ELECTRIC CIRCUITS ECSE-2010

Lecture 8.1

LECTURE 8.1 AGENDA

- Signals and waveforms
- DC waveforms
- Unit step functions
- Ramp functions
- Exponential functions
- Sinusoidal functions

SICNALS AND WAVEFORMS

- To date, we have looked at circuits with only DC inputs:
- DC voltage sources, DC current sources
- Independent and dependent sources
- DC steady state (No changes with time)
- Have developed circuit analysis techniques for resistive circuits:
- DC inputs
- Circuits containing independent sources, dependent sources and resistors

Rensselaer

SIGNALS AND WHVEFORMS

- Circuit analysis techniques:
- KCL and KVL
" Series/parallel resistors
- Voltage and current dividers
- Equivalent resistance
- Source conversion
- Node voltage analysis
- Mesh current analysis
- Thevenin/Norton equivalent circuits
- Linearity and superposition

SIGNALS AND WAVEFORMS

- Almost all interesting circuits involve inputs that change with time
- The rest of the course is focused on finding the output, $y(t)$, given the input, $x(t)$
- Will also add capacitors and inductors to our circuit elements

ELECTRIC CIRCUITS

$\xrightarrow[\mathrm{x}(\mathrm{t})]{\text { Input }}$ Circuit $\xrightarrow[y]{\mathrm{y}(\mathrm{t})}$
$x(t)$ can be a
Current or Voltage
$\mathrm{y}(\mathrm{t})$ can be a
Current or Voltage
So Far, $x(t)=$ Constant $(D C) \quad \Rightarrow y(t)=$ Constant $(D C)$

SIGNALS AND WAVEFORMS

- Signal = Any Input to a Circuit:
- Waveform = Equation or Graph that Defines a Signal as a Function of Time:

UNIT IMPULSE FUNCTION

UNIT IMPULSE FUNCTION$\delta(\mathrm{t}) \AA_{(1)}$	
$\delta(\mathrm{t})=\frac{\mathrm{du}(\mathrm{t})}{\mathrm{dt}}$	$\begin{aligned} & \delta(\mathrm{t})=0 \text { for } \mathrm{t} \neq 0 \\ & \int_{-\infty}^{\mathrm{t}} \delta(\mathrm{x}) \mathrm{dx}=\mathrm{u}(\mathrm{t}) \end{aligned}$ (4) Rensselaer

IMPULSE FUNCCTION

(2)Rensselaer

SAWTOOTH WAVEFORM

Sum of Ramp Functions
(4)Rensselaer○

TRIANGULAR WAVE

(2)Rensselaer

EXPONENTIAL FUNCTION

(3)RensselaerO

SINUSOIDAL WHVEFORM

See Pages 219-226 Thomas and Rosa
The figure shows an oscilloscope display of a sinusoid. The vertical axis
(amplitude) is calibrated at 5 V per
division, and the horizontal axis (time) is calibrated at 0.1 ms per division. Derive an expression for the sinusoid displayed an expr

SINUSOIDAL WHVEFORM

All of Unit IV will be on AC Steady State
All Inputs are Sinusoidal
All Steady State Outputs are Sinsoidal

ELECTRIC CIRCUITS ECSE-2010

Lecture 8.2

LECTURE 8.2 AGENDA

- R, L, C circuits
- Impedance
- Op Amp Integrator
- Op Amp Differentiator

RESISTANCE

CIRCUITS WITH R, L, \& C

- For Resistive Circuits:
- v = i R; => v(t) = i(t) R
- Resistor does not affect time behavior

R, L, C Circuits:

- L = Inductor; C = Capacitor
- v, i are now time dependen
- $\mathrm{v}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$ may be quite different waveforms
- L and C can store electrical energy!
- Resistors convert electrical energy to
- Makes circuits far more interesting
- Must find Time Behavior of circuit

CAPACITANCE

CAPACITANCE

$\mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dv} \mathrm{c}_{\mathrm{C}}}{\mathrm{dt}}$
$\mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}_{0}\right)+\frac{1}{\mathrm{C}} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{i}_{\mathrm{C}} \mathrm{dt}$
In DC Steady State; $\frac{d}{d t}=0$
$\mathrm{i}_{\text {CSS }}=0 \Rightarrow$ Open Circuit
Capacitor is an Open Circuit in DC Steady State

CAPICITANCE

- DC Steady State:
- d /dt = 0
- $=>\mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} \mathrm{dv}_{\mathrm{C}} / \mathrm{dt}=0$ in DC Steady State
- Capacitor is an Open Circuit in DC Steady State
- If Apply a DC Source, capacitor will "charge" to some voltage and stay there in the DC steady state
(2)Rensselaer (c)

CAPACITANCE

Cannot Change Energy Instantaneously
v_{C} Cannot Change Instantaneously

CAPACITANCE

CAPACITANCE

Capacitors in Parallel

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+. .
$$

Similar to Resistors in Series

INDUCTANCE

Inductor is a Short Circuit in DC Steady State
Rensselaer

INDUCTHNCE

- DC Steady State:
- d /dt = 0
- $=>\mathrm{v}_{\mathrm{L}}=\mathrm{L} \mathrm{di}_{\mathrm{L}} / \mathrm{dt}=0$ in DC Steady State
- Inductor is a short circuit in DC Steady State
- If apply a DC source, inductor will have current flowing in it, but no voltage across it in the DC Steady State

INDUCTANCE

i_{L} Cannot Change Instantaneously
© Rensselaerㅇ
INDUCIANCE

INDUCTANCE

Inductors in Parallel

Similar to Resistors in Parallel
w.ppi.edu-saayys

IMPPEANCE

No Initial Stored Energy

$\mathrm{Z}=$ Impedance $=\frac{\mathrm{V}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}$
(6)Rensselaer

IMPEDANCE

Impedance $=\mathrm{Z}(\mathrm{s})=\frac{\mathrm{V}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}$
Measured in Ohms
\qquad
www.rpi.edu-sawyes
Rensselaer(0)

EQUIVALENT IMPEDANCE

Can replace any Load Network with Z_{eq}

$$
\mathrm{Z}_{\mathrm{eq}}=\frac{\mathrm{V}(\mathrm{~s})}{\mathrm{I}(\mathrm{~s})}
$$

NON-INVERTIING AMPLIFIER

DYNAMIC OP AMP CIRCUITS

- Can make very useful circuits by using capacitors (or inductors) in Op Amp Circuits
- Let's replace R_{2} with C in an inverting voltage amplifier:
- Then Replace R_{1} with C in an inverting voltage amplifier:
\qquad Rensselaer(2)

