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LECTURE 12.1 AGENDA

= Laplace transforms
* Poles and zeros

* Pole-zero diagram
= Example
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DYNAMIC CIRCUITS

Laplace Transform

Input Output
Circuit
x(t) y(®

X(t) can be a
Current or Voltag

y(t) can be a
Current or Voltag
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DYNAMIC CIRCUITS

FIGURE 9-1 Flow diagram of dynamic circuit Time domazin Comnlex froanency dormain
analysis with Laplace transforms. (t domain) e i d(‘jmmfi’
Begin

Laplace solution methods
to be studied in this chapter

| (Differential tLBpl;me
i \_ equation ransform
1 e i

Tassical
techniques.

Algebraic

equation

Classical solution methods studied in Chapter 7

= Response
ransforn = yamform
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LAPLACE TRANSFORMS

=For most 2™¢ order circuits and for all
higher order circuits, finding the
output by solving differential equations
is either impossible or, at best, difficult

*Would prefer to solve algebraic
equations rather than differential
equations:

*Will use laplace transforms:

sawyes@rpi.edu . rpi.edu/-sawyes

@ Rensselacr @

LAPLACE TRANSFORMS

=Laplace transforms:
= Powerful mathematical tool

= Will transform differential equations
into algebraic equations

= Can then use all the circuit analysis
techniques we developed for
resistive circuits!!
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LAPLACE TRANSFORMS

*Laplace transforms will allow us to
find the complete time response,
y(t) = yn(t) + ye(t), for Any Circuit
with Any Input:

= Very powerful technique
= Will use in other courses

@ Rensselacr @

LAPLACE TRANSFORMS
Differential Equation ¢
X(t) Time Domain y( )
1 Circuit 1
Inverse
Laplace L Lt
Laplace
Transforn
| s-Domain 1 Transform
Circuit
X(s) Y(s)
Algebraic Equation
Techniques from Unit
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LAPLACE TRANSFORMS

Concept
» Take Laplace Transform of x

L[x(®)] =X(s)
* X(s) is Input to s-domain Circt
» Find Output to s-domain Circuit, Y/
Algebraic Equation

» Take Inverse Laplace Transform of Y
L [Y(s)] = v

LAPLACE TRANSFORMS

A
Define s= Complex Frequeneyo + w
o =Real Partw= Imaginary P¢
Fv-1

Wheno =w= 0; => s= 0;=> DC Steady St

Wheno = 0; s gu=> AC Steady State (Unit |
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LAPLACE TRANSFORMS
. Complex Spac
Imaginary
. A
A
A, Real

Complex Number A= A+ jA
j =Unit Vector in Vertical Directior= V-
, @ Rensselaer @
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LAPLACE TRANSFORMS
. s-plane
jw
DC Steady Stat s
s=0 |
g, o
S =0t
snesanics s saes @ Rensselacr @




LAPLACE TRANSFORMS

Definitions:

Laplace Transform of

L [10) =F(9) = [ )

Will Use Tables to Find F(s) from f{(

f F(

e dt

LAPLACE TRANSFORMS

Definitions:

Inverse Laplace Transform of F¢s) fi
1 a+joeo
L FEN=f0=-= [ F(s) € d
2”] a-jo
Will Use Tables or Partial Fraction Expsion
to find f(t) from F(s)

See Table 9-
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LAPLACE TRANSFORMS
Signal _f® F(s)
Exponential & u(t) 1
s+a
Damped Ramp  [t& Ju(t) ﬁ
, s
Cosine Wave [cgs D) 32+7,32
Damped Cosine [& cfs tlu(t) (S:;ﬁ
S O @ Rensselacr @

See Table 9.
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LAPLACE TRANSFORMS
Signal _f® F(s
Impulse o (b 1
Step u(t) 1
S
Constan Au(t) %
Ramp tu(t) iz
S
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LAPLACE TRANSFORMS

Time Domain s-Domain

Af (1) +Bf 1) AE (sy BE (s)

_t[ f(r) dr iss)
df)
at sF(s) (0 )
e f(t) Fisa )
tf(t) - dF(s)/ds
ft —a)u(t- a) & F(s)

sawyes@rpi.edu . rpi.edu/-sawyes

@ Rensselacr @

POLES AND ZEROS

Can usually express the Laplace Transform of
signals of interest to us as a Ratid’ofynomials
N(s) _b,s"+ ... +bs P
DS) 88+...+ as A

F(sF

For Physically Realizable Circuits (sgBis), ms r
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POLES AND ZER0S

Factor F(s)

Fo= kSR 2) () 2
(s-R)(E R) ()6 P

K =P

a,
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=Scale Facta

POLES AND ZER0S

Fey= k572 2) ()G 7 )
(-R)E R) ()6 P

Ats=2z => F(s)-» 0=> Zeros of F(:

Ats=p => F(s)- o => Poles of F(:
Poles and Zeros are "Critical Frequentiaf F(s)

Useful to Plot "Pole-Zero Diagram” ingane

POLE-ZERO DIAGRAMS
Show Polesa 1@ ¢ Show Zeros a
X O
P
Complex 1 X
Conjugate: [

Zl
o
\J

g

pzx

s-plane
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EXAMPLE
§-3s
F(S)=————
©) s +8s+ 25
Factor F(s)
s(s— 3)
F(s)= 55—
©) S+2astaf

20=8=>a=4; @’ =2t

w? >a*=>Complex Conjugate Roc

EXAMPLE

_s(s—3)
O e e

20=8=>a=4; @’ = 2%
Zeros: z= 0;z=
Poles: p, p=—azx § ;,G:W
f=25-16= 2
Poles: p, p=— 4 |
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EXAMPLE jow |
i3
P
Z1 ZZ
® © >
-4 3 g
P, ,
4 -3 s-plane
Pole-Zero Diagrar
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POLE-ZERQ DIAGRAMS

Will soon see that we can learn a lobaba
circuit's behavior from its Pole-Zero &jrarr

Form of Natural Respon
Determine the Stabilit
DC and AC Steady State Respor
Frequency Respon
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