

LECTURE 13.1 AGENDA

- Partial fraction expansion (m<n)
 - 3 types of poles
 - Simple Real poles
 - Real Equal poles
 - Complex conjugate poles

sawyes@rpi.edu

ww.rpi.edu/~sawye

Rensselaer 2

PARTIAL FRACTION EXPANSION

- Method for finding f(t) from F(s) without taking the inverse laplace transform (without integration)
- Concept: Expand F(s) into a sum of simple terms whose inverse laplace transforms we know...
 - □ Can then use tables
 - □ Use linearity property

PARTIAL FRACTION EXPANSION

Expand $F(s) = F_1(s) + F_2(s) + F_3(s) +$

From Linearity Property:

$$=> f(t) = L^{-1}{F(s)} = f_1(t) + f_2(t) + f_3(t) + \dots$$

PARTIAL FRACTION EXPANSION

$$F(s) = \frac{N(s)}{D(s)} = \frac{b_{m}s^{m} + b_{m-1}s^{m-1} + + b_{1}s + b_{0}}{a_{n}s^{n} + a_{n-1}s^{n-1} + + a_{1}s + a_{0}}$$

$$F(s) = K \frac{(s - z_1)(s - z_2)...(s - z_m)}{(s - p_1)(s - p_2)...(s - p_n)}$$

Factors of $N(s) = z_i \Rightarrow Zeros$ of F(s)

Factors of $D(s) = p_i \Rightarrow Poles of F(s)$

® Rensselaer •

PARTIAL FRACTION EXPANSION

There are only 3 Types of Poles:

Simple, Real Poles: (s-4), $\Rightarrow p_1 = 4$

Real, Equal Poles: $(s+3)^2$, => $p_1 = p_2 = -3$

Complex Conjugate Poles: $(s^2 + 8s + 25)$ => p_1 , $p_2 = -4 \pm i3$

- There is a different way of doing Partial Fraction Expansion for Each Type of Pole
- Let's First Look at Simple Real Poles Then Complex Conjugate Poles Finally, Real, Equal Poles (Multiple Poles)
- Will First Look at Circuits where m < n:

PARTIAL FRACTION EXPANSION

• Simple Real Poles

Example:
$$F(s) = \frac{N(s)}{D(s)} = \frac{2s}{(s+3)(s+4)}$$

Simple Real Poles at $p_1 = -3$, $p_2 = -4$

To Find $L^{-1}\{F(s)\}$ for Simple, Real Poles:

Expand:
$$F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

 $F(s) = \frac{2s}{(s+3)(s+4)}$ • Simple Real Poles

Expand: $F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$

Know that $L^{-1}\left[\frac{1}{\alpha+\alpha}\right] = e^{-\alpha t}$

 $=> f(t) = A_1 e^{-3t} + A_2 e^{-4t}; t \ge 0$

Need Only to Find A₁ and A₂

PARTIAL FRACTION EXPANSION

For m < n:

• Simple Real Poles

In General:

$$A_n = (s - p_n)F(s)\Big|_{s = p_n}$$

"Cover-Up Rule"

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

 $F(s) = \frac{2s}{(s+3)(s+4)}$ • Simple Real Poles

Expand: $F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$

To Find Coefficients, ...; Use "Cover-Up Rule":

$$A_1 = [(s - p_1)F(s)]_{s=p_1}$$
 $p_1 = -3$
 $A_2 = [(s - p_2)F(s)]_{s=p_2}$ $p_2 = -4$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Simple Real Poles $F(s) = \frac{2s}{(s+3)(s+4)}$ Expand: $F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$

 $A_1 = [(s - p_1)F(s)]|_{s=p_1}$ $=> A_1 = [(s+3)\frac{2s}{(s+3)(s+4)}]|_{s=-3}$

 \Rightarrow A₁ = $\left[\frac{2s}{(s+4)}\right]_{s=-2}^{s} = \frac{2(-3)}{-3+4} = -6$

For m < n:

Simple Real Poles $F(s) = \frac{2s}{(s+3)(s+4)}$ Expand: $F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$ • Simple Real Poles

Expand:
$$F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$$

$$A_{2} = [(s - p_{2})F(s)]\Big|_{s=p_{2}}$$

$$=> A_{2} = [(s + 4) \frac{2s}{(s + 3)(s + 4)}]\Big|_{s=-4}$$

$$\Rightarrow A_2 = \left[\frac{2s}{(s+3)}\right]_{s=-4} = \frac{2(-4)}{-4+3} = +8$$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

Simple Real Poles $F(s) = \frac{2s}{(s+3)(s+4)}$ Expand: $F(s) = \frac{A_1}{s+3} + \frac{A_2}{s+4}$ • Simple Real Poles

pand.
$$P(s) = \frac{1}{s+3} + \frac{1}{s+4}$$

=> $A_1 = -6$, $A_2 = +8$

$$f(t)$$
 for Simple Poles = $A_1 e^{p_1 t} + A_2 e^{p_2 t}$; $t \ge 0$

$$=> f(t) = -6e^{-3t} + 8e^{-4t}; t \ge 0$$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Simple Real Poles

In General:

Expand:
$$F(s) = \frac{A_1}{s - p_1} + \frac{A_2}{s - p_2} + \frac{A_3}{s - p_3} + \dots$$

$$A_n = [(s - p_n)F(s)]_{s=p_n};$$
 Cover-Up Rule

$$\Rightarrow$$
 $f(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t} + A_3 e^{p_3 t} + \dots$ $t \ge 0$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Complex Conjugate Poles

Example:
$$F(s) = \frac{2s}{s^2 + 8s + 25} = \frac{2s}{s^2 + 2\alpha s + \omega_0^2}$$

$$\alpha = 4$$
, $\omega_0^2 = 25$, $\beta = \sqrt{25 - 16} = 3$;

Complex Conjugate Poles at p_1 , $p_2 = -4 \pm j3$

Rensselaer (

PARTIAL FRACTION EXPANSION

For m < n:

• Complex Conjugate Poles $F(s) = \frac{2s}{s^2 + 8s + 25}$

Complex Conjugate Poles at p_1 , $p_2 = -4 \pm j3$ To find $L^{-1}\{F(s)\}$ for Complex Conjugate Poles:

Expand F(s) =
$$\frac{A}{s - (-4 + j3)} + \frac{A^*}{s - (-4 - j3)}$$

= $\frac{A}{s + 4 - j3} + \frac{A^*}{s + 4 + j3}$

Rensselaer (

PARTIAL FRACTION EXPANSION

Expand F(s) =
$$\frac{A}{s+4-i3} + \frac{A^*}{s+4+i3}$$

 $A = Complex Coefficient = A_r + jA_i = |A|/\phi$

 $A^* = Complex Conjugate of A = A_r - jA_i = |A|/-\phi$

Let's Look at a Picture

Expand F(s) =
$$\frac{A}{s+4-j3} + \frac{A^*}{s+4+j3}$$

To Find Coefficients, Use "Cover-Up Rule":

$$A = \left[(s - p_1)F(s) \right]_{s = p_1}$$

$$A^* = [(s - p_2)F(s)]_{s=p_2}$$

Good News: Need to Find Only 1 Bad News: Must use Complex Algebra

Rensselaer •

PARTIAL FRACTION EXPANSION

$$F(s) = \frac{2s}{s^2 + 8s + 25} = \frac{A}{(s+4-j3)} + \frac{A^*}{(s+4+j3)}$$

$$A = [(s+4-j3)\frac{2s}{(s+4-j3)(s+4+j3)}]\Big|_{s=-4+j3}$$

$$A = \frac{2(-4+j3)}{(-4+j3+4+j3)} = \frac{-8+j6}{j6} \left(\frac{j}{j}\right) = \frac{-j8-6}{-6}$$

$$A = \frac{6 + j8}{6} \quad A^* = \frac{6 - j8}{6}$$

@Rensselaer (

Rensselaer

PARTIAL FRACTION EXPANSION

$$A = \frac{6 + j8}{6} = A_r + jA_i$$

$$|A| = \sqrt{\frac{36+64}{36}} = \frac{10}{6}$$
 $\phi = \tan^{-1}\frac{8}{6} = 51.3^{\circ}$

$$\Rightarrow$$
 f(t) = 2|A|e^{- α t} cos(β t + ϕ)

$$\alpha = 4; \quad \beta = 3$$

$$\Rightarrow$$
 $f(t) = \frac{10}{3} e^{-4t} \cos(3t + 51.3^{\circ})$ $t \ge 0$

® Rensselaer •

PARTIAL FRACTION EXPANSION

In General:

Expand F(s) =
$$\frac{A_1}{s-p_1} + \dots + \frac{A}{s+\alpha-i\beta} + \frac{A^*}{s+\alpha+i\beta}$$

Find A₁ and A = $|A|/\phi$ from Cover-Up Rule

=>
$$f(t) = A_1 e^{p_1 t} + \dots + 2 |A| e^{-\alpha t} \cos(\beta t + \phi) \quad t \ge 0$$

Simple Poles Complex Poles

For m < n:

• Real, Equal Poles: p_1 , $p_2 = -\alpha$

Example:
$$F(s) = \frac{2s}{(s+3)^2}$$

Real, Equal Poles at p_1 , $p_2 = -3$

To Find $L^{-1}\{F(s)\}$ for Real, Equal Poles:

Expand:
$$F(s) = \frac{A_1}{s+3} + \frac{A_2}{(s+3)^2}$$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Real, Equal Poles: $F(s) = \frac{2s}{(s+3)^2}$

Expand:
$$F(s) = \frac{A_1}{s+3} + \frac{A_2}{(s+3)^2}$$

$$=> f(t) = A_1 e^{-3t} + A_2 t e^{-3t}$$
 $t \ge 0$

Need Only to Find A₁ and A₂

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Real, Equal Poles: $F(s) = \frac{2s}{(s+3)^2}$

To Find A₂, Use Cover-Up Rule:

=>
$$A_2 = [(s+3)^2 F(s)]_{s=-3}$$

$$A_2 = 2s|_{s=-3} = -6$$

Cannot Use Cover-Up Rule for A₁

PARTIAL FRACTION EXPANSION

For m < n:

• Real, Equal Poles: $F(s) = \frac{2s}{(s+3)^2}$

Expand:
$$F(s) = \frac{A_1}{s+3} + \frac{A_2}{(s+3)^2}$$

 $F(0) = \frac{2(0)}{(0+3)^2} = 0 = \frac{A_1}{0+3} + \frac{-6}{(0+3)^2} \implies A_1 = 2$

$$f(t) = 2e^{-3t} - 6te^{-3t}$$
 $t \ge 0$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Real, Equal Poles – Double Pole:

Expand F(s) =
$$\frac{A_1}{s - p_1} + ... + \left[\frac{A_{n1}}{s - p_n} + \frac{A_{n2}}{(s - p_n)^2} \right]$$

$$A_{n2} = \left[(s - p_n)^2 F(s) \right]_{s=p_n}$$
; Cover-Up Rule

Usually Find A_{n1} from evaluating F(0) or F(1)

$$=> f(t) = (A_1 e^{p_1 t} + \dots + A_{n1} e^{p_n t} + A_{n2} t e^{p_n t}) \quad t \ge 0$$

Simple Poles Repeated Poles

PARTIAL FRACTION EXPANSION

For m < n:

• Real, Equal Poles – Double Pole: Can Also Use Differentiation:

$$A_{n2} = \left[(s - p_n)^2 F(s) \right]_{s=p_n}$$
; Cover-Up Rule

$$A_{n1} = \frac{d}{ds} \left[(s - p_n)^2 F(s) \right]_{n=0}$$
; Differentiation

$$=> f(t) = (A_1 e^{p_1 t} + \dots + A_{n1} e^{p_n t} + A_{n2} t e^{p_n t}) \quad t \ge 0$$
Simple Poles Repeated Poles

• Real, Equal Poles – Triple Pole:

Expand F(s) =
$$\frac{A_1}{s - p_1} + ... + \left[\frac{A_{n1}}{s - p_n} + \frac{A_{n2}}{(s - p_n)^2} + \frac{A_{n3}}{(s - p_n)^3} \right]$$

$$A_{n3} = \left[(s - p_n)^3 F(s) \right]_{s = p_n}; \text{ Cover-Up Rule}$$

Usually Find A_{n2} from F(0) or F(1)

Usually Find A_{n1} from lim sF(s)

$$\Rightarrow \boxed{f(t) = (A_1 e^{p_1 t} + \dots + A_{n1} e^{p_n t} + A_{n2} t e^{p_n t} + \frac{1}{2!} A_{n3} t^2 e^{p_n t})} \quad t \ge 0$$

Rensselaer •

PARTIAL FRACTION EXPANSION

• Real, Equal Poles – Triple Pole: Using Differentiation

$$A_{n3} = \left[(s - p_n)^3 F(s) \right]_{s=n}$$
; Cover-Up Rule

$$A_{n2} = \frac{d}{ds}[(s-p_n)^3 F(s)]\Big|_{s=n.}$$
; Differentiation

$$A_{nl} = \frac{1}{2!} \frac{d^2}{ds^2} [(s - p_n)^3 F(s)] \bigg|_{s = p_n}$$
; Differentiation

$$\Longrightarrow f(t) \! = \! (A_{_{\!1}}e^{p_{_{\!1}}t} + + A_{_{\!n1}}e^{p_{_{\!n}}t} + A_{_{\!n2}}te^{p_{_{\!n}}t} + \frac{1}{2!} \ A_{_{\!n3}}t^2e^{p_{_{\!n}}t}) \ t \! \ge \! 0$$

@Rensselaer

PARTIAL FRACTION EXPANSION

• What happens when m = n?

$$F(s) = K \frac{(s-z_1)(s-z_2)...(s-z_m)}{(s-p_1)(s-p_2)...(s-p_n)} \qquad m = n$$

• Use Long Division

$$F(s) = K + Remainder$$

Remainder will have m < n

Rensselaer

PARTIAL FRACTION EXPANSION

$$f(t) = L^{-1}\{K\} + L^{-1}\{Remainder\}$$

Use Partial Fraction Expansion to Find L^{-1} {Remainder}

$$L^{-1}\{K\} = K\delta(t)$$

$$f(t) = K\delta(t) + L^{-1}{Remainder}$$

Most Circuits will have m < n

© Rensselaer (

CIRCUITS WITH LAPLACE

- Will Do in 2 Steps:
- Method 1
 - First Find Differential Equation
 - Transform to an Algebraic Equation
 - Take Inverse Laplace to Find y(t)
- Method 2
 - Define s-domain Circuits
 - No More Differential Equations!

CIRCUITS WITH LAPLACE

- Same Result as Solving Differential Equation:
 - Not Clear that this is Easier for 1st Order Circuits with Switched DC Inputs
 - Still have to find Differential Equation
- Advantage?:
 - Can now Solve Circuits of ANY Order
 - Can now Solve Circuits with ANY Input
 - IF we can find the Differential Equation

CIRCUITS WITH LAPLACE

- Let's Practice with Activity 20-2:
- This is a 2nd Order Circuit:
 - Need 2nd Order Differential Equation
 - Ignore Problem Statement about "sdomain diagram" and "initial condition sources"
 - Ignore "Series-Parallel Impedance Reduction"

