Exam 3 Crib Sheet

Exam 3 Crib Sheet

P - Real power, [W] Q - Reactive power, [VAR] $\|\mathbf{S}\|$-Apparent Power, [VA]	If using $\mathrm{V}_{\text {RMS }}{ }^{2}$ version of equations also divide by $\|\mathrm{Z}\|$ (phasor form) * cos or $\sin \theta$ OR must use complex conjugate of Z (rectangular form)
Capacitive reactance is negative $(\mathrm{Q}<0)$ Inductive reactance is positive $(\mathrm{Q}>0)$ Power produced by the source(s) is equal to the sum of the power produced/stored for each impedance in the circuit	Power factor - a metric over how efficient power consumption/production appears to be $\begin{gathered} 0<\text { power factor }<1 \\ \text { Power factor }=\frac{P}{\|S\|}=\cos \left(\varphi_{S}\right) \end{gathered}$
POWER TRIANGLE $\begin{array}{r} \text { Imaginary } \\ \mathrm{Q}=\|\mathrm{S}\| \sin \theta=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta \end{array}$ jQ Reactive Power; [VAR's] $\|\mathrm{S}\|=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}$ Apparent Power; [VA]	gle $\underline{S}=P+j Q$ Complex Power, \underline{S} $=\|\mathrm{S}\| \cos \theta=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta$ Real Power; [Watts]
Ideal Transformers	
	Primary: source side of the transformer Secondary: load side of the transformer The winding ratio, $N=\frac{N s}{N p}$ Voltage relationship, $V s=N V p$ Current relationship, $I s=\frac{I p}{N}$

Exam 3 Crib Sheet

REFERRAL TO PRIMARY

REFERRAL TO SECONDARY

Complex Power	
$P=I_{R M S}^{2}\|Z\| \cos \theta$	$Q=I_{R M S}^{2}\|Z\| \sin \theta$
$P=I_{R M S}^{2} R(\omega)$	$Q=I_{R M S}^{2} X(\omega)$
$P=V_{R M S} I_{R M S} \cos \theta$	$Q=V_{R M S} I_{R M S} \sin \theta$
Notes	
$R(\omega)=Z_{R E A L}$	
$\theta=$ Angle of Impedance	$X(\omega)=Z_{I M G}$
$\theta>0 \Rightarrow$ I lags V (Ind.)	$\theta<0=\tan ^{-1}\left(\frac{Z_{\text {IMG }}}{Z_{\text {REAL }}}\right)$

