

For a Linear System:

Forced Output Must Always Look Like the Input For this RC Circuit, Input = V for $t \ge 0$ Therefore: V = Constant

> => $v_{CF}(t)$ Must be a Constant Assume $v_{CF}(t) = K_2$

> > () Rensselaer

DYNAMIC CIRCUITS	
$\mathbf{y}(t) = \mathbf{y}_{\mathrm{H}} + \mathbf{y}_{\mathrm{P}}$	
Homogeneous Response + Particular Response	
$\mathbf{y}(t) = \mathbf{y}_{\mathrm{N}} + \mathbf{y}_{\mathrm{F}}$	
Natural Response + Forced Response	
$y_N = y_H; y_F = y_P$	
$\mathbf{y}(t) = \mathbf{y}_{\mathrm{ZI}} + \mathbf{y}_{\mathrm{ZS}}$	
Zero-Input Response + Zero-State Response	
Rensselaer	