ELECTRIC CIRCUTS ECSE-2010

LECTURE 6.1 AGENDA

- Amplifier circuit model
- Ideal Operational Amplifiers (Op Amps)

VOLTAGE AMPLIFIER

Want $\mathrm{v}_{\mathrm{o}} \approx \mathrm{A} \mathrm{v}_{\mathrm{s}} ; \mathrm{A}=$ Voltage Gain
sawyes@rpi.odu
\cdots
(2)Rensselaer (()

AMPLIFIER CIRCUIT MODEL

AMPLIFIER CIRCUIT

"Add source network at input:
-Model with Thevenin Equivalent circuit
${ }^{-} \mathrm{v}_{\mathrm{T}}$ in series with R_{T}
-Add load network at output:
-Model with $R_{\text {eq }}$ wwv.ppi.odu-sawyes
(B Rensselaer ((

AMPLIFIER CIRCUIT

$v_{1}=\left(\frac{R_{1}}{R_{1}+R_{T}}\right) v_{T} \quad v_{o}=\left(\frac{R_{\text {eq }}}{R_{o}+R_{\text {eq }}}\right) A v_{1}$
mompant
samyes@pi.edu www.rpi.edu-sawyes
© Rensselaer (

ELECTRIC CIRCUITS ECSE-2010

Lecture 6.2

LECTURE 6.2 AGENDA

- Op Amps

Without negative feedback

- With negative feedback (Circuits)
- OP Amp CAD Interactive Learning Module (ILM)

COMPARATOR

OP AMP CIRCUITS

- For most Op Amp circuits, we add negative
feedback:
- Circuit connection between v_{O} and v_{N}
- Helps to keep Op Amp in Linear Range
- This will help keep $\mathrm{v}_{\mathrm{P}}=\mathrm{v}_{\mathrm{N}}$
- Output, $\mathrm{v}_{\mathrm{O}}=\mathrm{A}\left(\mathrm{v}_{\mathrm{p}}-\mathrm{v}_{\mathrm{N}}\right)$, will be finite, as long as its magnitude is less than $V_{\text {CC }}$
- Output can never be greater than $\pm \mathrm{V}_{\mathrm{CC}}$

VOLTAGE FOLLOWER

Draws No Current from Source $\quad v_{0}=v_{S}$ Buffer, or Isolation Amplifier (6)Rensselaer(c)

NON-INVERTING AMPLIFIER

OP AMP CAD ILM

- Go to WebCT Site, Click on Modules
- Click on Op Amp CAD Module
- Move top slider to choose type of circuit
- Inverting, Non-Inverting Amplifier
- Differential Amplifier, Comparator
- Integrator, Differentiator (Later in Course)
http://www.academy.rpi.edu/projects/ccli/module display.php?ModulesID=11

OP AMP CAD MODULE

- Move slider to Non-Inverting Amplifier
- Change V_{DC} to $+5,-5 \mathrm{~V}$
- => Observe Clipping
- Change f from 1 kHz to 5 kHz
- Same effect as changing Gain

OP HMP CAD ILM

- Move slider to Inverting Amplifier
- Change R_{F} from 1 k to 4 k
- => Observe Clipping
- Change R_{F} from 4 k to 10 k
- => Observe \approx Square Wave
- Change f from 1 kHz to 5 kHz

OP HMP CAD MODULE

- Move slider to Differential Amplifier
- Change $\mathrm{R}_{\mathrm{F}}, \mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{f}$
- Observe what happens
- Will Discuss Differential Amplifiers More Next Class

Want Input Resistance \square Large (4) Rensselaer (2)

AMPLIFIER CIRCUIT

samyes@pi.edu www.rpi.edu-sawves
(3) Rensselaer (ㅁ)

AMPLIFIER CIRCUIT

If: $\begin{aligned} \mathrm{R}_{1} \gg \mathrm{R}_{\mathrm{T}} \\ \mathrm{R}_{\mathrm{e}} \gg \mathrm{R}_{\mathrm{o}}\end{aligned}=>\frac{\mathrm{v}_{\mathrm{O}}}{\mathrm{v}_{\mathrm{T}}}=$ Voltage Gain $\approx \mathrm{A}$ $\mathrm{R}_{\mathrm{eq}} \gg \mathrm{R}_{\mathrm{O}} \quad \mathrm{V}_{\mathrm{T}} \quad$ Design Challenge
sawyes@pi.edu
www.pi.edu-sawyes
(4) Rensselaer (

OPERATIONAL AMPLIFIERS

- An Operational Amplifier is a High Gain Voltage Amplifier that can be used to perform
Mathematical Operations:
- Addition and Subtraction
- Differentiation and Integration
- Other Functions as Well
- Op Amps are the building blocks for many, many electronic circuits

TRANSFER CHARACTERISTIC

IDEAL OP AMP

Model for Real Op Amp

Ideal Op Amp has:

$$
\text { Input Resistance }=\mathrm{R}_{1} \rightarrow \infty \Omega
$$

Output Resistance $=\mathrm{R}_{\mathrm{o}} \rightarrow 0 \Omega$

$$
\text { Gain }=\mathrm{A} \rightarrow \infty
$$

IDEAL OP AMP

