

- Circuit analysis techniques:
 - KCL and KVL
 - Series/parallel resistors
 - Voltage and current dividers
 - Equivalent resistance
 - Source conversion
 - Node voltage analysis
 - Mesh current analysis
 - Thevenin/Norton equivalent circuits
 - Linearity and superposition

	Cloud	West discuss	Calar	
	Circuit	вноск айдтия	Gains	
		$\frac{v_1(t)}{K} \frac{K}{V_0(t)}$	$K = \frac{R_1 + R_2}{R_2}$	
	v ₁ (t) R ₁ R ₂ v ₁ (t) 	<u>v:0</u> x	$K = -\frac{R_2}{R_1}$	
	v1(0) - W - v0(0) V1(0) - W - v0(0) K2 V2(0) - W - v0(0) Summer	<u>v1(i)</u> <u>v2(i)</u> <u>v2(i)</u> <u>K1</u> + <u>1</u> + <u>1</u>	$\begin{split} K_1 &= -\frac{R_{\rm F}}{R_1} \\ K_2 &= -\frac{R_{\rm F}}{R_2} \end{split}$	
	$v_1(l) = M_1$ $v_2(l) = M_2$ $v_3(l) = M_4$ $v_3(l) = Subtractor$	$\xrightarrow{v_1(0)} \underbrace{K_1}_{+\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{split} K_1 &= -\frac{R_2}{R_1} \\ K_2 &= & \left(\frac{R_1 + R_2}{R_1} \right) \left(\frac{R_4}{R_3 + R_4} \right) \end{split}$	
	V1(f) R C V0(f) Integrater	$\xrightarrow{\nu_1(l)} \overbrace{f}^{\nu_D(l)}$	$K = -\frac{1}{RC}$	
	Vi(i) C R Vi(i) Differentiator	$\xrightarrow{v_1(i)} \overbrace{K}^{} \longrightarrow \overbrace{a}^{} \overbrace{a}^{v_0(i)}$	K = -RC	
wyes@rpi.edu	Differentiator FIGURE 6-17 Summary of basic O www.rpt.edur~sam	V10) K d V00 P AMP signal-processing circula. Nyres	K = -8C	tense