Exam 1 Crib Sheet

Voltage source becomes a short circuit and Current source becomes an open circuit) and find the contribution from that source. Sum the contribution from each source to get the parameter of interest.

Example includes a Current Controlled Voltage Source (CCVS) as a dependent source and I1 as an independent source.

The venin voltage (V_{TH}) – **Open** circuit the load, find the voltage across the load nodes Norton current (I_N) – **Short** circuit the load, find the current through that short circuit The venin resistance (R_{TH}) – Turn off all **independent** sources, replace the load with a test voltage (Vtest), find the current (Itest) through the test voltage, R_{TH} = Vtest/Itest.

 $V_{TH} = I_N R_{TH}$ (Ohm's Law relationship)

Exam 2 Crib Sheet

Lingt len					
First order circuits					
Differential equation: $\tau \frac{dy}{dt} + y = f(t)$, with solution $y(t) = y_h(t) + y_p(t)$					
f(t) repr	esents a source function or n th derivative o	f the sour	rce function, with appropriate		
coefficient					
	$y_h(t)$ represents the homogeneous/transient part of the solution				
Fo	For first order circuits, the homogeneous solution always takes the form $y_h(t) = Ae^{\frac{-t}{\tau}}$				
$y_p(t)$ rep	$y_p(t)$ represents the particular/forced part of the solution.				
	The particular solution is always the same type of function as the source.				
τ is the tim	r RC circuits, $\tau = RC$				
	r RL circuits, $\tau = \frac{L}{R}$				
Second order circu	, 11				
	•				
	Differential equation: $\frac{d^2 y}{dt^2} + 2\alpha \frac{dy}{dt} + \omega_o^2 y = f(t)$, with solution $y(t) = y_h(t) + y_p(t)$				
	$s^{2}Y(s) + 2\alpha sY(s) + \omega_{o}^{2}Y(s) = F(s)$				
$y_h(t)$ rep	resents the homogeneous/transient part of	the soluti	ion		
	e form of the homogeneous solution deper		e damping		
1 ()	resents the particular/forced part of the sol				
	e particular solution is always the same ty	-			
	esents a source function or n th derivative o		rce function		
F(s) repr	resents the Laplace transform of the function	on f(t)			
Quandaminad	$y_h(t) = A_1 e^{-\alpha_1 t} + A_2 e^{-\alpha_2 t}$		$-\alpha_1, -\alpha_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2}$		
$Overdamped \\ (\alpha > \omega_0)$	$y(0^+) = A_1 + A_2 + y_p(0^+)$		$-\alpha_{1}, -\alpha_{2} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{o}^{2}}$ $\frac{dy(0^{+})}{dt} = -\alpha_{1}A_{1} - \alpha_{2}A_{2} + \frac{dy_{p}(0^{+})}{dt}$		
Critically	$y_h(t) = A_1 e^{-\alpha t} + A_2 t e^{-\alpha t}$		lpha from the differential equation		
$Damped \\ (\alpha = \omega_0)$	$y\left(0^{+}\right) = A_{1} + y_{p}\left(0^{+}\right)$		$\frac{dy(0^{+})}{dt} = -\alpha A_1 + A_2 + \frac{dy_p(0^{+})}{dt}$		
	$y_h(t) = e^{-\alpha t} \left[A_1 \cos(\beta t) + A_2 \sin(\beta t) \right]$	(βt)	α from the differential equation $\beta = \sqrt{\omega_o^2 - \alpha^2}$		
Underdamped (α < ω₀)	$y(0^+) = A_1 + y_p(0^+)$		$\frac{dy(0^{+})}{dt} = -\alpha A_{1} + \beta A_{2} + \frac{dy_{p}(0^{+})}{dt}$		
RLC series circuit	$\alpha = \frac{1}{2} \frac{R}{L} \qquad \qquad \omega_o = \frac{1}{\sqrt{LC}}$	RLC p	parallel circuit $\alpha = \frac{1}{2} \frac{1}{RC}$ $\omega_o = \frac{1}{\sqrt{LC}}$		

Exam 2 Crib Sheet

Partial Fraction Expansion

Simple Real Poles:

In General:

Expand:
$$F(s) = \frac{A_1}{s - p_1} + \frac{A_2}{s - p_2} + \frac{A_3}{s - p_3} + \dots$$

 $A_n = [(s - p_n)F(s)]|_{s = p_n}$; Cover-Up Rule
 $\Rightarrow f(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + A_3 e^{p_3 t} + \dots$ $t \ge 0$

Real, Equal Poles – Double Pole:

• Real, Equal Poles – Double Pole:

Expand $F(s) = \frac{A_1}{s - p_1} + ... + \left[\frac{A_{n1}}{s - p_n} + \frac{A_{n2}}{(s - p_n)^2}\right]$ $A_{n2} = \left[(s - p_n)^2 F(s)\right]_{s = p_n}$; Cover-Up Rule Usually Find A_{n1} from evaluating F(0) or F(1) $=> f(t) = (A_1 e^{p_1 t} + + A_{n1} e^{p_n t} + A_{n2} t e^{p_n t})$ $t \ge 0$ Simple Poles Repeated Poles

Complex Conjugate Poles

In General:

Expand F(s) = $\frac{A_1}{s-p_1} + \dots + \frac{A}{s+\alpha-j\beta} + \frac{A^*}{s+\alpha+j\beta}$ Find A₁ and A = $|A|/\phi$ from Cover-Up Rule => f(t) = A_1 e^{p_1 t} + \dots + 2|A|e^{-\alpha t} \cos(\beta t + \phi) t ≥ 0 Simple Poles Complex Poles

LAPLACE TRANSFORMS

Signal	f(t)	F(s)
Impulse	$\delta(t)$	1
Step	u(t)	$\frac{1}{s}$
Constant	Au(t)	$\frac{A}{s}$
Ramp	tu(t)	$\frac{1}{s^2}$

awyes@rpl.edu

🖲 Rensselaer 🙆

LAPLACE TRANSFORMS

Signal	$\mathbf{f}(\mathbf{t})$	F(s)
Exponential	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$
Damped Ramp	$[te^{-\alpha t}]u(t)$	$\frac{1}{(s+\alpha)^2}$
Cosine Wave	$[\cos\beta t]u(t)$	$\frac{s}{s^2 + \beta^2}$
Damped Cosine	$[e^{-\alpha t}\cos\beta t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$
sawyes@rpl.edu www.rpl	edu/-sawyes	Rensselaer @

LAPLACE TRANSFORMS

Time Domain	s-Domain
$Af_1(t) + Bf_2(t)$	$AF_1(s) + BF_2(s)$
$\int_0^t f(\tau) \mathrm{d} \tau$	$\frac{F(s)}{s}$
$\frac{df(t)}{dt}$	$sF(s) - f(0^{-})$
$e^{-\alpha t}f(t)$	$F(s+\alpha)$
t f(t)	-dF(s)/ds
f(t-a)u(t-a)	e ^{-as} F(s)
antes@ibraya	💿 Rensselaer 💿

LAPLACE TRANSFORMS

<u>Signal</u>	<u>Time Domain</u>	<u>S Domain</u>
Impulse	$\delta(t)$	1
Step	u(t)	s ⁻¹
Constant	Au(t)	As^{-1}
Ramp	tu(t)	s ⁻²
Exponential	$e^{-\alpha t}u(t)$	$(s+\alpha)^{-1}$
Damped ramp	$te^{-\alpha t}u(t)$	$(s+\alpha)^{-2}$
Cosine	$\cos{(\beta t)u(t)}$	$\frac{s}{s^2 + \beta^2}$
Damped cosine	$e^{-\alpha t}\cos{(\beta t)}u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\beta^2}$
Sum	$Af_1(t) + Bf_2(t)$	$Af_1(s) + Bf_2(s)$
Integral	$\int_0^t f(\tau) d\tau$	$s^{-1}f(s)$
Derivative	$rac{df(t)}{dt}$	$sf(s) - f(0^-)$
Exponential \times function	$e^{-\alpha t}f(t)$	$f(s+\alpha)$
$t \times function$	tf(t)	$-\frac{df(s)}{ds}$
Shifted function	f(t-a)u(t-a)	$e^{-as}f(s)$

<u>NOTATION</u>: $\mathcal{L}{f(t)}(s) = f(s)$ and $\mathcal{L}^{-1}{f(s)}(t) = f(t)$

Exam 3 Crib Sheet

Exam 3 Crib Sheet

 $\theta = Angle \ of \ Impedance$

 $\theta > 0 \implies I \ lags \ V \ (Ind.)$

 $\theta = tan^{-1} \left(\frac{Z_{IMG}}{Z_{REAL}} \right)$

 $\theta < 0 \implies I \text{ leads } V \text{ (Cap.)}$

Second Order Circuits			
Damping ratio, $\delta = \frac{\alpha}{\alpha}$, a metric of the damping	$\delta > 1$, overdamped		
ω_o α is the attenuation constant	$\delta = 1$, critically damped		
ω_o is the resonant frequency	$\delta < 1$, underdamped		
Lowpass/Highpass filters Overdamped and critically damped cases, the Bode plots for			
Underdamped cases, use the critically damped approximation, add a 'correction' of $20\log \left \frac{1}{2\delta}\right $ at the resonant			
frequency, ω_o			
Bandpass filters Overdamped, the Bode plots follow the procedure on the previous page Critically damped and underdamped cases At the resonant frequency, the magnitude Bode plot is 0dB The vertex where the stopbands meet is $20 \log 2\delta $			
Note: The above discussion is for second order circuits only. If there is a gain stage, the Bode plot moves 'up' or 'down' and the dB value of the gain determines the reference for adding corrections/stopband vertices			
Cascaded Filters – Magnitude Bode Plots			
$H(s) = H_1(s)H_2(s)H_3(s) \text{ (three stages)} \rightarrow \\ dB = 20\log H_1(j\omega)H_2(j\omega)H_3(j\omega) = 20\log H_1(j\omega) + 20\log H_2(j\omega) + 20\log H_3(j\omega) $			
angle = $\angle [H_1(j\omega)H_2(j\omega)H_3(j\omega)] = \angle H_1(j\omega) + \angle H_2(j\omega) + \angle H_3(j\omega)$			

Second order filters

