ELECTRIC CIRCUTS

 ECSE-2010
LECTURE 4.1 AGENDH

- Linearity
- Superposition Principle
- Superposition Example
- Dependent Sources

Lecture 4.1 \qquad

ACTIVITY 5-1A

4 Nodes - 2 Voltage Sources - 1 Ref 1 Unknown Node Voltage, v

LINEARITY

- If have multiple inputs
- Input $=x_{1}+x_{2}+x_{3}$
- Output must be additive
$-\mathrm{y}=\mathrm{k}_{1} \mathrm{x}_{1}+\mathrm{k}_{2} \mathrm{x}_{2}+\mathrm{k}_{3} \mathrm{x}_{3}$
-Leads to Superposition Principle
- Can use only for multiple inputs to a linear circuit www.pp. odu-sayyes Rensselaer (

SUPERPOSITION

- Technique to use when there is more than 1 Independent Source in a Linear Circuit:
- Not always the best technique to use
- Will learn lots of techniques; Experience helps us learn which technique to choose

SUPERPOSITION

- Find Output due to each independent source with all other independent sources set $=0$; then Add to find Total Output:
- Source of 0 is called a "dead source"
- "Dead" voltage source $=0 \mathrm{~V}=$ Short Circuit
- "Dead" current source $=0$ A $=$ Open Circuit
(4) Rensselaer (

LECTURE 4.2 AGENDA

- Dependent sources overview
- Dependent sources example

ACTIVITY 5-1A

4 Nodes - 2 Voltage Sources - 1 Ref 1 Unknown Node Voltage, v

DEPENDENT SOURCES

- 2 Types of sources for circuit models:
- Independent Sources
- Both voltage and current sources
- Usually model with ideal sources
- Dependent Sources
- Also called controlled sources
- Both voltage and current sources

Rensselaer(C)

DEPENDENT SOURCES

- Dependent/Controlled Source:
- Voltage or current source whose value depends on the v or i at some other point in the circuit
- Cannot buy a dependent source!
- Used to model the behavior of electronic devices
- Almost all interesting or useful circuits contain Dependent Sources

DEPENDENT SOURCES

- Dependent source cannot be the only source of energy in a complete circuit
- Need an Independent Source to create the controlling current or voltage
- All circuit models for transistors and other electronic devices involve Dependent Sources
- Whole field of analog electronics is based on dependent sources
sawyes@rpi.edu www.pi.edu/-sayyes
Rensselaer(

EXAMPLE

BJT Transistor
$\mathrm{i}_{\mathrm{C}}=24 \mathrm{i}_{\mathrm{B}}$
$\mathrm{v}_{\mathrm{BE}}=0.6 \mathrm{~V}$

Circuit Model for a BJT
(2)Rensselaer

DEPENDENT SOURCES

- Symbol:

- Diamond = Symbol for Dependent Source
- Circle = Symbol for Independent Source
- 4 Types of Dependent Sources
- Voltage Controlled Voltage Source (VCVS), E
- Current Controlled Current Source (CCCS), F
- Voltage Controlled Current Source (VCCS), G
- Current Controlled Voltage Source (CCVS), H

VCVS

Symbol for Dependent Source

Voltage Controlled Voltage Source (VCVS)
sawyes@pi.edu www.rpi.du-samyys
(4) Rensselaer (

EXAMPLE 4-1

- Determine the current, voltage, and power delivered to the $500-\Omega$ output load. Then find the power gain defined as $\mathrm{p}_{\circ} / \mathrm{p}_{\mathrm{s}}$.

- Current Controlled Current Source (CCCS), F
sawyes@piodu wwvpiodidu/sanyes
(6) Rensselaer@

EXAMPLE 4-1

- Current Controlled Current Source (CCCS), F

sawyes@ppi.edu
mww.ppi.edu-sanyyes
QRensselaer

SUPERPOSITION

-Total Output = Sum of all Outputs due to each independent source with all other independent sources "dead":

- Simply Add them
- Works only for Linear Circuits; Only kind we will consider

EXAMPLE

16 V

10 A
Find i_{1} using Superposition

EXAMPLE

Output Due to 16 V Source

$0 \mathrm{~A}=$ Open Circuit

$$
i_{1-1}=0
$$

sawyes@rpi.du
wi.t.ion sampos
Rensselaer (0)

EXAMPLE

Output Due to 10 A Source

[^0]Rensselaer@

EXAMPLE

Output Due to 10 A Source

Rensselaer

EXAMPLE

Output Due to 5 V Source

EXAMPLE

$$
\mathrm{i}_{1}=0+5+.5=5.5 \mathrm{~A}
$$

HCTIVITY 5-2

HCTIVITY 5-2

ACTIVITY 5-2

[^0]: savyese@pi.edu www.pi.edu-sawyes

