ELECTRIC CIRCUITS ECSE-2010

Lecture 5.1

LECTURE 5.1 AGENDA

- Wheatstone bridge
- Norton/Thevinin equivalent circuits
- Norton/Thevinin equivalent circuit example

WHEATSTONE BRIDGE

Connect Voltmeter Across "Bridge"
Adjust R_{3} such that VM reads 0 V
Provides Measurement of R_{u}
Rensselaer

WHEATSTONE BRIDGE

When Bridge is Balanced, $\mathrm{i}_{\mathrm{M}}=0 ; \mathrm{v}_{\mathrm{M}}=0$ Meter Draws No Current
(1) Rensselaer

WHEATSTONE BRIDGE

ELECTRIC CIRCUITS ECSE-2010

Lecture 5.2

LECTURE 5.2 AGENDA

- Maximum signal transfer (Power)
- Interface circuit design
\qquad

MAXIMUMM SIGNAL TRANSFER

MAXIMIUM SIGNAL TRANSFER

Want to get Maximum Power delivered to Load For fixed $\mathrm{v}_{\mathrm{T}}, \mathrm{R}_{\mathrm{T}}$; Want to Choose R_{L} to get Maximum Power to R_{L}

MAXIMUM SIGNAL TRANSFER

$\mathrm{p}_{\mathrm{L}}=\mathrm{v}_{\mathrm{L}} \mathrm{xi}_{\mathrm{i}}$

$\mathrm{v}_{\mathrm{L}}=\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{L}}}\right) \mathrm{v}_{\mathrm{T}}$
$p_{L}=\frac{R_{L} v_{T}^{2}}{\left(R_{T}+R_{L}\right)^{2}}$
sawyes@pi.edu
www.pi.edu-sawyes
(4) Rensselaer (3

MAXIMIUM SIGNAL TRANSFER

Solve for R_{L}
$\frac{\mathrm{dp}_{\mathrm{L}}}{d \mathrm{R}_{\mathrm{L}}}=\frac{\mathrm{R}_{\mathrm{T}}-\mathrm{R}_{\mathrm{L}}}{\left(\mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{L}}\right)^{3}} \mathrm{v}_{\mathrm{T}}^{2}=0$
For $\mathrm{p}_{\text {max }}$; Choose $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{T}}$
sawveseppi.odu \qquad
www.pi.edur-sawyes (2Rensselaer ©

MHXIMUM SIGNAL TRANSFER

For Maximum Power Transfer; Choose $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{T}}$ Best You Can Do

MHXIMUM SIGNAL TRANSEER

$\mathrm{p}_{\text {max }}=\frac{\mathrm{v}_{\mathrm{T}}^{2}}{4 \mathrm{R}_{\mathrm{T}}}=\frac{\mathrm{i}_{\mathrm{N}}^{2} \mathrm{R}_{\mathrm{T}}}{4}$
Efficiency $_{\text {max }}=\frac{\mathrm{p}_{\text {max }}}{\mathrm{p}_{\text {source }}}=50 \%$

INTERFACE CIRCUIT DESIGN

Often Need an Interface Network or Interface Circuit to Properly "Match" a Source Network to a Load Network

DESIGN EXAMPLE

Design two versions of the interface circuit below that deliver
$\mathrm{V}_{2}=5 \mathrm{~V}$ to the $200-\Omega$ load. Etraluate the two designs in terms of
power loss in the interface circuit.

DESIGN EXAMPLE

$>\ll$

LOHD NETWORKS

Any Load Network may be Replaced by an Equivalent Resistance, R_{eq}
samyese@pi.edu ww.ppi.edu-samyes
(1)

LOHD NETWORKS

-Resistive (linear) circuit

- No independent sources-(Voltage or Gurrent) - May have dependent sources (VCVS, CCVS, VCCS, CCCs)
© Rensselaer ©

SOURCE NETWORIS

i

Linear Circuit
At Least One Independent Source
May have Dependent Sources
May have Resistors (2)Rensselaer ©

THEVENIN'S THEOREM

$\mathrm{v}_{\mathrm{T}}=\mathrm{v}_{\mathrm{oc}}=$ Open Circuit Voltage
$\mathcal{V}_{\mathrm{T}}=\mathrm{v}_{\mathrm{oc}}=\mathrm{v}$ when $\mathrm{i}=0$
$\mathrm{R}_{\mathrm{T}}=$ Thevenin Resistance
(6)Rensselaer (B)

NORTON'S THEOREM

sawyos@rpi.edu
www.pi.edu-samyys
(2)Rensselaer (라

NORTON'S THEOREM

$$
\mathrm{i}_{\mathrm{N}}=\mathrm{i}_{\mathrm{sc}}=\text { Short Circuit Current }
$$

$\mathrm{i}_{\mathrm{N}}=\mathrm{i}_{\text {sc }}=$ Current Flowing from + to - when $\mathrm{v}=0$
$\mathrm{R}_{\mathrm{N}}=$ Norton Resistance

(2Rensselaer©

EQUIVHLENT CIRCUITS

Thevenin Equivalent Circuit Norton Equivalent Circuit
From Source Conversions: $i_{N}=\frac{v_{T}}{R_{T}}$ and $R_{N}=R_{T}$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}=\mathrm{v}_{\mathrm{oc}}=\text { Open Circuit Voltage } \\
& \mathrm{i}_{\mathrm{N}}=\mathrm{i}_{\mathrm{sc}}=\text { Short Circuit Current }
\end{aligned}
$$

saxyeserpi.edu
wnv.rpi.edu-samyes
Rensselaer (1)

THEVENIN RESISTANCE

Source Network with All Independent Sourse Set $=0$ Dead Source Network = Load Network $R_{T}=R_{\text {eq }}$ of Dead Source Network
\qquad
wwur.pi.edu-sawyes
(4)Rensselaer(b)

THEVENIN/NORTON SOURCES-SOLVING PROCEDURE

```
    1. Thevenin-Remove the load
        Find the voltage ( }\mp@subsup{\textrm{V}}{\textrm{oc}}{}=\mp@subsup{\textrm{V}}{\textrm{TH}}{}\mathrm{ ) between the two nodes where the load
        was connected, using any method
    Norton-Remove the load and connect a short circuit (wire) between
    the two nodes where the load was attached
        1. Find the current (I}\mp@subsup{I}{sc}{}=\mp@subsup{I}{N}{}\mathrm{ through that short circuit (wire), using
        any method
```



```
        #N KCL a
        can do KCL at a node to find current through an individual wir
        connecting components.
    MyS}\mp@subsup{}{}{3.}\quad\mathrm{ Resistance - Remove the load
        Apply a test voltage source, }\mp@subsup{\textrm{V}}{\mathrm{ test,}}{}\mathrm{ , at the nodes where the load was
            Short circuit all other independent voltage sources and open
                circuit all other independent current sources.
            3. Find the current through that source, }\mp@subsup{\mathbf{I}}{\mathrm{ test}}{
            4. }\mp@subsup{\mathbf{R}}{\textrm{EQ}}{=}=\mp@subsup{\mathbf{R}}{\textrm{N}}{\prime}=\mp@subsup{\mathbf{R}}{\textrm{TH}}{}=\mp@subsup{\mathbf{V}}{\mathrm{ test }}{\prime}/\mp@subsup{\mathbf{I}}{\mathrm{ te}}{
```

 wnw.pi.edu'-sayyes
(2Rensselaer

