Exam 1 Crib Sheet

Ohm's Law - Linear relationship between voltage and current in a resistor

$$
\mathbf{V}=\mathbf{I} \mathbf{R}
$$

V - Voltage, Volts [V]
I - Current, Amps [A]
R - Resistance, Ohms [Ω]

Node - a connection between two or more components
Loop - a closed path through which current can flow

Power

$$
\mathbf{P}=\mathbf{V} \mathbf{I}
$$

P - Power, Watts [W]

Using the above polarities (which may ot be correct)
For $\mathrm{P}>0$, the component consumes power
For $\mathrm{P}<0$, the component produces power

KCL - Kirchoff's Current Law

$$
\sum_{\mathrm{n}=1}^{\mathrm{N}} I_{\mathrm{n}}=0
$$

The sum of the currents leaving a node is zero (signs determined by polarity).

$$
\mathrm{I} 1-\mathrm{I} 2+\mathrm{I} 3=0
$$

Source transformation

KVL - Kirchoff's Voltage Law

$$
\sum_{\mathrm{n}=1}^{\mathrm{N}} V_{\mathrm{n}}=0
$$

The sum of the voltages around any closed loop is zero (signs determined by polarity).

$$
\mathrm{V} 1+\mathrm{V} 2-\mathrm{V} 3=0
$$

Resistors in parallel - $R_{E Q}=\left(\frac{1}{R 1}+\frac{1}{R 2}\right)^{-1}$

Voltage divider (two resistors in series) $\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\text {source }} \times[\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)]$

Current divider (two resistors in parallel) $\mathrm{I}_{\mathrm{R} 1}=$ Isource $\times[\mathrm{R2} /(\mathrm{R} 1+\mathrm{R} 2)]$

Superposition - For each independent source, turn off all other independent sources toturn off: Voltage source becomes a short circuit and Current source becomes an open circuit) and find the contribution from that source. Sum the contribution from each source to get the parameter of interest.

Exam 1 Crib Sheet

Example includes a Current Controlled Voltage Source (CCVS) as a dependent source and I1 as an independent source.

Thevenin voltage $\left(\mathbf{V}_{\mathbf{T H}}\right)$ - Open circuit the load, find the voltage across the load nodes Norton current ($\mathbf{I}_{\mathbf{N}}$)- Short circuit the load, find the current through that short circuit Thevenin resistance $\left(\mathbf{R}_{\mathbf{T H}}\right)$ - Turn off all independent sources, replace the load with a test voltage (Vtest), find the current (Itest) through the test voltage, $\mathrm{R}_{\mathrm{TH}}=\mathrm{V}$ test/Itest.

$$
\mathbf{V}_{\mathbf{T H}}=\mathbf{I}_{\mathbf{N}} \mathbf{R}_{\mathbf{T H}} \quad \text { (Ohm's Law relationship) }
$$

Exam 2 Crib Sheet

IV Characteristics - Time domain		
Resistors - $V(t)=I(t) R$ $\xrightarrow[\underbrace{\operatorname{IR}(t)}_{+} \underbrace{R}_{-} \underbrace{R}_{-}]{V_{-}(t)}$	Inductors -	Capacitors - $I_{C}(t)=C \frac{d V_{C}}{d t}$
Continuity conditions		
	$I_{L}\left(t_{o}^{-}\right)=I_{L}\left(t_{o}^{+}\right)$	$V_{C}\left(t_{o}^{-}\right)=V_{C}\left(t_{o}^{+}\right)$
IV Characteristics - Laplace domain		
$Z_{R}=R$	$Z_{L}=S L$	$Z_{C}=\frac{1}{s C}$
Resistors - $V(s)=Z_{R} I(s)$	Inductors -	Capacitors - $\begin{array}{cc} V_{C}(s)=Z_{C} I_{C}(s)+\frac{V_{C}\left(0^{+}\right)}{s} \\ + & \mathrm{VC}(\mathrm{~s}) \\ +1 / \mathrm{sC} & \mathrm{VC}(0+) / \mathrm{s} \end{array} .$

Impedance, Z [Ω], properties have the same characteristics as resistance
Impedances in series add, $Z_{E Q}=Z_{1}+Z_{2}$
Impedances in parallel have an inverse relationship, $Z_{E Q}=\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right)^{-1}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$
Initial Value Theorem $\quad \lim _{s \rightarrow \infty}\{s F(s)\}=f\left(t=0^{+}\right) \quad$ Final Value Theorem $\quad \lim _{s \rightarrow 0}\{s F(s)\}=f(t \rightarrow \infty)$

Exam 2 Crib Sheet

First order circuits
Differential equation: $\tau \frac{d y}{d t}+y=f(t)$, with solution $y(t)=y_{h}(t)+y_{p}(t)$
$f(t)$ represents a source function or $\mathrm{n}^{\text {th }}$ derivative of the source function, with appropriate coefficients
$y_{h}(t)$ represents the homogeneous/transient part of the solution
For first order circuits, the homogeneous solution always takes the form $y_{h}(t)=A e^{\frac{-t}{\tau}}$
$y_{p}(t)$ represents the particular/forced part of the solution.
The particular solution is always the same type of function as the source.
τ is the time constant
For RC circuits, $\tau=R C$
For RL circuits, $\tau=L / R$
Second order circuits
Differential equation: $\frac{d^{2} y}{d t^{2}}+2 \alpha \frac{d y}{d t}+\omega_{o}^{2} y=f(t)$, with solution $y(t)=y_{h}(t)+y_{p}(t)$
s-domain $s^{2} Y(s)+2 \alpha s Y(s)+\omega_{o}^{2} Y(s)=F(s)$
$y_{h}(t)$ represents the homogeneous/transient part of the solution
The form of the homogeneous solution depends on the damping
$y_{p}(t)$ represents the particular/forced part of the solution.
The particular solution is always the same type of function as the source.
$f(t)$ represents a source function or $\mathrm{n}^{\text {th }}$ derivative of the source function
$F(s)$ represents the Laplace transform of the function $f(t)$

Overdamped$\left(\alpha>\omega_{0}\right)$	$y_{h}(t)=A_{1} e^{-\alpha_{1} t}+A_{2} e^{-\alpha_{2} t}$		$-\alpha_{1},-\alpha_{2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}$
	$y\left(0^{+}\right)=A_{1}+A_{2}+y_{p}\left(0^{+}\right)$		$\frac{d y\left(0^{+}\right)}{d t}=-\alpha_{1} A_{1}-\alpha_{2} A_{2}+\frac{d y_{p}\left(0^{+}\right)}{d t}$
Critically Damped $\left(\alpha=\omega_{0}\right)$	$y_{h}(t)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t}$		α from the differential equation
	$y\left(0^{+}\right)=A_{1}+y_{p}\left(0^{+}\right)$		$\frac{d y\left(0^{+}\right)}{d t}=-\alpha A_{1}+A_{2}+\frac{d y_{p}\left(0^{+}\right)}{d t}$
Underdamped$\left(\alpha<\omega_{0}\right)$	$y_{h}(t)=e^{-\alpha t}\left[A_{1} \cos (\beta t)+A_{2} \sin (\beta t)\right]$		α from the differential equation $\beta=\sqrt{\omega_{o}^{2}-\alpha^{2}}$
	$y\left(0^{+}\right)=A_{1}+y_{p}\left(0^{+}\right)$		$\frac{d y\left(0^{+}\right)}{d t}=-\alpha A_{1}+\beta A_{2}+\frac{d y_{p}\left(0^{+}\right)}{d t}$
RLC series circuit $\quad \alpha=\frac{1}{2} \frac{R}{L} \quad \omega_{o}=\frac{1}{\sqrt{L C}}$		RLC parallel circuit $\quad \alpha=\frac{1}{2} \frac{1}{R C} \quad \omega_{o}=\frac{1}{\sqrt{L C}}$	

Exam 2 Crib Sheet

Partial Fraction Expansion

Simple Real Poles:

In General:
Expand: $F(s)=\frac{A_{1}}{s-p_{1}}+\frac{A_{2}}{s-p_{2}}+\frac{A_{3}}{s-p_{3}}+\ldots .$.
$A_{n}=\left.\left[\left(s-p_{n}\right) F(s)\right]\right|_{s=p_{n}} ; \quad$ Cover-Up Rule
$\left.\Rightarrow f(t)=) A_{1} \mathrm{e}^{\mathrm{p}_{1} t}+\mathrm{A}_{2} \mathrm{e}^{\mathrm{p}_{2} \mathrm{t}}+\mathrm{A}_{3} \mathrm{e}^{\mathrm{p}_{3} \mathrm{t}}+\ldots ..\right) \mathrm{t} \geq 0$

Real, Equal Poles - Double Pole:

- Real, Equal Poles - Double Pole:

Expand $F(s)=\frac{A_{1}}{s-p_{1}}+. .+\left[\frac{A_{n 1}}{s-p_{n}}+\frac{A_{n 2}}{\left(s-p_{n}\right)^{2}}\right]$
$A_{n 2}=\left.\left[\left(s-p_{n}\right)^{2} F(s)\right]\right|_{s=p_{n}} ;$ Cover-Up Rule
Usually Find $\mathrm{A}_{\mathrm{n} 1}$ from evaluating $\mathrm{F}(0)$ or $\mathrm{F}(1)$
$=>f(t)=\left(A_{1} e^{p_{1} t}+\ldots .+A_{n 1} e^{p_{n} t}+A_{n 2} t^{p_{n} t}\right) t \geq 0$
Simple Poles Repeated Poles

Complex Conjugate Poles

In General:
Expand $\mathrm{F}(\mathrm{s})=\frac{\mathrm{A}_{1}}{\mathrm{~s}-\mathrm{p}_{1}}+\ldots .+\frac{\mathrm{A}}{\mathrm{s}+\alpha-\mathrm{j} \beta}+\frac{\mathrm{A}^{*}}{\mathrm{~s}+\alpha+\mathrm{j} \beta}$
Find A_{1} and $\mathrm{A}=|\mathrm{A}| \underline{\phi}$ from Cover-Up Rule
$\Rightarrow \mathrm{f}(\mathrm{t})=\mathrm{A}_{1} \mathrm{e}^{\mathrm{p}_{\mathrm{t}} \mathrm{t}}+\ldots .+2|\mathrm{~A}| \mathrm{e}^{-\alpha \mathrm{t}} \cos (\beta \mathrm{t}+\phi) \quad \mathrm{t} \geq 0$
Simple Poles Complex Poles

LAPLACE TRANSFORMS		
Signal	$\mathrm{f}(\mathrm{t})$	F(s)
Impulse	$\delta(\mathrm{t})$	1
Step	$u(t)$	$\underline{1}$
Constant	$\mathrm{Au}(\mathrm{t})$	A
Ramp	tu(t)	$\frac{1}{2}$

smosem (8) Rensselaer (3)

LAPLACE TRANSFORMS

Signal $\frac{\mathrm{f}(\mathrm{t})}{}$ Exponential $\mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})$	$\frac{\mathrm{F}(\mathrm{s})}{\mathrm{s}^{1}}$	
Damped Ramp	$\left[\mathrm{te}{ }^{-\alpha \mathrm{t}}\right] \mathrm{u}(\mathrm{t})$	$\frac{1}{(\mathrm{~s}+\alpha)^{2}}$
Cosine Wave	$[\cos \beta \mathrm{t}] \mathrm{u}(\mathrm{t})$	$\frac{\mathrm{s}}{\mathrm{s}^{2}+\beta^{2}}$
Damped Cosine $\left[\mathrm{e}^{-\alpha \mathrm{t}} \cos \beta \mathrm{t}\right] \mathrm{u}(\mathrm{t})$	$\frac{\mathrm{s}+\alpha}{(\mathrm{s}+\alpha)^{2}+\beta^{2}}$	

\qquad

© Rensselaer@

Time Domain	s-Domain
$\mathrm{Af}_{1}(\mathrm{t})+\mathrm{Bf}_{2}(\mathrm{t})$	$\mathrm{AF}_{1}(\mathrm{~s})+\mathrm{BF}_{2}(\mathrm{~s})$
$\int \mathrm{f}(\tau) \mathrm{d} \tau$	$\mathrm{F}(\mathrm{s})$
	s
$\underline{\mathrm{df}(\mathrm{t})}$	$\mathrm{sF}(\mathrm{s})-\mathrm{f}\left(0^{-}\right)$
dt	$\left.\mathrm{sF}(\mathrm{s})-\mathrm{f}{ }^{-}\right)$
$e^{-\alpha t} f(t)$	$\mathrm{F}(\mathrm{s}+\alpha)$
$t \mathrm{f}(\mathrm{t})$	$-\mathrm{dF}(\mathrm{s}) / \mathrm{ds}$
$f(t-a) u(t-a)$	$\mathrm{e}^{-\mathrm{as}} \mathrm{F}(\mathrm{s})$
-* --m	(8) Rensselaer (

LAPLACE TRANSFORMS

Signal	Time Domain	S Domain
	$\delta(t)$	1
Step	$u(t)$	s^{-1}
Constant	$A u(t)$	$A s^{-1}$
Ramp	$t u(t)$	s^{-2}
Exponential	$e^{-\alpha t} u(t)$	$(s+\alpha)^{-1}$
Damped ramp	$t e^{-\alpha t} u(t)$	$\frac{s^{2}+\beta^{2}}{s+\alpha)^{-2}}$
Cosine	$e^{-\alpha t} \cos (\beta t) u(t)$	$\frac{s+\alpha}{(s+\alpha)^{2}+\beta^{2}}$
Damped cosine	$A f_{1}(t)+B f_{2}(t)$	$A f_{1}(s)+B f_{2}(s)$
Sum	$\int_{0}^{t} f(\tau) d \tau$	$s^{-1} f(s)$
Integral	$\frac{d f(t)}{d t}$	$s f(s)-f\left(0^{-}\right)$
Derivative	$e^{-\alpha t} f(t)$	$f(s+\alpha)$
Exponential \times function	$t f(t)$	$-\frac{d f(s)}{d s}$
$t \times$ function	$f(t-a) u(t-a)$	$e^{-a s f(s)}$
Shifted function		

NOTATION: $\mathcal{L}\{f(t)\}(s)=f(s)$ and $\mathcal{L}^{-1}\{f(s)\}(t)=f(t)$

Exam 3 Crib Sheet

Exam 3 Crib Sheet

P - Real power, [W] Q - Reactive power, [VAR] $\|\mathbf{S}\|$-Apparent Power, [VA]	If using $\mathrm{V}_{\text {RMS }}{ }^{2}$ version of equations also divide by $\|\mathrm{Z}\|$ (phasor form) * cos or $\sin \theta$ OR must use complex conjugate of Z (rectangular form)
Capacitive reactance is negative $(\mathrm{Q}<0)$ Inductive reactance is positive $(\mathrm{Q}>0)$ Power produced by the source(s) is equal to the sum of the power produced/stored for each impedance in the circuit	Power factor - a metric over how efficient power consumption/production appears to be $\begin{gathered} 0<\text { power factor }<1 \\ \text { Power factor }=\frac{P}{\|S\|}=\cos \left(\varphi_{S}\right) \end{gathered}$
POWER TRIANGLE $\begin{array}{r} \text { Imaginary } \\ \mathrm{Q}=\|\mathrm{S}\| \sin \theta=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta \end{array}$ jQ Reactive Power; [VAR's] $\|\mathrm{S}\|=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}$ Apparent Power; [VA]	gle $\underline{S}=P+j Q$ Complex Power, \underline{S} $=\|\mathrm{S}\| \cos \theta=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta$ Real Power; [Watts]
Ideal Transformers	
	Primary: source side of the transformer Secondary: load side of the transformer The winding ratio, $N=\frac{N s}{N p}$ Voltage relationship, $V s=N V p$ Current relationship, $I s=\frac{I p}{N}$

Exam 3 Crib Sheet

REFERRAL TO PRIMARY

REFERRAL TO SECONDARY

Complex Power	
$P=I_{R M S}^{2}\|Z\| \cos \theta$	$Q=I_{R M S}^{2}\|Z\| \sin \theta$
$P=I_{R M S}^{2} R(\omega)$	$Q=I_{R M S}^{2} X(\omega)$
$P=V_{R M S} I_{R M S} \cos \theta$	$Q=V_{R M S} I_{R M S} \sin \theta$
Notes	
$R(\omega)=Z_{R E A L}$	
$\theta=$ Angle of Impedance	$X(\omega)=Z_{I M G}$
$\theta>0 \Rightarrow$ I lags V (Ind.)	$\theta<0=\tan ^{-1}\left(\frac{Z_{\text {IMG }}}{Z_{\text {REAL }}}\right)$

Bode Plots Crib Sheet

Bode Plots Crib Sheet

Second Order Circuits

Damping ratio, $\delta=\frac{\alpha}{\omega_{o}}$, a metric of the damping	$\delta>1$, overdamped
α is the attenuation constant ω_{0} is the resonant frequency	$\delta=1$, critically damped
	$\delta<1$, underdamped

Lowpass/Highpass filters
Overdamped and critically damped cases, the Bode plots follow the procedure on the previous page
Underdamped cases, use the critically damped approximation, add a 'correction' of $20 \log \left|\frac{1}{2 \delta}\right|$ at the resonant frequency, ω_{o}

Bandpass filters
Overdamped, the Bode plots follow the procedure on the previous page
Critically damped and underdamped cases
At the resonant frequency, the magnitude Bode plot is 0 dB
The vertex where the stopbands meet is $20 \log |2 \delta|$
Note: The above discussion is for second order circuits only. If there is a gain stage, the Bode plot moves 'up' or 'down' and the dB value of the gain determines the reference for adding corrections/stopband vertices

Cascaded Filters - Magnitude Bode Plots
$\mathrm{H}(\mathrm{s})=\mathrm{H}_{1}(\mathrm{~s}) \mathrm{H}_{2}(\mathrm{~s}) \mathrm{H}_{3}(\mathrm{~s})($ three stages $) \rightarrow$
$\mathrm{dB}=20 \log \left\|\mathrm{H}_{1}(\mathrm{j} \omega) \mathrm{H}_{2}(\mathrm{j} \omega) \mathrm{H}_{3}(\mathrm{j} \omega)\right\|=20 \log \left\|\mathrm{H}_{1}(\mathrm{j} \omega)\right\|+20 \log \left\|\mathrm{H}_{2}(\mathrm{j} \omega)\right\|+20 \log \left\|\mathrm{H}_{3}(\mathrm{j} \omega)\right\|$
angle $=\angle\left[H_{1}(j \omega) H_{2}(j \omega) H_{3}(j \omega)\right]=\angle H_{1}(j \omega)+\angle H_{2}(j \omega)+\angle H_{3}(j \omega)$

Bode Plots Crib Sheet

First order filters

$$
\omega_{\mathrm{C}}=\frac{1}{\mathrm{RC}} \quad \omega_{\mathrm{C}}=\frac{\mathrm{R}}{\mathrm{~L}}
$$

Filter name
Schematic(s)

$\frac{\omega_{c}}{s+\omega_{c}}$
1 pole

High pass filter
$\omega_{\mathrm{c}}=\frac{1}{\mathrm{RC}}$

$\frac{s}{s+\omega_{c}}$
1 zero at zero
1 pole

Bode Plots Crib Sheet

Second order filters

Fow pass filter

