

REVIEW: LECTURE 9

- First order RC and RL circuits
- Already a solved problem!
- Get RC and RL into the form of the solved problem
 - Find Thevenin Equivalent circuit
 - Find τ
- Find coefficients
 - •Need t→∞ and initial condition t=0+

DYNAMIC CIRCUITS

$$y(t) = y_H + y_P$$

Homogeneous Response + Particular Response

$$y(t) = y_N + y_F$$

Natural Response + Forced Response

$$y_N = y_H; y_F = y_P$$

$$y(t) = y_{ZI} + y_{ZS}$$

Zero-Input Response + Zero-State Response

RC CIRCUITS

Solution to Any Current or Voltage in Any Circuit Containing 1 C plus R's,

Independent Sources and Dependent Sources,

with a Switched DC Input:

$$y(t) = y_{SS} + (y_0 - y_{SS})e^{-(t-t_0)/\tau} \quad \text{for } t \ge t_0$$

$$\tau = R_{eq}C$$

Can Find y_0, y_{SS}, τ

Directly From Circuit

R_{eq} = Equivalent Resistance Seen at Terminals of C

Rensselaer

RL CIRCUITS

Solution to Any Current or Voltage in Any Circuit Containing 1 L plus R's,

Independent Sources and Dependent Sources, with a Switched DC Input:

$$y(t) = y_{SS} + (y_0 - y_{SS})e^{-(t-t_0)/\tau} \quad \text{for } t \ge t_0$$

$$\tau = \frac{L}{R_{eq}} \qquad \qquad \text{Directly From Circuit}$$

Directly From Circuit

 R_{eq} = Equivalent Resistance Seen at Terminals of L

REVIEW: LECTURE 10

- Second order Series RLC and Parallel RLC
- Already solved problems!
- Get into standard from and find α , ω_0 and β (if
- ${}^{\blacksquare}\text{Compare }\alpha\text{, }\omega_0\text{ to find form of solution }$
- Find coefficients
- •Need t→∞ and initial conditions both Vc(0+) and dVc(0+)/dt for example

SERIES RLC CIRCUITS

$$s^2 + 2\alpha s + \omega_0^2 = 0$$

Roots are s_1 , $s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$

3 Possible Cases:

Case 1: $\alpha^2 > \omega_0^2$: 2 Real, Unequal Roots

Case 2: $\alpha^2 = \omega_0^2$: 2 Real, Equal Roots

Case 3: $\alpha^2 < \omega_0^2$: 2 Complex Conjugate Roots

Rensselaer

SERIES RLC CIRCUITS

Case 1: $\alpha^2 > \omega_0^2$: 2 Real, Unequal Roots

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$\omega_{0}^{2} = \frac{1}{LC}$$

$$\alpha = \frac{R_{T}}{2L}$$

$$\omega_{0}^{2} = \frac{1}{LC}$$

 $v_{CN} = K_1 e^{s_1 t} + K_2 e^{s_2 t}$

2 Decaying Exponentials

Circuit is Overdamped

Rensselaer

SERIES RLC CIRCUITS

Case 2: $\alpha^2 = \omega_0^2$: 2 Real, Equal Roots

$$s_1 = -\alpha$$

$$s_1 = -\alpha$$

 $s_2 = -\alpha$ $\alpha = \frac{R_T}{2L}$ $\omega_0^2 = \frac{1}{LC}$

$$v_{CN} = K_1 e^{-\alpha t} + K_2 t e^{-\alpha t}$$

Decaying Exponential + Exponentially Damped Ramp

Circuit is Critically Damped

Rensselaer

SERIES RLC CIRCUITS

Case 3: $\alpha^2 < \omega_0^2$: 2 Complex Conjugate Roots

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2} = -\alpha + j\sqrt{\omega_0^2 - \alpha^2} = -\alpha + j\beta$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2} = -\alpha - j\sqrt{\omega_0^2 - \alpha^2} = -\alpha - j\beta$$

$$v_{CN} = K_1 e^{(-\alpha + j\beta)t} + K_2 e^{(-\alpha - j\beta)t}$$
$$v_{CN} = A e^{-\alpha t} \cos(\beta t + \phi)$$

Exponentially Damped Sinusoid

Circuit is Underdamped

Rensselaer

PARALLEL RLC CIRCUITS

Same Form of Equation as for Series RLC $\omega_0^2 = \frac{1}{1.6}$

Slightly Different α

Rensselaer

PARALLEL RLC CIRCUITS

Parallel RLC Circuits

LHS of Differential Equation is Same for Any Output

Natural Response for Any Output

$$\frac{\mathrm{d}^2 y_{\mathrm{N}}}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}y_{\mathrm{N}}}{\mathrm{d}t} + \omega_0^2 y_{\mathrm{N}} = 0$$

Same as for Series RLC Circuits

Rensselaer

PARALLEL RLC CIRCUITS

Natural Response

$$\frac{\mathrm{d}^2 y_{\mathrm{N}}}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}y_{\mathrm{N}}}{\mathrm{d}t} + \omega_0^2 y_{\mathrm{N}} = 0$$

Characteristic Equation

$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$

Same Roots as for Series RLC

Overdamping, Critical Damping, Underdamping

@Rensselaer@

REVIEW: LECTURE 12 AND 13

- · Laplace transforms
- Finding poles and zeros
- Partial Fraction Expansion
- Simple real poles
- Complex conjugate poles
- Double poles
- •Relationship to differential equations
- S-domain impedances (zero and non-zero initial conditions)

Rensselaer 🕮

LAPLACE TRANSFORMS Signal f(t) F(s)Impulse $\delta(t)$ 1 Step u(t) $\frac{1}{s}$ Constant Au(t) $\frac{A}{s}$ Ramp tu(t) $\frac{1}{s^2}$

LAPLACE TRANSFORMS Time Domain s-Domain $Af_1(t) + Bf_2(t)$ $AF_1(s) + BF_2(s)$ F(s) $\int f(\tau) d\tau$ S df(t) $sF(s) - f(0^{-})$ dt $e^{-\alpha t}f(t)$ $F(s+\alpha)$ t f(t) -dF(s)/ds $e^{-as}F(s)$ f(t-a)u(t-a)Rensselaer

PARTIAL FRACTION EXPANSION

There are only 3 Types of Poles:

Simple, Real Poles:
$$(s-4)$$
, $\Rightarrow p_1 = 4$

Real, Equal Poles:
$$(s+3)^2$$
, => $p_1 = p_2 = -3$

Complex Conjugate Poles:
$$(s^2 + 8s + 25)$$

=> p_1 , $p_2 = -4 \pm j3$

Rensselaer

PARTIAL FRACTION EXPANSION

For m < n:

• Simple Real Poles

In General:

Expand:
$$F(s) = \frac{A_1}{s - p_1} + \frac{A_2}{s - p_2} + \frac{A_3}{s - p_3} + \dots$$

$$A_n = [(s - p_n)F(s)]_{s=p_n};$$
 Cover-Up Rule

$$\Rightarrow$$
 f(t) =)A₁e^{p₁t} + A₂e^{p₂t} + A₃e^{p₃t} +) t \ge 0

@Rensselaer

PARTIAL FRACTION EXPANSION

· Complex Conjugate Poles

In General:

Expand F(s) =
$$\frac{A_1}{s - p_1} + \dots + \frac{A}{s + \alpha - j\beta} + \frac{A^*}{s + \alpha + j\beta}$$

Find A_1 and $A = |A|/\phi$ from Cover-Up Rule

=>
$$f(t) = A_1 e^{p_1 t} + \dots + 2 |A| e^{-\alpha t} \cos(\beta t + \phi) \quad t \ge 0$$

Simple Poles Complex Poles

Rensselaer

PARTIAL FRACTION EXPANSION

• Real, Equal Poles – Double Pole:

Expand F(s) =
$$\frac{A_1}{s - p_1} + ... + \left[\frac{A_{n1}}{s - p_n} + \frac{A_{n2}}{(s - p_n)^2} \right]$$

$$A_{n2} = \left[(s - p_n)^2 F(s) \right]_{s=p_n}$$
; Cover-Up Rule

Usually Find A_{n1} from evaluating F(0) or F(1)

$$=> f(t) = (A_1 e^{p_1 t} + \dots + A_{n1} e^{p_n t} + A_{n2} t e^{p_n t}) \quad t \ge 0$$
Simple Poles Repeated Poles

Rensselaer

IMPEDANCE Zero initial conditions

$$Z = Impedance = \frac{V(s)}{I(s)}$$

@Rensselaer@

NON-ZERO INITIAL CONDITIONS

Rensselaer (

CIRCUITS WITH LAPLACE

- 1. Find Initial Conditions
- 2. Determine Laplace Equivalent circuit
- Use Unit 1 concepts (node/mesh/voltage dividers etc.) to find an expression for the parameter of interest (impedances)
 - a. "Clean up" expression to have N(s)
- 4. Find poles (zeros, Unit 3)
- 5. Partial fraction expansion
 - a. Cover up rule for coefficients or F(0), F(1)
- 6. Inverse Laplace gives time domain response

EXAM DETAILS

All questions are similar to problems done in class, homework, or lab!

- Short answer section
 May include any mini-analysis
- 2) First order circuit (Diff. Eq)
- 3) Second order circuit (Diff. Eq.)
- 4) Second order circuit (Diff. Eq.)
- 5) Second order circuit (Laplace)

OTHER SHORT ANSWER QUESTIONS

- Voltage/Current continuity
- Overdamped, underdamped, critically damped analysis
- Laplace transforms
- Equivalent impedance conversion in s-domain
- Partial fraction expansion
- Pole-zero diagram

