ELECTRIC CIRCUITS ECSE-2010
PROF. SHAYLA SAWYER

Lecture 1.1

COMMON SYMBOLS \& UNTTS

Quantity	Symbol	Unit
Time	t	seconds (s)
Frequency	f	hertz (Hz)
Radian Frequency	ω	radians/sec ($\mathrm{rad} / \mathrm{s}$)
Energy	w	joules (J)
Power	p	watts (W)
Charge	q	coulombs (C)
Current	i	amperes (A)
Voltage	v	volts (V)
mweseppiodu "mwpricod		(4)Rensselaer(4)

LECTURE 1.1 AGENDA

-Symbols and Units
-Circuit Variables
-Passive Sign Convention
-Voltage Reference Point - Ground

COMMON PREFIXES

		$\underline{\underline{I}}$	\underline{V}	\underline{P}
10^{12}	Tera	TA	TV	TW
10^{9}	Giga	GA	GV	GW
10^{6}	Mega	MA	MV	MW
10^{3}	kilo	kA	kV	kW
10^{0}	--	A	V	W
10^{-3}	milli	mA	mV	mW
10^{-6}	micro	uA	uV	uW
10^{-9}	nano	nA	nV	nW
10^{-12}	pico	pA	pV	pW

(4)Rensselaer(C)

SYMBOLS \& UNITS

-Will Use International System (SI) of Units:
-6 Fundamental Units in SI:
-meter (m), kilogram (kg), second (s), ampere (A), kelvin (K), candela (cd)

- All Other Units derived from these
-See Tables 1-1 and 1-2 in Text
sayyes@rpi.edu wnw.rpi.edu-samyes (4) Rensselaer (3)

CONSISTENT SETS OF UNITS

CIRCUIT MODELS

- Never Solve a Real Circuit:
- Solve Circuit Model
- Consider a Flashlight:
- Battery, Bulb, Connections, Switch, Case
- Model for Battery: Ideal Voltage Source
- Battery is a DC (Direct Current) Voltage Source
- Model for Connections: Ideal Wires - No Energy Loss
- Model for Bulb: Ideal Resistor
- Linear Relationship between Current and Voltage

VOLTHGE

Voltage $=\mathrm{v}=$ Electrical Potential Energy Difference/Unit
Charge => Potential Difference

$$
\mathrm{v}=\frac{\mathrm{dw}}{\mathrm{dq}}
$$

- Potential Difference Drives Charge
- Units of $\mathrm{v}=$ joules/coulomb = volts (V)
- Must define positive (+) and negative (-) terminals for voltage
- Will use Passive Convention to do this
- Assume polarity for v; Calculate v
- If $\mathrm{v}<0$, then the terminals are reversed

POWER

- Power = p = Electrical Energy/Time

$$
\mathrm{p}=\frac{\mathrm{dw}}{\mathrm{dt}}=\left(\frac{\mathrm{dw}}{\mathrm{dq}}\right)\left(\frac{\mathrm{dq}}{\mathrm{dt}}\right)=\mathrm{v} \mathrm{i}
$$

- Units of $p=$ joules $/ \mathrm{sec}=$ watts (W)
- Circuit Elements may Absorb or Supply Power

CURRENT

ENERGY

- Current $=\mathrm{i}=$ Flow of Charge:

$$
\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}
$$

- Units of $\mathrm{i}=$ coulombs $/ \mathrm{sec}=\operatorname{amperes}(\mathrm{A})$
- Current has Magnitude and Direction
- Direction of Current Arrow = Direction Positive Charge Would Flow $+\longrightarrow$
- Current Flows in a Complete Path
" Assume Direction of i
- If i > 0 => Correct Assumption
" If $i<0=>$ Current Flows Other Way
sawyese@pi.edu wwv.pi.edu-sawyes
(2) Rensselaer

Energy = w = Electrical Energy

$$
\mathrm{w}=\int \mathrm{p} d \mathrm{dt}
$$

- Units of $\mathrm{w}=$ watt-sec (commonly kW -hr)

Circuit Elements may Absorb or Supply Energy

- Will use Power More Frequently than Energy

PASSIVE CONVENTION

- Passive Convention Assumes Current (i) Flows from + to - in a Circuit Element:
- We Will Assume the Passive Convention for All Circuit Elements:
- Can Assume a Polarity for Voltage (v):
- Passive Convention Determines Direction of Current (i)
- OR: Assume Direction for Current (i):
- Passive Convention Determines Polarity of Voltage (v)

VOITAGE REFERENCE POINT

- Voltage is Defined Between 2 Points in Circuit:
- Voltage Difference is What Drives Charge
- For Analysis, Can Always Choose Voltage at 1 Point as Reference
- Usually Assume Voltage at Reference Point is 0 Volts => GROUND

VOITAGE REFERENCE POINT

PASSIVE CONVENTION

- Define v and i using Passive Convention:
- p = vi = Power Absorbed:
- If $\mathrm{p}=\mathrm{v} \mathrm{i}>0=>$ Element Absorbs Power
- If $\mathrm{p}=\mathrm{v} \mathrm{i}<0$ => Element Supplies Power
- If Element Absorbs Power => LOAD
- If Element Supplies Power => SOURCE

ELECTRIC CIRCUITS ECSE-2010
PROF. SHAYLA SHWYER

Lecture 1.2

LECTURE 1.2 AGENDH

- Circuits \& Devices
-Linear Resistor - Ohm's Law
- Open/Short Circuits - Ideal Switches
-Ideal Voltage and Current Sources

CIRCUIT ELEMENTS

$\mathrm{p}=\mathrm{v} \mathrm{i}=$ Power Absorbed by Device
Device described by plot of i vs. v (or v vs. i)

LINEAR RESISTOR

- A Linear Resistor is the Most Common Element Used in Circuits:
-Symbol = R
- Circuit Model =
$\mathrm{R}=$ Resistance $=\frac{\rho \mathrm{L}}{\mathrm{A}}$ (for cylinder);
$\rho=$ Resistivity of Material, L = Length,
A = Cross-sectional Area
savyeseppi.edu www.rpi.edu-sawyes Rensselaer

LINEAR RESISTOR

G $=$ Conductance in Siemens ($1 /$ ohms)
Rensselaer(

OHM'S LAW

- Important Concept - Will Always Use
- Plot of v vs. i for Resistor is LINEAR
- Goes through v $=0, i=0$
-Slope of Line $=\mathrm{v} / \mathrm{i}=\mathrm{R}$;
- Units of R: Ohms = volts/amp (Ω)
- Equation of Straight Line Thru Origin:
- =>v = iR
- => Ohm's Law
samposeppicou
umvepioducu-samyes
(4) Rensselaer (2)

OPEN CIRCUIT

Equivalent to $\mathrm{R} \rightarrow \infty$

sawyes@rpi.du

SHORT CIRCUIT

Equivalent to $\mathrm{R} \rightarrow 0$

$\mathrm{v}=0$
-
Rensselaer

IDEAL SWITCH - OPEN

Open Switch \rightarrow Open Circuit

(3) Rensselaer (B)

IDEHL SWITCH - CLOSED

Closed Switch \rightarrow Short Circuit

(2) Rensselaer(0)

IDEAL SOURCES

- Ideal Voltage Source:
- Model = Circle with + and - voltage terminals
- Voltage always the same across voltage source
- Can supply any current
- Current through voltage source can be anything
- Ideal Current Source:
- Model = Circle with Current Arrow
- Current always the same from current source
- Can supply any voltage
- Voltage across current source can be anything
\qquad

ELECTRIC CIRCUITS ECSE-2010
PROF. SHAYLA SAWYER

Lecture 1.3

LECTURE 1.3 AGENDA

-Definitions
-Reference Marks
-Kirkoff's Laws
-Practice Problems

DEFINITIONS

- Circuit: Interconnection of electrical devices
-Node: Electrical juncture of 2 or more electrical devices
-Loop: Closed path formed by tracing through an ordered sequence of nodes without passing through any node more than once

RensselaerO

KIRCHHOFY'S LAWS

- Kirchhoff's Current Law:
- The algebraic sum of the currents entering a node is zero at every instant

$$
\sum \text { i's entering a node }=0
$$

OR: \sum i's out of a node $=0$
OR: $\sum \mathrm{i}$'s entering a node $=\sum \mathrm{i}$'s out of a node
(2) Rensselaer

KIRCHHOFFYS CURRENT LHW

KIRCHHOFF'S LAWS

-Kirchhoff's Voltage Law:
-The algebraic sum of all the voltages around a loop is zero at every instant

$$
\sum \mathrm{v} \text { 's around a loop }=0
$$

Can go around a loop in either direction

KIRCHHOFF'S LAWS

$$
\begin{array}{ll}
v_{1}+v_{2}=10 & v_{1}+v_{2}=10 \\
v_{2}=v_{3} & 6 v_{1}-5 v_{2}=0 \\
\frac{v_{1}}{2}=\frac{v_{2}}{4}+\frac{v_{3}}{6} & \\
v_{1}=\frac{50}{11} \mathrm{~V} ; \mathrm{v}_{2}=\frac{60}{11} \mathrm{~V}=\mathrm{v}_{3} \\
i_{1}=\frac{50}{22} \mathrm{~A}=-\mathrm{i}_{\mathrm{s}} ; i_{2}=\frac{30}{22} \mathrm{~A} ; i_{3}=\frac{20}{22} \mathrm{~A}
\end{array}
$$

(4)Rensselaer

