ELECTRIC CIRCUITS ECSE-2010

Lecture 12.1

LECTURE 12.1 AGENDA

- Laplace transforms
- Poles and zeros
- Pole-zero diagram
- Example

DYNAMIC CIRCUITS

FIGURE 9-1 Flow diagram of dynamic circuit analysis with Laplace transforms
Laplace Transforms

$\mathrm{x}(\mathrm{t})$ can be a
Current or Voltage
$\mathrm{y}(\mathrm{t})$ can be a
Current or Voltage
sawyes@pi.ed
www.rpi.odu-sawyes
(4) Rensselaer (3)

LAPLACE TRANSFORMS

-For most $2^{\text {nd }}$ order circuits and for all higher order circuits, finding the output by solving differential equations is either impossible or, at best, difficult
-Would prefer to solve algebraic equations rather than differential equations:
-Will use laplace transforms:
(8)Rensselaer

LAPLACE TRANSFORMS

-Laplace transforms:

- Powerful mathematical tool
- Will transform differential equations into algebraic equations
- Can then use all the circuit analysis techniques we developed for resistive circuits!!

LAPLACE TRANSFORMS

-Laplace transforms will allow us to find the complete time response, $\mathrm{y}(\mathrm{t})=\mathrm{y}_{\mathrm{N}}(\mathrm{t})+\mathrm{y}_{\mathrm{F}}(\mathrm{t})$, for Any Circuit with Any Input:

- Very powerful technique
- Will use in other courses
mumprowis.amps
© Rensselaer (c)

LAPLACE TRANSFORMS

Define $s \stackrel{\Delta}{=}$ Complex Frequency $=\sigma+j \omega$
$\sigma=$ Real Part; $\omega=$ Imaginary Part

$$
\mathrm{j}=\sqrt{-1}
$$

When $\sigma=\omega=0 ; \quad \Rightarrow \mathrm{s}=0 ; \quad \Rightarrow$ DC Steady State
When $\sigma=0 ; \mathrm{s}=\mathrm{j} \omega \Rightarrow$ AC Steady State (Unit IV)

Rensselaer@

LAPLACE TRANSFORMS

Definitions:
Laplace Transform of $f(t)=F(s)$

$$
L[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{~s})=\int_{0^{-}}^{\infty} \mathrm{f}(\mathrm{t}) \mathrm{e}^{-\mathrm{st}} \mathrm{dt}
$$

Will Use Tables to Find $F(s)$ from $f(t)$
See Table 9.2

LAPLACE TRANSFORMS

Definitions:
Inverse Laplace Transform of $\mathrm{F}(\mathrm{s})=\mathrm{f}(\mathrm{t})$

$$
L^{-1}[\mathrm{~F}(\mathrm{~s})]=\mathrm{f}(\mathrm{t})=\frac{1}{2 \pi \mathrm{j}} \int_{\alpha-\mathrm{j} \infty}^{\alpha+\mathrm{j} \infty} \mathrm{~F}(\mathrm{~s}) \mathrm{e}^{\mathrm{st}} \mathrm{ds}
$$

Will Use Tables or Partial Fraction Expansion
to find $\mathrm{f}(\mathrm{t})$ from $\mathrm{F}(\mathrm{s})$
See Table 9-2

LAPLACE TRANSFORMS		
$\frac{\mathrm{Signal}}{\text { Impulse }}$	$\frac{\mathrm{f}(\mathrm{t})}{\delta(\mathrm{t})}$	$\frac{\mathrm{F}(\mathrm{s})}{1}$
Step	$\mathrm{u}(\mathrm{t})$	$\frac{1}{\mathrm{~s}}$
Constant	$\mathrm{Au}(\mathrm{t})$	$\frac{\mathrm{A}}{\mathrm{s}}$
Ramp	$\mathrm{tu}(\mathrm{t})$	$\frac{1}{\mathrm{~s}^{2}}$
		Rensselaer (B)

POLES AND ZEROS

Can usually express the Laplace Transform of signals of interest to us as a Ratio of Polynomials:

$$
F(s)=\frac{N(s)}{D(s)}=\frac{b_{m} s^{m}+\ldots \ldots . .+b_{1} s+b_{0}}{a_{n} s^{n}+\ldots \ldots . .+a_{1} s+a_{0}}
$$

For Physically Realizable Circuits (systems), $\mathrm{m} \leq \mathrm{n}$
sanyeseppiedu www.pi.edu/-sawyes
Rensselaer (B)

POLES AND ZEROS

$$
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{b}_{\mathrm{m}} \mathrm{~s}^{\mathrm{m}}+\ldots \ldots+\mathrm{b}_{\mathrm{s}} \mathrm{~s}+\mathrm{b}_{0}}{\mathrm{a}_{\mathrm{n}} \mathrm{~s}^{\mathrm{n}}+\ldots \ldots+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{0}}
$$

Factor $\mathrm{F}(\mathrm{s})$:
$F(s)=K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right)(\ldots . .)\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right)(\ldots . .)\left(s-p_{n}\right)}$
$\mathrm{K}=\frac{\mathrm{b}_{\mathrm{m}}}{\mathrm{a}_{\mathrm{n}}}=$ Scale Factor
(6) Rensselaer (10)

POLES AND ZEROS

$\mathrm{F}(\mathrm{s})=\mathrm{K} \frac{\left(\mathrm{s}-\mathrm{z}_{1}\right)\left(\mathrm{s}-\mathrm{z}_{2}\right)(\ldots . .)\left(\mathrm{s}-\mathrm{z}_{\mathrm{m}}\right)}{\left(\mathrm{s}-\mathrm{p}_{1}\right)\left(\mathrm{s}-\mathrm{p}_{2}\right)(\ldots . .)\left(\mathrm{s}-\mathrm{p}_{\mathrm{n}}\right)}$
At $\mathrm{s}=\mathrm{z}_{\mathrm{i}} \Rightarrow \mathrm{F}(\mathrm{s}) \rightarrow 0 \Rightarrow$ Zeros of $\mathrm{F}(\mathrm{s})$
At $\mathrm{s}=\mathrm{p}_{\mathrm{j}} \Rightarrow \mathrm{F}(\mathrm{s}) \rightarrow \infty=>$ Poles of $\mathrm{F}(\mathrm{s})$
Poles and Zeros are "Critical Frequencies" of $\mathrm{F}(\mathrm{s})$
Useful to Plot "Pole-Zero Diagram" in s-plane

EXAMPLE

$$
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{s}^{2}-3 \mathrm{~s}}{\mathrm{~s}^{2}+8 \mathrm{~s}+25}
$$

Factor $\mathrm{F}(\mathrm{s})$:

$$
\begin{gathered}
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{s}(\mathrm{~s}-3)}{\mathrm{s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}} \\
2 \alpha=8 \Rightarrow \alpha=4 ; \omega_{0}^{2}=25 \\
\omega_{0}^{2}>\alpha^{2} \Rightarrow \text { Complex Conjugate Roots }
\end{gathered}
$$

EXAMPLE

$$
\begin{gathered}
\mathrm{F}(\mathrm{~s})=\frac{\mathrm{s}(\mathrm{~s}-3)}{\mathrm{s}^{2}+2 \alpha \mathrm{~s}+\omega_{0}^{2}} \\
2 \alpha=8 \Rightarrow \alpha=4 ; \omega_{0}^{2}=25 \\
\text { Zeros: } \quad \mathrm{z}_{1}=0 ; \mathrm{z}_{2}=3
\end{gathered}
$$

Poles: $\mathrm{p}_{1}, \mathrm{p}_{2}=-\alpha \pm \mathrm{j} \beta ; \beta=\sqrt{\omega_{0}^{2}-\alpha^{2}}$

$$
\beta=\sqrt{25-16}=3
$$

$$
\text { Poles: } \mathrm{p}_{1}, \mathrm{p}_{2}=-4 \pm \mathrm{j} 3
$$

POLE-ZERO DIAGRAMS

Will soon see that we can learn a lot about a circuit's behavior from its Pole-Zero Diagram Form of Natural Response

Determine the Stability
DC and AC Steady State Responses
Frequency Response
sammeanient
mampiow wasmes (3) Rensselaer (2)

