Exam 1 Crib Sheet

Ohm’s Law

- **Linear relationship** between voltage and current in a resistor

\[V = I \cdot R \]

- **V** – Voltage, Volts [V]
- **I** – Current, Amps [A]
- **R** – Resistance, Ohms [Ω]

Power

\[P = V \cdot I \]

- **P** – Power, Watts [W]

Using the above polarities (which may or be correct)

For **P > 0**, the component consumes power

For **P < 0**, the component produces power

Node

- a connection between two or more components

Loop

- a closed path through which current can flow

KCL – Kirchoff’s Current Law

\[\sum_{n=1}^{N} I_n = 0 \]

The sum of the currents leaving a node is zero (signs determined by polarity).

\[I_1 - I_2 + I_3 = 0 \]

KVL – Kirchoff’s Voltage Law

\[\sum_{n=1}^{N} V_n = 0 \]

The sum of the voltages around any closed loop is zero (signs determined by polarity).

\[V_1 + V_2 - V_3 = 0 \]

Resistors in series

\[R_{EQ} = R_1 + R_2 \]

Resistors in parallel

\[R_{EQ} = \left(\frac{1}{R_1} + \frac{1}{R_2} \right)^{-1} \]

Source transformation

Superposition – For each **independent** source, turn off all other **independent** sources and find the contribution from that source. Sum the contribution from each source to get the parameter of interest.
Exam 1 Crib Sheet

Node Analysis

\[
\frac{V_A}{R1} + \frac{V_A - V_B}{R3} = 0
\]
\[
\frac{V_B}{R2} + \frac{V_B - V_A}{R3} - I_1 + \frac{V_C}{R4} = 0
\]
\[
V_C - V_B = 2000I_x
\]
\[
\frac{V_B}{R2} = I_x
\]

Mesh Analysis

\[
(i_1)R1 + (i_1)R3 + (i_1 - i_2)R2 = 0
\]
\[
-2000I_x + (i_1)R4 + (i_2 - i_1)R2 = 0
\]
\[
i_3 - i_2 = I_1
\]
\[
i_1 - i_2 = I_x
\]

Example includes a Current Controlled Voltage Source (CCVS) as a dependent source and I1 as an independent source.

Thevenin voltage (V_{TH}) – Open circuit the load, find the voltage across the load nodes

Norton current (I_N) – Short circuit the load, find the current through that short circuit

Thevenin resistance (R_{TH}) – Turn off all independent sources, replace the load with a test voltage (V_{test}), find the current (I_{test}) through the test voltage, R_{TH} = V_{test}/I_{test}.

\[
V_{TH} = I_N R_{TH} \quad \text{(Ohm’s Law relationship)}
\]

Comparator

If \(V_1 < V_2 \), \(V_{out} = V^{+}_{\text{saturation}} \)
If \(V_1 > V_2 \), \(V_{out} = V^{-}_{\text{saturation}} \)

Inverting amplifier circuit

\[
V_{out} = -\frac{R2}{R1} V_{\text{inn}}
\]

Non-inverting amplifier circuit

\[
V_{out} = \left(1 + \frac{R2}{R1}\right) V_{\text{inn}}
\]

Summing amplifier circuit

\[
V_{out} = -\frac{Rf}{R1} V1 - \frac{Rf}{R2} V2
\]
Exam 2 Crib Sheet

IV Characteristics – Time domain

<table>
<thead>
<tr>
<th>Resistors –</th>
<th>Inductors –</th>
<th>Capacitors –</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V(t) = I(t)R)</td>
<td>(V_L(t) = L \frac{dI_L}{dt})</td>
<td>(I_C(t) = C \frac{dV_C}{dt})</td>
</tr>
<tr>
<td>(IR(t))</td>
<td>(IL(t))</td>
<td>(IC(t))</td>
</tr>
<tr>
<td>+ [\text{R}]</td>
<td>+ [\text{L}]</td>
<td>+ [\text{C}]</td>
</tr>
<tr>
<td>[V_R(t)]</td>
<td>[V_L(t)]</td>
<td>[V_C(t)]</td>
</tr>
</tbody>
</table>

Continuity conditions

\[
I_L(t_o^-) = I_L(t_o^+) \quad \quad V_C(t_o^-) = V_C(t_o^+)
\]

IV Characteristics – Laplace domain

<table>
<thead>
<tr>
<th>(Z_R = R)</th>
<th>(Z_L = sL)</th>
<th>(Z_C = \frac{1}{sC})</th>
</tr>
</thead>
</table>

Resistors –

\[
V(s) = Z_R I(s)
\]

\[
IR(s) \quad + \quad VR(s)
\]

Inductors –

\[
V_L(s) = Z_L I_L(s) - LI(0^+)
\]

\[
VL(s) \quad + \quad sL \quad IL(0+) \quad - \quad + \quad IL(s)
\]

Capacitors –

\[
V_C(s) = Z_C I_C(s) + V_C(0^+)
\]

\[
VC(s) \quad + \quad 1/sC \quad VC(0+)/s \quad - \quad + \quad IC(s)
\]

Impedance, \(Z [\Omega] \), properties have the same characteristics as resistance

Impedances in series add, \(Z_{EQ} = Z_1 + Z_2 \)

Impedances in parallel have an inverse relationship, \(Z_{EQ} = \left(\frac{1}{Z_1} + \frac{1}{Z_2} \right)^{-1} = \frac{Z_1Z_2}{Z_1 + Z_2} \)

Initial Value Theorem

\[
\lim_{s \to \infty} \{sF(s)\} = f(t = 0^+)
\]

Final Value Theorem

\[
\lim_{s \to 0} \{sF(s)\} = f(t \to \infty)
\]
First order circuits

Differential equation: \(\tau \frac{dy}{dt} + y = f(t) \), with solution \(y(t) = y_h(t) + y_p(t) \)

- \(f(t) \) represents a source function or \(n \)th derivative of the source function, with appropriate coefficients
- \(y_h(t) \) represents the homogeneous/transient part of the solution
- \(y_p(t) \) represents the particular/forced part of the solution.

For first order circuits, the homogeneous solution always takes the form \(y_h(t) = A e^{-\frac{t}{\tau}} \)

\(\tau \) is the time constant
- For RC circuits, \(\tau = RC \)
- For RL circuits, \(\tau = \frac{L}{R} \)

Second order circuits

Differential equation: \(\frac{d^2y}{dt^2} + 2\alpha \frac{dy}{dt} + \omega_o^2 y = f(t) \), with solution \(y(t) = y_h(t) + y_p(t) \)

- \(s\)-domain \(s^2 Y(s) + 2\alpha s Y(s) + \omega_o^2 Y(s) = F(s) \)
- \(y_h(t) \) represents the homogeneous/transient part of the solution
- \(y_p(t) \) represents the particular/forced part of the solution.

The particular solution is always the same type of function as the source.
- \(f(t) \) represents a source function or \(n \)th derivative of the source function
- \(F(s) \) represents the Laplace transform of the function \(f(t) \)

<table>
<thead>
<tr>
<th>Overdamped ((\alpha > \omega_o))</th>
<th>(y_h(t) = A_1 e^{-\alpha_1 t} + A_2 e^{-\alpha_2 t})</th>
<th>(-\alpha_1, -\alpha_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_o^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y(0^+) = A_1 + A_2 + y_p(0^+))</td>
<td>(\frac{dy(0^+)}{dt} = -\alpha_1 A_1 - \alpha_2 A_2 + \frac{dy_p(0^+)}{dt})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critically Damped ((\alpha = \omega_o))</th>
<th>(y_h(t) = A_1 e^{-\alpha t} + A_2 te^{-\alpha t})</th>
<th>(\alpha) from the differential equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y(0^+) = A_1 + y_p(0^+))</td>
<td>(\frac{dy(0^+)}{dt} = -\alpha A_1 + A_2 + \frac{dy_p(0^+)}{dt})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Underdamped ((\alpha < \omega_o))</th>
<th>(y_h(t) = e^{-\alpha t} \left[A_1 \cos(\beta t) + A_2 \sin(\beta t) \right])</th>
<th>(\alpha) from the differential equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta = \sqrt{\omega_o^2 - \alpha^2})</td>
<td>(\frac{dy(0^+)}{dt} = -\alpha A_1 + \beta A_2 + \frac{dy_p(0^+)}{dt})</td>
<td></td>
</tr>
</tbody>
</table>

| RLC series circuit \(\alpha = \frac{1}{2} \frac{R}{L} \) \(\omega_o = \frac{1}{\sqrt{LC}} \) | RLC parallel circuit \(\alpha = \frac{1}{2} \frac{1}{RC} \) \(\omega_o = \frac{1}{\sqrt{LC}} \) |
Partial Fraction Expansion

Simple Real Poles:

In General:

Expand: \(F(s) = \frac{A_1}{s-p_1} + \frac{A_2}{s-p_2} + \frac{A_3}{s-p_3} + \ldots \)

\(A_n = \left[(s-p_n)F(s) \right]_{s=p_n}; \quad \text{Cover-Up Rule} \)

\[\Rightarrow f(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + A_3 e^{p_3 t} + \ldots \quad t \geq 0 \]

Real, Equal Poles – Double Pole:

- Real, Equal Poles – Double Pole:

Expand \(F(s) = \frac{A_1}{s-p_1} + \left[\frac{A_{n1}}{s-p_{n1}} + \frac{A_{n2}}{s-p_{n2}} \right] \)

\(A_{n2} = \left[(s-p_{n2})^2 F(s) \right]_{s=p_{n2}}; \quad \text{Cover-Up Rule} \)

Usually Find \(A_{n1} \) from evaluating \(F(0) \) or \(F(1) \)

\[\Rightarrow f(t) = (A_1 e^{p_1 t} + \ldots + A_{n1} e^{p_{n1} t} + A_{n2} e^{p_{n2} t}) \quad t \geq 0 \]

Simple Poles Repeated Poles

Complex Conjugate Poles

In General:

Expand \(F(s) = \frac{A_1}{s-p_1} + \ldots + \frac{A}{s+\alpha-j\beta} + \frac{A^*}{s+\alpha+j\beta} \)

Find \(A_1 \) and \(A = |A|e^{j\phi} \) from Cover-Up Rule

\[\Rightarrow f(t) = A_1 e^{p_1 t} + \ldots + 2|A|e^{-\alpha t}\cos(\beta t + \phi) \quad t \geq 0 \]

Simple Poles Complex Poles

LAPLACE TRANSFORMS

<table>
<thead>
<tr>
<th>Signal</th>
<th>f(t)</th>
<th>F(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse</td>
<td>(\delta(t))</td>
<td>1</td>
</tr>
<tr>
<td>Step</td>
<td>(u(t))</td>
<td>(\frac{1}{s})</td>
</tr>
<tr>
<td>Constant</td>
<td>(Au(t))</td>
<td>(\frac{A}{s})</td>
</tr>
<tr>
<td>Ramp</td>
<td>(tu(t))</td>
<td>(\frac{1}{s^2})</td>
</tr>
</tbody>
</table>

LAPLACE TRANSFORMS

<table>
<thead>
<tr>
<th>Signal</th>
<th>f(t)</th>
<th>F(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>(e^{-\alpha t} u(t))</td>
<td>(\frac{1}{s+\alpha})</td>
</tr>
<tr>
<td>Damped Ramp</td>
<td>([e^{-\alpha t}] u(t))</td>
<td>(\frac{1}{(s+\alpha)^2})</td>
</tr>
<tr>
<td>Cosine Wave</td>
<td>(\frac{\cos(\beta t) u(t)}{s})</td>
<td>(\frac{s+\alpha}{s^2+\beta^2})</td>
</tr>
<tr>
<td>Damped Cosine</td>
<td>([e^{-\alpha t}\cos(\beta t)] u(t))</td>
<td>(\frac{s+\alpha}{(s+\alpha)^2+\beta^2})</td>
</tr>
</tbody>
</table>

LAPLACE TRANSFORMS

<table>
<thead>
<tr>
<th>Time Domain</th>
<th>s-Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int_0^t f(t) , dt)</td>
<td>(\frac{F(s)}{s})</td>
</tr>
<tr>
<td>(\frac{d}{dt} f(t))</td>
<td>(sF(s) - f(0^-))</td>
</tr>
<tr>
<td>(e^{-\alpha t} f(t))</td>
<td>(F(s+\alpha))</td>
</tr>
<tr>
<td>(t f(t))</td>
<td>(-\frac{dF(s)}{ds})</td>
</tr>
<tr>
<td>(f(t-a)u(t-a))</td>
<td>(e^{-\alpha t} F(s))</td>
</tr>
</tbody>
</table>
LAPLACE TRANSFORMS

<table>
<thead>
<tr>
<th>Signal</th>
<th>Time Domain</th>
<th>S Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse</td>
<td>$\delta(t)$</td>
<td>1</td>
</tr>
<tr>
<td>Step</td>
<td>$u(t)$</td>
<td>s^{-1}</td>
</tr>
<tr>
<td>Constant</td>
<td>$Au(t)$</td>
<td>As^{-1}</td>
</tr>
<tr>
<td>Ramp</td>
<td>$tu(t)$</td>
<td>s^{-2}</td>
</tr>
<tr>
<td>Exponential</td>
<td>$e^{-at}u(t)$</td>
<td>$(s + \alpha)^{-1}$</td>
</tr>
<tr>
<td>Damped ramp</td>
<td>$te^{-at}u(t)$</td>
<td>$(s + \alpha)^{-2}$</td>
</tr>
<tr>
<td>Cosine</td>
<td>$\cos(\beta t)u(t)$</td>
<td>$\frac{s}{s^2 + \beta^2}$</td>
</tr>
<tr>
<td>Damped cosine</td>
<td>$e^{-at}\cos(\beta t)u(t)$</td>
<td>$\frac{s + \alpha}{(s + \alpha)^2 + \beta^2}$</td>
</tr>
<tr>
<td>Sum</td>
<td>$Af_1(t) + Bf_2(t)$</td>
<td>$Af_1(s) + Bf_2(s)$</td>
</tr>
<tr>
<td>Integral</td>
<td>$\int_0^t f(\tau)d\tau$</td>
<td>$s^{-1}f(s)$</td>
</tr>
<tr>
<td>Derivative</td>
<td>$\frac{df(t)}{dt}$</td>
<td>$sf(s) - f(0^-)$</td>
</tr>
<tr>
<td>Exponential × function</td>
<td>$e^{-at}f(t)$</td>
<td>$f(s + \alpha)$</td>
</tr>
<tr>
<td>t × function</td>
<td>$tf(t)$</td>
<td>$-\frac{df(s)}{ds}$</td>
</tr>
<tr>
<td>Shifted function</td>
<td>$f(t - a)u(t - a)$</td>
<td>$e^{-as}f(s)$</td>
</tr>
</tbody>
</table>

NOTATION: $\mathcal{L}\{f(t)\}(s) = f(s)$ and $\mathcal{L}^{-1}\{f(s)\}(t) = f(t)$
Complex Numbers

Rectangular form:

\[A = A_R + jA_I \]

Polar form:

\[|A| \angle \varphi_A \]

Rectangular to polar

\[|A| = \sqrt{(A_R)^2 + (A_I)^2} \]

\[\varphi_A = \tan^{-1}\left(\frac{A_I}{A_R}\right) \]

Polar to rectangular

\[A_R = |A| \cos(\varphi_A) \]

\[A_I = |A| \sin(\varphi_A) \]

Euler’s Law:

\[e^{j\vartheta} = \cos(\vartheta) + j \sin(\vartheta) \]

Mathematics with complex number

Addition/Subtraction – Rectangular form

\[A + B = (A_R + B_R) + j(A_I + B_I) \]

\[A - B = (A_R - B_R) + j(A_I - B_I) \]

Complex conjugate

\[A = A_R + jA_I \quad A^* = A_R - jA_I \]

Multiplication/Division – Rectangular form

\[AB = |A||B| \angle (\varphi_A + \varphi_B) \]

\[\frac{A}{B} = \frac{|A|}{|B|} \angle (\varphi_A - \varphi_B) \]

Complex conjugate

\[A = |A| \angle \varphi_A \quad A^* = |A| \angle -\varphi_A \]

AC Steady State signals

Time domain signals

\[F(t) = A_o \sin(\omega t + \Theta) \]

\[A_o – \text{amplitude} \]

\[\omega – \text{radial frequency, } 2\pi f \]

\[\Theta – \text{phase} \]

Phasor signals

\[\tilde{F} = A_o \angle \theta \]

\[A_o – \text{amplitude} \]

\[\theta – \text{phase} \]

Rectangular form

\[F(t) = A_o \sin(\omega t + \Theta) \leftrightarrow A_o \left\{ e^{j(\omega t + \Theta)} \right\} \leftrightarrow A_o e^{j\vartheta} \leftrightarrow A_o \angle \theta \]

(Phasor form)

Impedances – Laplace domain (zero initial conditions)

\[Z_R = R \]

\[Z_L = sL \]

\[Z_C = \frac{1}{sC} \]

Impedances – AC steady state

\[Z_R = R \]

\[Z_R = R \angle 0^\circ \]

\[Z_L = j\omega L \]

\[Z_L = \omega L \angle 90^\circ \]

\[Z_C = \frac{1}{j\omega C} \]

\[Z_C = \frac{1}{\omega C} \angle -90^\circ \]
Exam 3 Crib Sheet

Impedance, Z [Ω], properties have the same characteristics as resistance

\[
\text{In series add, } Z_{\text{EQ}} = Z_1 + Z_2 \\
\text{In parallel, inverse relationship, } Z_{\text{EQ}} = \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right)^{-1} = \frac{Z_1Z_2}{Z_1 + Z_2}
\]

Admittance, Y [mho], properties have characteristics that are the ‘inverse’ of impedance

\[
\text{In parallel, add, } Y_{\text{EQ}} = Y_1 + Y_2 \\
\text{In series, inverse relationship, } Y_{\text{EQ}} = \left(\frac{1}{Y_1} + \frac{1}{Y_2}\right)^{-1} = \frac{Y_1Y_2}{Y_1 + Y_2}
\]

AC Steady State Power

\[
S = P + jQ \\
P - \text{Real power, [W]} \\
Q - \text{Reactive power, [VAR]}
\]

\[
|S| - \text{Total power, [VA]}
\]

Using Ohm’s Law relationships for impedances (Z)

\[
\text{Complex Power } S = \frac{1}{2}V_oI_o^* = \left(\frac{1}{2}\right)\left|V_o\right|^2 Z \\
\text{Total Power } |S| = \frac{1}{2}\left|V_o\right|^2 Z^\ast \text{ where } V_{\text{RMS}} = \frac{V_o}{\sqrt{2}}
\]

POWER TRIANGLE

\[
Q = |S| \sin \theta = V_{\text{RMS}} I_{\text{RMS}} \sin \theta \\
\text{Reactive Power; [VAR's]}
\]

\[
|S| = V_{\text{RMS}} I_{\text{RMS}} \\
\text{Apparent Power; [VA]}
\]

- Capacitive reactance is negative (Q < 0)
- Inductive reactance is positive (Q > 0)

Power produced by the source(s) is equal to the sum of the power produced/stored for each impedance in the circuit

Power factor – a metric over how efficient power consumption/production appears to be

\[
0 < \text{power factor} < 1 \\
\text{Power factor } = \frac{P}{|S|} = \cos(\varphi_S)
\]

Ideal Transformers

\[
\frac{I_p}{I_s} = \frac{N_p}{N_s} \\
\text{Primary: source side of the transformer} \\
\text{Secondary: load side of the transformer}
\]

\[
N_p : \text{number of windings on the primary} \\
N_s : \text{number of windings on the secondary}
\]

The winding ratio, \(N = \frac{N_s}{N_p} \)

Voltage relationship, \(V_s = NV_p \)

Current relationship, \(I_s = \frac{I_p}{N} \)
Referring the primary to the secondary (voltage source):
\[V_{o_{eq}} = NV_o \quad Z_{s_{eq}} = N^2 Z_s \]
Referring the primary to the secondary (current source):
\[I_{o_{eq}} = \frac{I_o}{N} \quad Z_{s_{eq}} = N^2 Z_{s_{eq}} \]
Referring the secondary to the primary:
\[Z_{L_{eq}} = \frac{Z_L}{N^2} \]

Mutual Inductance

The Tee model for coupled inductors represents an equivalent circuit.

\[M = k \sqrt{L_1 L_2} \]
where \(k \) is the coupling coefficient \(0 < k < 1 \)

Student Add-ons

Referral to Primary

\[P = I_{2 \text{RMS}}^2 |Z| \cos \theta \]
\[Q = I_{2 \text{RMS}}^2 |Z| \sin \theta \]

\[P = I_{2 \text{RMS}}^2 R(\omega) \]
\[Q = I_{2 \text{RMS}}^2 X(\omega) \]

\[P = V_{2 \text{RMS}} I_{2 \text{RMS}} \cos \theta \]
\[Q = V_{2 \text{RMS}} I_{2 \text{RMS}} \sin \theta \]

Notes

\[R(\omega) = Z_{\text{REAL}} \]
\[X(\omega) = Z_{\text{IMG}} \]

\[\theta = \text{Angle of Impedance} \]
\[\theta = \tan^{-1} \left(\frac{Z_{\text{IMG}}}{Z_{\text{REAL}}} \right) \]

\(\theta > 0 \) => \(I \) lags \(V \) (Ind.) \(\theta < 0 \) => \(I \) leads \(V \) (Cap.)

Complex Power

1) \(S = V_{RMS} I_{RMS}^* = |V_{RMS}| |I_{RMS}| (\angle V - \angle I) \)
2) \(S = |I_{RMS}|^2 Z = |I_{RMS}|^2 (\angle Z) \) (should be
3) \(S = \frac{|V_{RMS}|^2}{Z^*} = \frac{|V_{RMS}|^2}{|Z|} (\angle Z) \)
Bode Plots Crib Sheet

Bode Plots

Decade – a change in frequency by one order of magnitude, for example
- \(100 \text{ rad/s} \rightarrow 1000 \text{ rad/s}\)
- \(10^4 \text{ Hz} \rightarrow 10^5 \text{ Hz}\)

\(\text{dB} – \text{decibel}\)

\(\text{dB} = 20 \log |F(j\omega)|\)

Note the argument of the logarithm is a magnitude expression

A change of 20dB corresponds to a change of \(|F(j\omega)|\) by one order of magnitude

Bode plot magnitude approximations

\[H(s) \propto s^n \]

Slope +20dB/decade

\[H(s) \propto \frac{1}{s^n} \]

Slope -20dB/decade

\[H(s) \propto K \]

‘Flat’, dB = 20\log|K|

Sketching Bode plot magnitudes (real poles and zeros)

- **Crossing an n-pole**: Slope changes by \(-20n\) dB/decade
- **Crossing an n-zero**: Slope changes by \(+20n\) dB/decade

‘\(n\)’ indicates the number of poles or zeros

‘Crossing’ rules apply when going from a lower frequency to a higher frequency

Sketching Bode plot phases (real poles and zeros)

- **Crossing an n-pole**: Phase changes by \(-n\frac{\pi}{2}\)
- **Crossing an n-zero**: Phase changes by \(+n\frac{\pi}{2}\)

Phase changes are ‘spread out’ over two decades, one decade on either side of the pole or zero

Corrections for Bode plot magnitudes (real poles and zeros)

- At an n-pole: The ‘real’ dB value is -3n dB ‘below’ the asymptote
- At an n-zero: The ‘real’ dB value is +3n dB ‘above’ the asymptote

The asymptote is the straight line approximation of the Bode plots
‘Far away’ from poles and zeros, the asymptotes are an accurate representation of the Bode plot
Bode Plots Crib Sheet

Second Order Circuits

Damping ratio, $\delta = \frac{\alpha}{\omega_o}$, a metric of the damping	$\delta > 1$, overdamped
α is the attenuation constant	$\delta = 1$, critically damped
ω_o is the resonant frequency	$\delta < 1$, underdamped

Lowpass/Highpass filters
- Overdamped and critically damped cases, the Bode plots follow the procedure on the previous page
- Underdamped cases, use the critically damped approximation, add a ‘correction’ of $20\log\frac{1}{2\delta}$ at the resonant frequency, ω_o

Bandpass filters
- Overdamped, the Bode plots follow the procedure on the previous page
- Critically damped and underdamped cases
 - At the resonant frequency, the magnitude Bode plot is 0dB
 - The vertex where the stopbands meet is $20\log|2\delta|$

Note: The above discussion is for second order circuits only. If there is a gain stage, the Bode plot moves ‘up’ or ‘down’ and the dB value of the gain determines the reference for adding corrections/stopband vertices

Cascaded Filters – Magnitude Bode Plots

$H(s) = H_1(s)H_2(s)H_3(s)$ (three stages) \rightarrow

$$
\text{dB} = 20\log|H_1(j\omega)H_2(j\omega)H_3(j\omega)| = 20\log|H_1(j\omega)| + 20\log|H_2(j\omega)| + 20\log|H_3(j\omega)|
$$

$$
\text{angle} = \angle[H_1(j\omega)H_2(j\omega)H_3(j\omega)] = \angle H_1(j\omega) + \angle H_2(j\omega) + \angle H_3(j\omega)
$$
Bode Plots Crib Sheet

First order filters

\[\omega_c = \frac{1}{RC} \quad \omega_c = \frac{R}{L} \]

<table>
<thead>
<tr>
<th>Filter name</th>
<th>Schematic(s)</th>
<th>(H(s))</th>
<th>pole/zero ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pass filter</td>
<td></td>
<td>(\frac{\omega_c}{s + \omega_c})</td>
<td>1 pole</td>
</tr>
<tr>
<td>High pass filter</td>
<td></td>
<td>(\frac{s}{s + \omega_c})</td>
<td>1 zero at zero, 1 pole</td>
</tr>
</tbody>
</table>
Bode Plots Crib Sheet

Second order filters

<table>
<thead>
<tr>
<th>Filter name</th>
<th>Schematic(s)</th>
<th>(H(s))</th>
<th>pole/zero ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pass filter</td>
<td></td>
<td>(\frac{\omega_o^2}{s^2 + 2\alpha s + \omega_o^2})</td>
<td>2 poles</td>
</tr>
<tr>
<td>High pass filter</td>
<td></td>
<td>(\frac{s^2}{s^2 + 2\alpha s + \omega_o^2})</td>
<td>2 zeros at zero</td>
</tr>
<tr>
<td>Bandpass filter</td>
<td></td>
<td>(\frac{2\alpha s}{s^2 + 2\alpha s + \omega_o^2})</td>
<td>1 zero at zero</td>
</tr>
<tr>
<td>Bandstop filter</td>
<td></td>
<td>(\frac{s^2 + \omega_o^2}{s^2 + 2\alpha s + \omega_o^2})</td>
<td></td>
</tr>
</tbody>
</table>