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ECSE-2010

Lecture 9.1

� Dynamic Circuits Introduction

� RC and RL Circuits

� Natural response (Homogeneous 
response)
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�Will Solve differential Equations for 1st

order circuits with simple inputs:
� Will solve only once

� Then write down y(t) by inspection

�For higher order circuits, we will develop 
techniques to avoid solving differential 
equations:
� Will need to introduce some math

� Laplace transforms

� Complex algebra

�We will first look at circuits containing 1 Ceq (or 
1 Leq) plus resistors:

�RC and RL Circuits

�Circuits with only 1 energy storage element 
=> 1st order circuits

�Will look at “switched DC” inputs:

�Step function inputs

�DC, But with “steps”

�Will learn how to analyze 1st order circuits:

�We will actually solve a differential equation 
only once

�Will also introduce initial and final conditions

�Now wish to find vC(t) analytically:

�Develop and solve differential equation

�Will need initial and final conditions

�Will then generalize to find the output of any 1st

order circuit with a switched DC input:

�Write down y(t) in terms of constants

�Find constants from the circuit



2

inv (t)

R

C
Cv (t)

+

−

CFind and Sketch v (t)

inv (t)

R

C Cv

+

−

R   v  + −

i

C R inKVL:  v v v   (as always)+ =

C RFor t 0 :   v v V≥ + =

Cdv
C

dt
=

C
C

dv
v RC V

dt
+ =

Rv iR=

R Ci i i= =

Cv iR V+ =

V

R

C
Cv

+

−

R   v  + −

C
C

dv
v RC V

dt
+ =

C
C

dv 1 V
v

dt RC RC
+ =

t 0≥

st1  Order Differential Equation

Constant Coefficients

�Solution to any differential 
equation:
�y(t) = yH + yP = yN + yF

� = Homogeneous + Particular

= Natural (yN)+ Forced (yF)

�yN = yH = Output when RHS = 0

�yF= yP = Output forced by input
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st1  Order Differential Equation

Constant Coefficients

�Solution to Any Differential 
Equation:
�y(t) = yH + yP = yN + yF

� = Homogeneous + Particular

= Natural (yN)+ Forced (yF)

�yN = yH = Output when RHS = 0

�yF= yP = Output Forced by Input
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ECSE-2010

Lecture 9.2

� Forced response (Particular 
response)

� General RC and RL circuit 
response 

� Zero input and zero state 
response
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