ELECTRIC CIRCUITS
ECSE-2010

Lecture 17 Review '@'

@ Rensselaer

REVIEW: LECTURE 9

* First order RC and RL circuits
= Already a solved problem!

= Get RC and RL into the form of the solved
problem
= Find Thevenin Equivalent circuit
=Find t

=Find coefficients
=Need t—»c0 and initial condition t=0+
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DYNAMIC CIRCUITS
yt) =y, Ve
Homogeneous Response Particular Resp
y(t) =Yy Ve
Natural Response Forced Respc
Yn=Yus Y=o

YO) =Yz *+VYzs
Zero-Input Response Zero-State Respr
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RC CIRCUITS

Solution to Any Current or Voltage in An
Circuit Containing 1 C plus R's,
Independent Sources and Dependent Sey
with a Switched DC Input:
| Y0 = Yot (yo-y e

T= ReqC Can Findy , % .7
Directly From Circuit

for t= t,

R., = Equivalent Resistance Seen at Terminal§
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RL CIRCUITS

Solution to Any Current or Voltage in An
Circuit Containing 1 L plus R's,
Independent Sources and Dependent Sey
with a Switched DC Input:
V() = Yost (VoY s9e "

T:L CanFindy , ys .7

Req Directly From Circuit

R., = Equivalent Resistance Seen at Termioals
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fort= t,

REVIEW: LECTURE 10

t Second order Series RLC and Parallel RLC
= Already solved problems!

* Get into standard from and find a, w, and B (if
needed)

* Compare o, w, to find form of solution
*Find coefficients

=Need t-»co and initial conditions both
Vc(0+) and dVc(0+)/dt for example
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SERIES RLC CIRCUITS

v, (0

d?v, dv
LC dtzc +RTCTtC+ V. =V,
dZVC +&%+i :71\/
d2 L dt LC ¢ LC '
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SERIES RLC CIRCUITS

_dZVC +&%+i
d> L dt

1 R,

1 |_ _
[E} " (seconds) =af [T} " seconds 2

d’v,
dt? dt

dv,

1

V. =——V
LC ¢ Lc T

1

+20—=+ (‘gvc = th)VT
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SERIES RLC CIRCUITS

v 0

2
d°v,

preand 20'% +afV, = &fv, Need Initial Condition:

dv,
0")and—< (0 °
ve(07) pm (I

dvg . _ 1.
—<£(©0")==i (0
gt (0=l @)
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SERIES RLC CIRCUITS

d?vgy av,

— N+ 20—N+pv
dt’ dt “Von
Assume y,, (tF K&
sS+asraf=(

Characteristic Equatic

=0

Roots are s ,s=—a . a’ -}

Ve (1) =K g™ + K e*'
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SERIES RLC CIRCUITS

sS+astaf=(

Roots are s ,,s=-a +./a’ -}

3 Possible Case

Case l:a°>«f 2 Real, Unequal Roo
Case 2:a°=«f 2 Real, Equal Roo
Case 3:a°<«f 2 Complex Conjugate Roc
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SERIES RLC CIRCUITS

Case 1.0 >}

Y

— st st
‘ Voy = Kegr +K e

2 Decaying Exponentia

| Circuit is Overdampel

2 Real, Unequal Roo

g=Rr
2L

1
wg_Lc
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SERIES RLC CIRCUITS

Case 2:0’°=«f 2 Real, Equal Roo
S.I. =-a a= & ag = i
s, =—a 2L LC

— -at -at
Voy =Ke ™™ +K,te

Decaying Exponential Exponentially Dampedmg

Circuit is Critically Dampe|
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SERIES RLC CIRCUITS

Case 3:a° <«f 2 Complex Conjugate Roc
s=-a+|o’ -} =-a+Ji-a*=-a+p
s,=-a-\Ja’-«f =-a- N -a’=-a-|B
Vg = Kot 1 K g=aih

Ve, =Ae™cosB t+ @)

Exponentially Damped Sinusc

Circuit is Underdampe|

@®Rensselacr @

PARALLEL RLC CIRCUITS

L - - Lo 1
dt? +20'?;+%2|L:%2|N ZRTC
Same Form of Equation as for Series F o _ 1

| Slightly Differenta | LC
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PARALLEL RLC CIRCUITS

Parallel RLC Circuit:
LHS of Differential Equation is Same fény Outpul

Natural Response for Any Outg

d’y, dy,
— N +20—"+ =0
dt? dt Y

Same as for Series RLC CircL
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PARALLEL RLC CIRCUITS

Natural Respons

&Yy , 5, AV
+20—N+ =0
dt? dt Yy
Characteristic Equatic
S+ustaf = (

Same Roots as for Series R

Overdamping, Critical Damping, Underdaimgp
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REVIEW: LECTURE 12 AND 13

=Laplace transforms
*Finding poles and zeros

= Partial Fraction Expansion
= Simple real poles
= Complex conjugate poles
=Double poles

=Relationship to differential equations

= S-domain impedances (zero and non-zero
initial conditions)
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LAPLACE TRANSEORMS

LAPLACE TRANSFORMS _
Signal () F(e Signal _f® Fs)
Impulse J () 1 Exponential & u() i
1
Step u(t) S Damped Ramp  [t& Ju(t) (S+1a)2
A
Constan Au(t) s Cosine Wave [cgs ) g +S[32
Ramp w(® ;12 Damped Cosine [& cfs tut) — 9
(s+ay + 4’
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LAPLACE TRANSFORMS
Time Domain s-Domain POLES AND 7EROS
Af (t) +Bf (1) AE (s} BE (s)
t f F(s)= b.s"+ .. +bs p
If(,)dr - a,s'+ ... +as a
0 Factor F(s)
g sF(s) 1(0 ) .
dt S CL ICE DISBICH 3
e f(t) Fisa ) s-p)&E R)(G..)(s p .
t f(t) - dF(s)/ds b, _
f(t-a)u(t- a) & Fs) —g =Scale Facta

POLES AND ZER0S

BN CIACEEDICES
(-R)(E R) ()6 P

Ats=z => F(s)-» 0=> Zeros of F(:

Ats=p => F(s)- o => Poles of F(:
Poles and Zeros are "Critical Frequestief F(s)
Useful to Plot "Pole-Zero Diagram" inpdane
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POLE-ZER0 DIAGRAMS

Show Polesa 1@ ¢ Show Zeros a
X O
Complex Pr x 2
Conjugate: ! o .
- o
P, X
s-plane
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PARTIAL FRACTION EXPANSION
There are only 3 Types of Pole

Simple, Real Poles (s— 4),=> p=4
Real, Fual Pogs: (s+3)%, =>p,=p,=-3

Complex Conjugate Pdle (§° + 8s+ 25
= R.P,= -4+ ]3
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PARTIAL FRACTION EXPANSION

For m< n
« Simple Real Pole

In General:
Ly Ay Ag +

h ssB sB
A, =[(s=PFO),., :

Expand: F(s¥ A
S_
Cover-Up Rul

= f(t) )AM +AM + A+ ..) & (
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PARTIAL FRACTION EXPANSION

« Complex Conjugate Poles

In General:

Expand F(s¥ Ay + A — + A .
Sl of sta- B sta+ B

Find A, and A=| A kp from Cover-Up Rule
=ft)=Agh'+ ..+ 2JAe" ca(Bt+p) t=0
Simple Poles Complex Polg
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PARTIAL FRACTION EXPANSION

* Real, Equal Poles Double Pole:

Expand F(s):L+ + Am  Anp ]
TR sn (= R)
A= [(S‘ P.) F(S)]‘ ; Cover-Up Rule

s=p,

Usually Find A, from evaluating F(0) o(E)
=f(t) =(AgM' + ...+ A '+ A te") t=0
Simple Poles Repeated Poles
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IMPEDANCE

Zero initial conditions
O O

T
SaE

V(s

Z =Impedance VEs)
I(s)
sawyes@rpi.edu www.rpi.edu/~sawyes
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NON-ZERO INITIAL CONDITIONS

+ + O + O
|
1|R éllL ll 10
JsLQ ;CQ
VR RQ V}i VC
\
N\ o
R _ N
L) L ve@) o

Z g s
'\ﬁ"‘:‘- )
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REVIEW: LECTURE 14 CIRCUIT ANALYSIS

=Unit 1 + Unit 2 in one problem
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GENERAL PROCESS

s-Domain Circuit Analysis

Time domain Complex frequency
(t domnin) domain (s domain)

Linear * Transformed
Circuit L Circut

Differential
equation

Classical
techniques technigues

Response Inverse Transform Response
P & kbl ik o
waveform z transform
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CIRCUITS WITH LAPLACE

1. Find Initial Conditions
2. Determine Laplace Equivalent circuit

3. Use Unit 1 concepts (node/mesh/voltage
dividers etc.) to find an expression for the
parameter of interest (impedances)

a. “Cleanup” expressiontohave N (S)
4. Find poles (zeros, Unit 3) D(s)
5. Partial fraction expansion
a. Cover up rule for coefficients or F(0), F(1)

6. Inverse Laplace gives time domain response
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EXAM DETAILS

All questions are similar to problems done in
class, homework, or lab!

1) Short answer section

May include any mini-analysis
2) First order circuit (Diff. Eq)
3) Second order circuit (Diff. Eq.)
4) Second order circuit (Diff. Eq.)
B) Second order circuit (Laplace)
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OTHER SHORT ANSWER QUESTIONS

= Voltage/Current continuity

= Overdamped, underdamped,
critically damped analysis

= Laplace transforms

* Equivalent impedance
conversion in s-domain

= Partial fraction expansion
= Pole-zero diagram
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VOLTAGE/CURRENT CONTINUITY

R4
+ o4k -
+
= c1
V2 - in +
= R6
+ 2k
R5
2k

In the above circuit, the voltage is defined atofes:

5 t<0
Vi= (the voltage source changes from 5V to 10V a} =
10V O<t
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FIRST ORDER DIFFERENTIAL EQUATIONS

R1 R3
10 10 ‘

u
e

F c1

Vs 2
e S c2
[ 6

~o

In the above circuit, the source turns on at t = 0 witlvoltage of 15V, Vs=15u(t)!
Additionally, at t = 20s the switch in series with G2closed. You can (shoul@)nore C2 fo

part a) of this problem.
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bC =15v

sawyes@rpi.edu
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SECOND ORDER DIFFERENTIAL EQUATIONS

ot R L Tc
1E2 1E-10

In the above circuit, the source current is 20mitfo 0 and 0 for t > @the sourc
turns off at t = 0).
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SECOND ORDER LAPLACE WITH INITIAL
CONDITIONS

u2 Ul
.
R1 L1 T Cl
EO_ZS 4E-8
®Dn 2 1
10E-3 10E-3
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