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ECSE-2010

Lecture 12.1

� Laplace transforms

� Poles and zeros

� Pole-zero diagram

� Example
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Circuit

Input Output

x(t) y(t)

    x(t) can be a 

Current or Voltage

    y(t) can be a 

Current or Voltage

Laplace Transforms
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�For most 2nd order circuits and for all 
higher order circuits,  finding the 
output by solving differential equations 
is either impossible or, at best, difficult

�Would prefer to solve algebraic 
equations rather than differential 
equations:

�Will use laplace transforms:
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�Laplace transforms:
� Powerful mathematical tool

� Will transform differential equations 
into algebraic equations

� Can then use all the circuit analysis 
techniques we developed for 
resistive circuits!!
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�Laplace transforms will allow us to 
find the complete time response, 
y(t) = yN(t) + yF(t), for Any Circuit
with Any Input:
� Very powerful technique

� Will use in other courses
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Time Domain 

     Circuit

s-Domain 

  Circuit

L 1L−

x(t) y(t)

X(s) Y(s)

  Laplace

Transform

  Inverse

 Laplace

Transform

Algebraic Equations

Differential Equations

Techniques from Unit I
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Concept:
  Take Laplace Transform of x(t)•

[ ]x(t) X(s)L =
  X(s) is Input to s-domain Circuit•
  Find Output to s-domain Circuit, Y(s)•

Algebraic Equations

  Take Inverse Laplace Transform of Y(s)•

[ ]1 Y(s) y(t)L− =
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Define s Complex Frequency jσ ω
∆
= = +

Real Part; Imaginary Part

                   j 1

σ ω= =

= −

When 0;  s 0;  DC Steady Stateσ ω= = => = =>

When 0;  s j AC Steady State (Unit IV)σ ω= = =>
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A•

Complex Space

Real

Imaginary

r iComplex Number A A jA= +

rA

ijA

j Unit Vector in Vertical Direction 1= = −
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1s•

s-plane

σ

jω

1σ

1jω

1 1 1s jσ ω= +

s 0=

DC Steady State
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Definitions:

Laplace Transform of f(t) F(s)=

st

0

 [f(t)] F(s) f(t) e  dtL
−

∞
−= = ∫

Will Use Tables to Find F(s) from f(t)

See Table 9.2
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Inverse Laplace Transform of F(s) f(t) =

Definitions:

j
1 st

j

1
 [F(s)] f(t) F(s) e  ds

2 j
L

α

απ

+ ∞
−

− ∞

= = ∫

Will Use Tables or Partial Fraction Expansion

                to find f(t) from F(s)

See Table 9-2
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Signal                       f(t)                            F(s)

Impulse                    (t)                              1

1
Step                          u(t)                              

s

Constan

δ

2

A
t                  Au(t)                            

s
1

Ramp                        tu(t)                            
s
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t

t
2

Signal                    f(t)                             F(s)

1
Exponential              e u(t)                    

s
1

Damped Ramp      [te ]u(t)                  
(s )

Cosine Wave        [cos t]u

α

α

α

α

β

−

−

+

+

2 2

t
2 2

s
(t)                  

s

s
Damped Cosine  [e cos t]u(t)         

(s )
α

β
αβ

α β
−

+
+

+ +
sawyes@rpi.edu                             www.rpi.edu/~sawyes 16

1 2 1 2

t

0

t

Time Domain                      s-Domain

Af (t) Bf (t)                   AF (s) BF (s)

F(s) 
   f( ) d                              

s

df(t)
                                  sF(s) f(0 ) 

dt

    e f(t) α

τ τ

−

−

+ +

−

∫

as

                              F(s )

      t f(t)                             dF(s)/ds

 f(t a)u(t a)                       e F(s)             

α

−

+
−

− −
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m
m 1 0

n
n 1 0

Can usually express the Laplace Transform of

signals of interest to us as a Ratio of Polynomials:

b s  ...... b s bN(s)
          F(s)

D(s) a s ......  a s a

+ + += =
+ + +

For Physically Realizable Circuits (systems), m n≤

sawyes@rpi.edu                             www.rpi.edu/~sawyes 18



4

m
m 1 0

n
n 1 0

b s  ...... b s b
F(s)

a s ......  a s a

+ + +=
+ + +

Factor F(s):

1 2 m

1 2 n

(s z ) (s z ) (.....) (s z )
F(s) K

 (s p ) (s p ) (.....) (s p ) 

− − −=
− − −

m

n

b
K Scale Factor

a
= =
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1 2 m

1 2 n

(s z ) (s z ) (.....) (s z )
F(s) K

 (s p ) (s p ) (.....) (s p ) 

− − −=
− − −

iAt s z F(s) 0 Zeros of F(s)= => → =>

jAt s p F(s) Poles of F(s)= => → ∞ =>

Useful to Plot "Pole-Zero Diagram" in s-plane

Poles and Zeros are "Critical Frequencies" of F(s)
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s-plane

σ

jω Show Zeros as:

o

o
1z

Show Poles as:

×
×

×

1p

2p

 Complex

Conjugates{
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2

2

s 3s
F(s)  

s 8s 25

−=
+ +

2
02 8 4;  25α α ω= => = =

Factor F(s):

2 2
0

s(s 3)
F(s)  

s 2 sα ω
−=

+ +

2 2
0 Complex Conjugate Rootsω α> =>
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2
02 8 4;  25α α ω= => = =

2 2
0

s(s 3)
F(s)  

s 2 sα ω
−=

+ +

2 2
1 2 0Poles:  p ,  p j ;  α β β ω α= − ± = −

1 2Zeros:    z 0; z 3= =

25 16 3β = − =

1 2Poles:  p ,  p 4 j3= − ±
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s-plane

σ

jω

oo
1z

×

×

1p

2p

2z

34−

j3

j3−

Pole-Zero Diagram
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Will soon see that we can learn a lot about a

circuit's behavior from its Pole-Zero Diagram

Form of Natural Response

Determine the Stability

DC and AC Steady State Responses

Frequency Response

sawyes@rpi.edu                             www.rpi.edu/~sawyes 25


