cdot\left(6.283 \times 10^{6}\right) \quad 2 \alpha=\frac{R}{L}
$$

$$
\mathrm{R}_{1 \mathrm{~b}}:=2 \cdot \mathrm{\alpha}_{\mathrm{b}} \cdot \mathrm{~L}_{1 \mathrm{~b}}
$$

$$
\mathrm{R}_{1 \mathrm{~b}}=628.3
$$

This gives -40 db roll off, with $\omega 0$ at $6.23^{*} 10^{\wedge} 6$ and a very flat passband

Still need another -20 db roll off so you can use a first order filter (like previous) which has -3dB rolloff

Gain

For this circuit we need over only overcome -3 dB so that means a total of 13 dB

$$
\begin{gathered}
20 \log \cdot|\mathrm{~K}|=13 \\
\frac{13}{20}=0.65 \\
10^{0.65}=4.467
\end{gathered}
$$

Can use a non inverting amplifer with a gain of 4.5

$$
\begin{aligned}
& \mathrm{R}_{4 \mathrm{~b}}:=35 \mathrm{k} \Omega \\
& \mathrm{R}_{3 \mathrm{~b}}:=10 \mathrm{k} \Omega \\
& \left(1+\frac{\mathrm{R}_{4 \mathrm{~b}}}{\mathrm{R}_{3 \mathrm{~b}}}\right)=4.5
\end{aligned}
$$

5) Design Problem

Design a bandpass filter with the following specifications. Show your work and justify your calculations. Include a schematic of your circuit.
a. The passband is $1 E 4<\omega<1 E 6$
b. The passband gain should be 5 dB
c. The low frequency stopband rolloff should be $20 \mathrm{db} / \mathrm{decade}$
d. The high frequency stopband rolloff shoudl be $60 \mathrm{db} / \mathrm{decade}$
e. The low frequency cutoff frequency, 1E4 [rad/s] should be -3 dB relative to the passbnad.
f . The high frequency cutoff frequency, 1E6 [rad/s], should be -3 dB relative to the passbnad.
g. You cannot use any first order circuit stages

Build the circuit using BPF LPF

BPF $\quad \omega_{\text {cLow }}=10^{4}$
-3corrections
$20 \frac{\mathrm{db}}{\mathrm{dec}}$
$\omega_{\text {cHigh }}=10^{6}$
-3corrections
$20 \frac{\mathrm{db}}{\mathrm{dec}}$

2nd order overdamped circuit measured across the resistor
R must give $\zeta>1$

LPF $\quad \omega_{\mathrm{c}}=10^{6}$ (double)
need 0 dB correction at $10^{\wedge} 6$
2nd order underdamped $\zeta=0.5$
$40 \frac{\mathrm{db}}{\mathrm{dec}}$ rolloff
pass band gain
$20 \log (\mathrm{~K})=5 \mathrm{db}$

$$
K=1.77
$$

Non inverting amp

$$
\text { choose R1 } \quad \mathrm{R}_{1}=1 \mathrm{k}
$$

$$
\mathrm{R}_{2}=0.77 \mathrm{k}
$$

$$
\left(1+\frac{0.77 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}\right)=1.77
$$

$$
\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)
$$

BPF

$$
\begin{array}{cl}
\mathrm{H}(\mathrm{~s})=\frac{2 \alpha \mathrm{~s}}{\mathrm{~s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}} \quad \begin{array}{l}
\text { you know that } \\
\text { denominator must } \\
\text { be }
\end{array} & \frac{\mathbf{1}}{\left(\mathrm{s}+10^{4}\right)\left(\mathrm{s}+10^{6}\right)} \quad \begin{array}{l}
\text { expand and } 2 \alpha \text { in } \\
\text { numerator can be } \\
\text { given by doing so }
\end{array} \\
& \mathrm{s}^{2}+1010000 \cdot \mathrm{~s}+10000000000
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{H}(\mathrm{~s})=\frac{1.01 \cdot 10^{6} \mathrm{~s}}{\left(\mathrm{~s}+10^{4}\right)\left(\mathrm{s}+10^{6}\right)} & \text { Now find R/L you can pick R or L } \\
\mathrm{L}=10^{-3} & \mathrm{R}=10^{-3} \cdot 1.01 \cdot 10^{6} \\
\mathrm{R}=1.01 \mathrm{k} & 10^{-3} \cdot 1.01 \cdot 10^{6}=1.01 \times 10^{3} \\
\mathrm{C}=1 \cdot 10^{-7} & \omega_{0}{ }^{2}=\frac{1}{\mathrm{LC}} \quad \frac{1}{10^{10} \cdot 1 \cdot 10^{-3}}=1 \times 10^{-7}
\end{array}
$$

LPF

$$
\begin{aligned}
& H(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \alpha s+\omega_{0}^{2}} \quad \begin{array}{l}
\text { you know that denominator } \\
\text { must be }
\end{array} \quad \frac{\mathbf{1}}{\left(s+10^{6}\right)^{2}} \quad \omega_{c}=\omega_{0} \\
& \omega_{0}=10^{6} \\
& \alpha=0.5 \cdot \omega_{0} \quad \text { this is the underdamped condition where correction is } 0 \mathrm{~dB} \\
& \alpha=5 \cdot 10^{5} \\
& \text { pick } \quad \mathrm{L}=1 \cdot 10^{-3} \\
& \omega_{0}^{2}=\frac{1}{\mathrm{LC}} \\
& \mathrm{C}=\frac{1}{10^{12} \cdot 1 \cdot 10^{-3}} \\
& \frac{1}{10^{12} \cdot 1 \cdot 10^{-3}}=1 \times 10^{-9} \\
& \mathrm{C}=1 \cdot 10^{-9} \\
& 2 \alpha=\frac{\mathrm{R}}{\mathrm{~L}} \\
& 2 \cdot 5 \cdot 10^{5} \cdot 1 \cdot 10^{-3}=1 \times 10^{3} \\
& \mathrm{R}=1 \mathrm{k}
\end{aligned}
$$

