ELECTRIC CIRCUITS ECSE-2010

Lecture 16

REVIEW: CIRCUITS WITH LAPLACE

1. Find Initial Conditions
2. Determine Laplace Equivalent circuit
3. Use Unit l concepts (node/mesh/voltage dividers etc.) to find an expression for the parameter of interest (impedances)
a. "Clean up" expression to have $\mathrm{N}(\mathrm{s})$
4. Find poles (zeros, Unit 3) $\quad \mathrm{D}(\mathrm{s})$
5. Partial fraction expansion
a. Cover up rule for coefficients or $F(0), F(1)$
6. Inverse Laplace gives time domain response

S-DOMAIN CIRCUIT ANAIYSIS

Review S-domain conversion

- Circuit Theorems (Unit l) in the S-Domain
- KCL/KVL
- Superposition
- Thevenin/Norton
- Node Analysis

	\rightarrow
www.ppi.edu/-sanyes	Rensselaer(4)

sawyes@pi.edu

KCI/KVL

[^0]$\mathrm{KCL} / \mathrm{KVL}$

KCL/KVL

SUPERPOSITION

- Two types of independent sources
- Voltage and current representing external driving forces for $\mathrm{t}>=0$
- Initial condition voltage and current sources representing energy stored at $\mathrm{t}=0$.
- S-domain response is the sum of two components
- Zero input response (initial condition sources with external inputs turned off)
- Zero state response (external inputs with the initial condition sources turned off).
(2) RensselaerO

SUPERPOSITION: ZERO INPUT, ZERO STATE

[^0]: In the
 closed.

