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ECSE-2010

Lecture 8.1

� Signals and waveforms
� DC waveforms
� Unit step functions
� Ramp functions
� Exponential functions
� Sinusoidal functions
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� To date, we have looked at circuits with 
only DC inputs:
� DC voltage sources, DC current sources

� Independent and dependent sources

� DC steady state (No changes with time)

� Have developed circuit analysis 
techniques for resistive circuits:
� DC inputs

� Circuits containing independent sources, 
dependent sources and resistors

� Circuit analysis techniques:
� KCL and KVL

� Series/parallel resistors

� Voltage and current dividers

� Equivalent resistance

� Source conversion

� Node voltage analysis

� Mesh current analysis

� Thevenin/Norton equivalent circuits

� Linearity and superposition

� Almost all interesting circuits 
involve inputs that change with time

� The rest of the course is focused on 
finding the output, y(t), given the 
input, x(t)
� Will also add capacitors and inductors 

to our circuit elements

Circuit

Input Output

x(t) y(t)

    x(t) can be a 

Current or Voltage

    y(t) can be a 

Current or Voltage

So Far, x(t) Constant (DC)= y(t) Constant (DC)=> =
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� Signal = Any Input to a Circuit:

� Waveform = Equation or Graph 
that Defines a Signal as a 
Function of Time:
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v(t)

t

Sum of Ramp Functions

Symmetric Triangular Wave
v(t)

t

Ct T
Av(t) [V e ]u(t)−=

•
• •• • • • • • • • • •

AV

cT

A.368V

See Pages 219 - 226  Thomas and Rosa

Av(t) V cos( t )ω φ= +

AAmplitude V ;   volts=

Angular Frequency 2 f;  radians/secω π= =

0

1
f Frequency ;   hertz

T
= =

0T Period;  seconds=

Phase Angle;  degreesφ =

https://www.youtube
.com/watch?v=QFi1
6s4RXXY

http://www.analyzema
th.com/unitcircle/unit_
circle_applet.html

The figure shows an oscilloscope display 
of a sinusoid.  The vertical axis 
(amplitude) is calibrated at 5V per 
division, and the horizontal axis (time) is 
calibrated at 0.1 ms per division.  Derive 
an expression for the sinusoid displayed 
below. 1. Find VA

2. Find T0

3. Find f0 and ω0

4. Determine Ts

5. Calculate Φ0 , Fourrier

coefficients

6. Write equations
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All of Unit IV will be on AC Steady State

All Inputs are Sinusoidal

All Steady State Outputs are Sinsoidal
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ECSE-2010

Lecture 8.2

� R, L, C circuits

� Impedance

� Op Amp Integrator

� Op Amp Differentiator
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�For Resistive Circuits: 

� v = i R; => v(t) = i(t) R

� Resistor does not affect time behavior

� Resistors only absorb energy (get hot)

� Resistors convert electrical energy to 
thermal energy
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� R, L, C Circuits:

� L = Inductor; C = Capacitor 

� v, i are now time dependent

� v(t) and i(t) may be quite different waveforms

� L and C can store electrical energy!

� Makes circuits far more interesting

� Must find Time Behavior of circuit
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C [farads]

+

Ci
C

C

dv
i C

dt
=

0

t

C C 0 C

t

1
v v (t ) i  dt

C
= + ∫

−
Cv

1 farad 1 amp-sec/volt=
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C

+

Ci C
C

dv
i C

dt
=

0

t

C C 0 C

t

1
v v (t ) i  dt

C
= + ∫

−

Cv

CSS

d
In DC Steady State; 0

dt
i 0 Open Circuit

=

= =>

Capacitor is an Open Circuit in DC Steady State
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�DC Steady State:

� d /dt = 0

� => iC = C dvC/dt = 0 in DC Steady State

� Capacitor is an Open Circuit in DC Steady State

� If Apply a DC Source, capacitor will “charge” to 
some voltage and stay there in the DC steady 
state
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C

+
Ci Energy is Stored in Electric Field

−

Cv

2
C C

1
w C v

2
=

Cannot Change Energy Instantaneously

Cv  Cannot Change Instantaneously

C 0 C 0v (t )  v (t )+ −=
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1C

2C

3C

eq 1 2 3

1 1 1 1
..

C C C C
= + + +

Similar to Resistors in Parallel

Capacitors in Series

eqC=
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1C 2C 3C

Capacitors in Parallel

eq 1 2 3C C C C ..= + + +

Similar to Resistors in Series

=
eqC
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L
L

di
v L

dt
=

L [henries]
Lv

+

−

Li

1 henry 1 volt-sec/amp=

0

t

L L 0 L

t

1
i i (t ) v  dt

L
= + ∫
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L [henries]
Lv

+

−

Li

LSS

d
In DC Steady State; 0

dt
v 0 Short Circuit

=

= =>

L
L

di
v L

dt
=

0

t

L L 0 L

t

1
i i (t ) v  dt

L
= + ∫

Inductor is a Short Circuit in DC Steady State
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�DC Steady State:

� d /dt = 0

� => vL= L diL/dt = 0 in DC Steady State

� Inductor is a short circuit in DC Steady State

� If apply a DC source, inductor will have 
current flowing in it, but no voltage across it in 
the DC Steady State 

L [henries]
Lv

+

−

Li Energy is Stored in Magnetic Field

2
L L

1
w L i

2
=

Cannot Change Energy Instantaneously

Li  Cannot Change Instantaneously

L 0 L 0i (t )  i (t )+ −=
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eq 1 2 3L L L L ..= + + +

Inductors in Series

Similar to Resistors in Series

=
1L

2L

eqL
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Similar to Resistors in Parallel

Inductors in Parallel

eq 1 2 3

1 1 1 1
..

L L L L
= + + +

=
1L 2L 3L

eqL
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R Ω sL Ω
1

 
sC

Ω

RZ LZ
CZ

No Initial Stored Energy

V(s)
Z Impedance

I(s)
= =
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V(s)
Impedance Z(s)

I(s)
= =

Load Network

   s-Domain
V(s)

+

−

I(s)

    R's, L's, C's

Dependent Sources

Measured in Ohms
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eq

V(s)
Z

I(s)
=

I(s)

eqCan replace any Load Network with Z

=V(s)

+

−

V(s)

+

−

I(s)

Load Network

   s-Domain eqZ
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1Z (s)

2Z (s)

inV (s) 0V (s)

2
0 in

1

Z (s)
V (s) 1 V (s)

Z (s)

 
= + 
 

CCV+

CCV−
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1Z (s)

2Z (s)
inV (s)

0V (s)

2
0 in

1

Z (s)
V (s) V (s)

Z (s)
= −

CCV+

CCV−
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� Can make very useful circuits by 

using capacitors (or inductors) in 

Op Amp Circuits

� Let’s replace R2 with C in an 

inverting voltage amplifier:

� Then Replace R1 with C in an 

inverting voltage amplifier:
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out in
1

1
v v dt 

R C
=> = − ∫

inv
1R

C

outv
0≈1i

1i

in
1

1

v 0
i

R

−=

C   v   + −

out C 1

1
v 0 v i dt

C
= − = − ∫
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outv  
inv  C

2R  

0≈
1i  

in
1

d(v 0)
i C

dt

−=

1i  
2   v   + −

out 2 1 2v 0 v i R  = − = −

in
out 2

dv
v R C  

dt
=> = −
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