

LAPLACE TRANSFORMS			
Signal	f(t)	F(s)	
Impulse	$\delta(t)$	1	
Step	u(t)	$\frac{1}{s}$	
Constant	Au(t)	$\frac{A}{s}$	
Ramp	tu(t)	$\frac{1}{s^2}$	
sawyes@rpi.edu	www.rpi.edu/~sawyes	💿 Rensselaer 🗉	

LAPLACE TRANSFORMS		
Signal	$\underline{\mathbf{f}(\mathbf{t})}$	$\frac{\mathbf{F}(\mathbf{s})}{\mathbf{F}(\mathbf{s})}$
Exponential	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$
Damped Ramp	$[te^{-\alpha t}]u(t)$	$\frac{1}{(s+\alpha)^2}$
Cosine Wave	$[\cos\beta t]u(t)$	$\frac{s}{s^2 + \beta^2}$
Damped Cosine $[e^{-\alpha t}\cos\beta t]u(t)$		$\frac{\mathbf{s} + \boldsymbol{\alpha}}{(\mathbf{s} + \boldsymbol{\alpha})^2 + \boldsymbol{\beta}^2}$
sawyes@rpi.edu www.rpi.e	du/~sawyes	🖲 Rensselaer 😡

LAPLACE TRANSFORMS	
Time Domain	s-Domain
$Af_1(t) + Bf_2(t)$	$AF_1(s) + BF_2(s)$
$\int_{0}^{t} f(\tau) \mathrm{d}\tau$	$\frac{F(s)}{s}$
$\frac{\mathrm{d}\mathbf{f}(\mathbf{t})}{\mathrm{d}\mathbf{t}}$	$sF(s) - f(0^{-})$
$e^{-\alpha t}f(t)$	$F(s + \alpha)$
t f(t)	-dF(s)/ds
f(t-a)u(t-a)	$e^{-as}F(s)$
sawyes@rpi.edu www.rpi.edu/~sawyes	💿 Rensselaer 💿

sawyes@rpi.edu

Rensselaer 💿

sawyes@rpi.edu

Will soon see that we can learn a lot about a circuit's behavior from its Pole-Zero Diagram

Form of Natural Response

Determine the Stability

DC and AC Steady State Responses

Frequency Response

www.rpi.edu/~sawyes

💿 Rensselaer 💩