ELECTRIC CIRCUITS ECSE-2010

Lecture 3.1

LECTURE 3.1 AGENDA

- Introduction to solving tools
- Node voltage analysis basics
- Node voltage analysis examples
- Cramer's Rule

MORE SOLVING TOOLS

- Node Voltage Analysis
- Systematic method for solving for all unknown voltages (and hence all unknown currents) in any circuit
- Mesh Current Analysis
- Systematic method for solving for all unknown currents (and hence all unknown voltages) in any circuit

NODE VOLTHEE ANALYSIS

- A systematic technique for solving ANY
linear circuit:
- Will Always Work!
- Not always the easiest technique
- Will also learn mesh current analysis:
- Can use either technique; But cannot mix
-These are very powerful techniques!!
- Will use for rest of course

NODE VOLTHCE ANALYSIS

Procedure:

1. Label all node voltages, known and unknown, identifying variables ($\mathrm{v}_{1}, \mathrm{v}_{2}$, etc.)
a. \# of Unknown Node Voltages = \# of Nodes - \# of Voltage Sources - 1 (Reference)
b. Example: 4 Nodes - 1 Voltage Source $-1=2$ Unknown Node Voltages; $\mathrm{v}_{1}, \mathrm{v}_{2}$
2. Write a KCL at each unknown node voltage
a. Best to use: Sum of currents out of node $=0$
b. Makes equations "cleaner"
c. Express i's in terms of node voltages
(4) Rensselaer (3

EXAMPLE

Step 1: Label All Node Voltages
Known and Unknown
2 Unknown Node Voltages, $\mathrm{v}_{1}, \mathrm{v}_{2}$

EXAMPLL

If Find $\mathrm{v}_{1}, \mathrm{v}_{2}$, All Voltages and Currents Can Be Determined
\qquad (6) Rensselaer③

EXAMPLE

$\mathrm{v}_{\mathrm{x}}=10-\mathrm{v}_{1}$
$\mathrm{v}_{\mathrm{z}}=\mathrm{v}_{1}-0=\mathrm{v}_{1}$
$\mathrm{v}_{\mathrm{y}}=\mathrm{v}_{1}-\mathrm{v}_{2}$

$$
\mathrm{v}_{\mathrm{A}}=0-\mathrm{v}_{2}=-\mathrm{v}_{2}
$$

\qquad © Rensselaer (

EXAMPLE

EXAMPLE

KCL at Node v_{1} :

$$
i_{1}+i_{2}+i_{3}=0 \quad \frac{\mathrm{v}_{1}-10}{2}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{1}+\frac{\mathrm{v}_{1}-0}{2}=0
$$

EXAMPLE

$\frac{\mathrm{v}_{1}-10}{2}+\frac{\mathrm{v}_{1}-\mathrm{v}_{2}}{1}+\frac{\mathrm{v}_{1}}{2}=0 \overline{\overline{\overline{\mathrm{v}}_{1}}}\left(\frac{1}{2}+\frac{1}{1}+\frac{1}{2}\right)+\mathrm{v}_{2}\left(-\frac{1}{1}\right)=5$

1 Equation, 2 Unknowns $2 \mathrm{v}_{1}-\mathrm{v}_{2}=5$

wnw.rpi.edu-sawyes (20)Rensselaer (c)

EXAMPLE

NODE VOLTAGE ANALYSIS

- Example:

KCL at $\mathrm{v}_{1}: \frac{\left(\mathrm{v}_{1}-10\right)}{2}+\frac{\left(\mathrm{v}_{1}-0\right)}{2}+\frac{\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)}{1}=0$

$$
\Rightarrow 2 v_{1}-v_{2}=5
$$

KCL at $v_{2}: \frac{\left(v_{2}-v_{1}\right)}{1}+(-3)=0$

$$
\Rightarrow\left(-v_{1}+v_{2}\right)=3
$$

NODE VOLTACE ANALYSIS

- Example:

Node $\mathrm{v}_{1} \Rightarrow 2 \mathrm{v}_{1}-\mathrm{v}_{2}=5$
Node $v_{2} \Rightarrow-v_{1}+v_{2}=3$

$$
\begin{aligned}
\text { Add: } & \Rightarrow \quad \mathrm{v}_{1}=8 \mathrm{~V} \\
& \Rightarrow \quad \mathrm{v}_{2}=11 \mathrm{~V}
\end{aligned}
$$

Can now Find All Voltages and All Currents

NODE VOLTAGE ANALYSIS

- Writing a KCL at each unknown node voltage will always provide \# of linear equations = \# Unknowns:
- Can always solve for $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots$.
- Can solve for all currents after solving for all Unknown Node Voltages
- Node Voltage Analysis will ALWAYS work
- If cannot find an easier method => Use Node Voltage Analysis

CRAMER'S RULE

$$
\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]
$$

Define $\Delta=\left|\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

Rensselaer(0)

CRAMER'S RULE

Define $\Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|$;

$$
\Delta_{2}=\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| \text {, etc }
$$

ELECTRIC CIRCUITS ECSE-2010

LECTURE 3.2 AGENDA

- Mesh current analysis basics
- Mesh current analysis examples
- Circuit solver

Lecture 3.2

Qensselaer

MESH CURRENT ANHIYSIS

Procedure:

1. Label and define ALL Mesh Currents
a. Unknown Mesh Currents and currents from current sources
b. \# of Unknown Mesh Currents = \# of Meshes \# of Current Sources;
c. Example: 2 Meshes - 0 Current Sources $=2$ Unknown Mesh Currents; i_{1} and i_{2}
2. Write a KVL around each Unknown Mesh Current
3. Sum of voltages due to all Mesh Currents $=0$
4. Best to go backwards around current arrow
5. Express v's in terms of Mesh Currents using Ohm's Law
(2)Rensselaer

MESH CURRENT ANALYSIS

- What is a mesh and what is a mesh current?
- Mesh = "Window Pane" in Circuit
- Mesh Current = A current defined as flowing all the way around a mesh
- Some Circuit Elements will have more than I

Mesh Current flowing in them

- Mesh Currents must satisfy KCL
- Must define both Unknown Mesh Currents and known currents from current sources
- May choose any direction for Unknown Mesh Current
samyes@pi.edu wwwrpi.edu/-sawyes Rensselaer(c)

EXAMPLE

Ladder Circuit:
Could Solve Using Series/Parallel Reduction Let's Solve Using Mesh Current Analysis
mwwrpiewi-sampes
(4) Rensselaer

EXAMPLE

2 "Window Panes" => 2 Meshes
Define Two Mesh Currents, i_{1} and i_{2}
Directions chosen for i_{1} and i_{2} are arbitrary

⿰es@pi.odu

EXAMPLE

i_{1} is the only current in $R_{1}, V_{\text {in }}$
i_{2} is the only current in R_{3}, R_{4}
Both i_{1} and i_{2} flow in $R_{2} \quad i_{1}$ flows Down; i_{2} flows Up Total Current Down $=i_{1}-i_{2}$
(2)RensselaerO

EXAMPLE

KVL Around Mesh $\mathrm{i}_{1}: \mathrm{i}_{1} \mathrm{R}_{2}-\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{i}_{1} \mathrm{R}_{1}-\mathrm{V}_{\mathrm{in}}=0$
KVL Around Mesh $i_{2}: i_{2} R_{4}+i_{2} R_{3}+i_{2} R_{2}-i_{1} R_{2}=0$
swnes@rie edu

EXAMPLE

$\mathrm{i}_{1}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mathrm{i}_{2}\left(-\mathrm{R}_{2}\right)=\mathrm{v}_{\mathrm{in}} \quad 2$ Equations, 2 Unknowns $i_{1}\left(-R_{2}\right)+i_{2}\left(R_{1}+R_{2}+R_{3}\right)=0 \quad$ Can Solve for i_{1} and i_{2} : www.rpi.odu-sawyes © Rensselaer ©

EXAMPLE

In Matrix Form:
$\left[\begin{array}{lc}\mathrm{R}_{1}+\mathrm{R}_{2} & -\mathrm{R}_{2} \\ -\mathrm{R}_{2} & \mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\end{array}\right]\left[\begin{array}{l}\mathrm{i}_{1} \\ \mathrm{i}_{2}\end{array}\right]=\left[\begin{array}{l}\mathrm{v}_{\text {in }} \\ 0\end{array}\right]$

$$
\begin{aligned}
{[\mathrm{R}] } & {[\mathrm{I}] } & =\left[\mathrm{V}_{\mathrm{s}}\right] \\
\text { ohms } & \mathrm{amps} & =\text { volts }
\end{aligned}
$$

EXAMPLE

In Matrix Form:

$$
\left[\begin{array}{lr}
\mathrm{R}_{11} & -\mathrm{R}_{12} \\
-\mathrm{R}_{21} & \mathrm{R}_{22}
\end{array}\right]\left[\begin{array}{l}
\mathrm{i}_{1} \\
\mathrm{i}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{v}_{\text {in }} \\
0
\end{array}\right]
$$

Diagonal Terms are ≥ 0
Off-Diagonal Terms are ≤ 0
Matrix is Symmetric ($\mathrm{R}_{12}=\mathrm{R}_{21}$, etc.)
Only for $\sum_{\text {Backwards Around Arrow }} \mathrm{v}^{\prime} \mathrm{s}=0$
(3) Rensselaer (B)

SUMMARY

- Node Voltage Analysis:

- Label All Node Voltages, Known and Unknown, Identifying Variables ($\mathrm{v}_{1}, \mathrm{v}_{2}$, etc.)
- \# of Unknown Node Voltages = \# of Nodes - \# of Voltage Sources - 1 (Reference)
- Write a KCL at Each Unknown Node Voltage
- Best to Use: Sum of Currents Out of Node = 0
- Express i's in terms of Node Voltages
- Solve Algebraic Equations for Node Voltages
- Use MAPLE, MATLAB, Cramer's Rule, etc
- Solve for Currents Using Ohm's Law

SUMARRY

- Mesh Current Analysis:

- Label and Define ALL Mesh Currents

Unknown Mesh Currents and Currents from Current Sources

- \# of Unknown Mesh Currents = \# of Meshes \# of Current Sources
- Write a KVL around Each Unknown Mesh Current
- Sum of Voltages due to All Mesh Currents = 0
- Best to Go Backwards Around Current Arrow
- Solve Algebraic Equations for Mesh Currents (Maple, Cramer's Rule, etc.)
- Solve for Voltages Using Ohms Law

MESH ANHIYSIS -SOLVING PROCEDURE

1. Identify all loops
2. Locate all current sources
3. If possble, simplify the problem by redrawing the circuit with current sources on the 'outside'
4. Label the currents in each loop
5. Assign the current directly if a current source is on the 'outside'
6. Assign a relative current expression if the current source is shared by two loops.
7. Write a KVL expression for each loop
8. If a current source is shared by two loops, combine them to form a larger loop.
9. Use Ohm's Law to write the KVL in terms of currents
10. Set up the linear system
11. Solve the matrix

CIRCUIT SOLTVER

- An Interactive Learning Module (ILM) developed by Academy for Electronic Media
- 1 of many ILM's developed at Rensselaer
- Link to Modules on Course WebCT Homepage
- Or via:
http://www.academy.rpi.edu/projects/ccli
- Click on Circuit Solver
" "2 Mesh" is same as our Example
- We'll do Activity 4-2 using circuit solver (number on ILM is 4-3)
sawveseppiodu www.rpi.odu-sawyes
(4)Rensselaer@

