Exam 1 Crib Sheet

Ohm's Law - Linear relationship between voltage and current in a resistor

$$
\mathbf{V}=\mathbf{I} \mathbf{R}
$$

V - Voltage, Volts [V]
I - Current, Amps [A]
R - Resistance, Ohms [Ω]

Node - a connection between two or more components
Loop - a closed path through which current can flow

Power

$$
\mathbf{P}=\mathbf{V} \mathbf{I}
$$

P - Power, Watts [W]

Using the above polarities (which may ot be correct)
For $\mathrm{P}>0$, the component consumes power
For $\mathrm{P}<0$, the component produces power

KCL - Kirchoff's Current Law

$$
\sum_{\mathrm{n}=1}^{\mathrm{N}} I_{\mathrm{n}}=0
$$

The sum of the currents leaving a node is zero (signs determined by polarity).

$$
\mathrm{I} 1-\mathrm{I} 2+\mathrm{I} 3=0
$$

KVL - Kirchoff's Voltage Law

$$
\sum_{\mathrm{n}=1}^{\mathrm{N}} V_{\mathrm{n}}=0
$$

The sum of the voltages around any closed loop is zero (signs determined by polarity).

$$
\mathrm{V} 1+\mathrm{V} 2-\mathrm{V} 3=0
$$

Resistors in parallel - $R_{E Q}=\left(\frac{1}{R 1}+\frac{1}{R 2}\right)^{-1}$

Voltage divider (two resistors in series) $\mathrm{V}_{\mathrm{R} 1}=$ Vsource $\times[\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)]$

Current divider (two resistors in parallel) $\mathrm{I}_{\mathrm{R} 1}=$ Isource $\times[\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)$]

Superposition - For each independent source, turn off all other independent sources to turn off: Voltage source becomes a short circuit and Current source becomes an open circuit) and find the contribution from that source. Sum the contribution from each source to get the parameter of interest.

Exam 1 Crib Sheet

Example includes a Current Controlled Voltage Source (CCVS) as a dependent source and I1 as an independent source.

Thevenin voltage $\left(\mathbf{V}_{\mathbf{T H}}\right)$ - Open circuit the load, find the voltage across the load nodes Norton current ($\mathbf{I}_{\mathbf{N}}$)- Short circuit the load, find the current through that short circuit Thevenin resistance $\left(\mathbf{R}_{\mathbf{T H}}\right)$ - Turn off all independent sources, replace the load with a test voltage (Vtest), find the current (Itest) through the test voltage, $\mathrm{R}_{\mathrm{TH}}=\mathrm{V}$ test/Itest.

$$
\mathbf{V}_{\mathbf{T H}}=\mathbf{I}_{\mathbf{N}} \mathbf{R}_{\mathbf{T H}} \quad \text { (Ohm's Law relationship) }
$$

