ELECTRIC CIRCUITS ECSE-2010

Lecture 18.1: Introduction

LECTURE 18.1 AGENDA

- Transfer Functions
- Phasors
- Phasor Math

TRANSFER FUNCTIONS

H(s) = One of the most important things we can find for a circuit

H(s) depends only the circuit H(s) does NOT depend on the Input

Find H(s) by ASSUMING there is no Initial Stored Energy

and then finding the Ratio of $\frac{\text{Output}(s)}{\text{Input}(s)}$

Will use H(s) to find the Frequency Response of a Circuit

TRANSFER FUNCTIONS

For No Initial Stored Energy

 $\mathbf{Y}(\mathbf{s}) = \mathbf{H}(\mathbf{s}) \ \mathbf{X}(\mathbf{s})$

For AC Steady State: $s = j\omega$ ($\sigma = 0$)

 $Y_{ss}(j\omega) = H(j\omega) X(j\omega)$

 $Y_{ss}(j\omega)$, $H(j\omega)$, $X(j\omega)$ are all Complex Numbers

Each has an Amplitude and a Phase

$$|\mathbf{Y}_{ss}| = (|\mathbf{H}|)(|\mathbf{X}|)$$

Output Amplitude = |H| x Input Amplitude

$$\phi_{\rm Y} = \theta + \phi_{\rm X}$$

Output Phase = θ + Input Phase

If we know Input and Network Function => Can Find Amplitude and Phase of Output

 $|\mathbf{H}| = |\mathbf{H}(j\omega)| \qquad \theta = \theta(j\omega)$

Amplitude and Phase of Network Function are Functions of Frequency

Plots of $|\mathbf{H}|$ and θ vs. $\omega \Rightarrow$ Frequency Response

Describe how a circuit "behaves" as a function of frequency in the AC Steady State

$$|\mathbf{H}| = \frac{|\mathbf{Y}_{ss}|}{|\mathbf{X}|} = "Gain" of Circuit$$

 $\theta = \phi_{\rm Y} - \phi_{\rm X} =$ "Phase Shift" of Circuit

Frequency Response is described by plots of the Gain and Phase Shift of the Network Function as a function of frequency

BODE PLOT: DECIBELS AND LOG

H	$ \mathbf{H} _{dB}$
1	$20\log(1) = 0 \text{ dB}$
$\sqrt{2}$	$20\log(\sqrt{2}) = 10\log 2 = 3 \text{ dB}$
2	$20\log(2) = 6 dB$
4	$20\log(4) = 12 \text{ dB}$
5	$20\log(5) = 14 \text{ dB}$
10	$20\log(10) = 20 \text{ dB}$

http://my.ece.ucsb.edu/York/Bobsclass/2B/Frequency%20Response.pdf. Bob York, 2009

BODE PLOT: SIMPLE POLE

$$H(s) = \frac{1}{(s+1)} \longrightarrow H(j\omega) = \frac{1}{(j\omega+1)}$$

Type equation here.

The magnitude of the transfer function is then given by $|H(j\omega)| \frac{1}{\sqrt{\omega^2 + 1}} = (\omega^2 + 1)^{-1/2}$

The magnitude of the transfer function is given by

$$< H(j\omega) = -\tan^{-1}\frac{\omega}{1}$$

Will Show <u>X</u> as a Snapshot at t = 0:

Phasor = Rotating Vector in Complex Space Phasor X Rotates at Angular Frequency ω Amplitude (or Magnitude) of $\underline{X} = |X|$ Angle (or Phase) of $X = /X = \phi_x$ \Rightarrow Can Express as $\underline{X} = |X|/\phi_X \Rightarrow |X|$ at an angle of ϕ_X " $\underline{\mathbf{X}} = |\mathbf{X}| / \phi_{\mathbf{X}} = "Polar Form for \underline{\mathbf{X}}"$

 $\underline{X} = X_r + jX_i = Rectangular Form$

$$\underline{X} = X_{r} + jX_{i} \Rightarrow \text{Rectangular Form}$$
$$\underline{X} = |X| / \phi_{X} \Rightarrow \text{Polar Form}$$
$$X_{r} = |X| \cos \phi_{X} \qquad X_{i} = |X| \sin \phi_{X}$$

Can Easily Convert from Polar (P) to Rectangular (R) forms using Calculator Need to be able to do this by next class

EULER FORM

Euler's Formula: $e^{j\phi_X} = \cos\phi_X + j\sin\phi_X$

 $e^{j\phi_X} =$ Unit Vector in Direction of <u>X</u> => <u>X</u> = |X| $e^{j\phi_X}$ => Euler Form for <u>X</u>

Phasors are Complex Numbers:

- Need to Use Complex Math
- Will Use Complex Math Instead of Solving Differential Equations or Using Laplace Transforms to Find Amplitude and Phase Changes between AC Input and AC Steady State Output

Phasors are Complex Numbers:

- Will Find that Equations Relating Current Phasors, <u>I</u>, and Voltage Phasors, <u>V</u> for R, L and C will be Linear and Algebraic
- Can Use All Techniques from Unit I to Solve Circuits in the AC Steady State

• 3 Ways to Express Phasors

Rectangular Form; $\underline{X} = X_r + jX_i$ Polar Form; $\underline{X} = |X| / \phi_X$ Euler Form; $\underline{X} = |X| e^{j\phi_X}$

• Will Need to Be Able to Easily Convert Between the 3 Different Forms

COMPLEX MATH

Addition:

- $\cdot \underline{A} + \underline{B} = (a_r + j a_i) + (b_r + j b_i)$ $= (a_r + b_r) + j (a_i + b_i)$
- Subtraction:
 - $\underline{A} \underline{B} = (a_r + j a_i) (b_r + j b_i)$ = $(a_r - b_r) + j (a_i - b_i)$
- = > Do Addition/Subtraction in Rectangular Form

COMPLEX MATH

Multiplication:

- Difficult to do in Rectangular Form
- Use Euler or Polar Form

 $\underline{\mathbf{A}} \times \underline{\mathbf{B}} = \mathbf{A} e^{j\phi_1} \times \mathbf{B} e^{j\phi_2} = \mathbf{A} \mathbf{B} e^{j(\phi_1 + \phi_2)}$ $= \mathbf{A} / \underline{\phi_1} \times \mathbf{B} / \underline{\phi_2} = \mathbf{A} \mathbf{B} / (\underline{\phi_1} + \underline{\phi_2})$

$$\underline{\mathbf{A}} \div \underline{\mathbf{B}} = \mathbf{A} e^{j\phi_1} / \mathbf{B} e^{j\phi_2} = \frac{\mathbf{A}}{\mathbf{B}} e^{j(\phi_1 - \phi_2)}$$
$$= \mathbf{A} / \frac{\phi_1}{\mathbf{A}} / \mathbf{B} / \frac{\phi_2}{\mathbf{A}} = \frac{\mathbf{A}}{\mathbf{B}} \frac{/(\phi_1 - \phi_2)}{\mathbf{A}}$$

Do Multiplication/Division in Polar Form or Euler Form

RATIONALIZATION

Division in Rectangular Form:

$$\underline{\mathbf{C}} = \underline{\mathbf{A}} \div \underline{\mathbf{B}} = \frac{\mathbf{a}_{\mathrm{r}} + \mathbf{j}\mathbf{a}_{\mathrm{i}}}{\mathbf{b}_{\mathrm{r}} + \mathbf{j}\mathbf{b}_{\mathrm{i}}}$$

Want to express as $\underline{C} = C_r + jC_i$ a + ia. b - ib.

Multiply
$$\frac{a_r + ja_i}{b_r + jb_i}$$
 by $\frac{b_r - jb_i}{b_r - jb_i}$
 $\Rightarrow \underline{C} = \frac{a_r b_r + a_i b_i}{b_r^2 + b_i^2} + j \frac{a_i b_r - a_r b_i}{b_r^2 + b_i^2}$
 $= C_r + j - C_i$

COMPLEX CONJUGATES

 $\underline{\mathbf{A}} = \mathbf{a}_{r} + \mathbf{j} \mathbf{a}_{i}$

• $\underline{A}^* = a_r - j a_i = Complex Conjugate of \underline{A}$

• $\underline{A} \times \underline{A}^* = a_r^2 + a_i^2 = |A|^2$ • Angle of $\underline{A}^* = -$ (Angle of \underline{A})

$$\underline{A}^* = -\underline{A}$$

$\underline{A} = -j5$ $\underline{B} = -4 + j2$ $\underline{C} = 1 + j3$

Find $\underline{D} = \underline{A} \times \underline{B}$

Find
$$\underline{\mathbf{E}} = \frac{\underline{\mathbf{D}}}{\underline{\mathbf{C}}^*}$$

ACTIVITY 24-1

$\underline{A} = -j5$ $\underline{B} = -4 + j2$ $\underline{C} = 1 + j3$

Find $\underline{D} = \underline{A} \times \underline{B} = (-j5) \times (-4+j2) = j20-j^210$

 $j^2 = -1 \qquad \underline{D} = 10 + j20$

Find
$$\underline{E} = \frac{\underline{D}}{\underline{C}^*}$$
 $\underline{D} = 10 + j20$
 $\underline{C} = 1 + j3 \implies \underline{C}^* = 1 - j3$

$$\underline{E} = \frac{10 + j20}{1 - j3} x \frac{1 + j3}{1 + j3} = \frac{10 + j30 + j20 - 60}{1 + 9}$$

$$=\frac{-50+j50}{10}=-5+j5$$

$$\underline{\mathbf{A}} = 4\mathrm{e}^{-\mathrm{j}120^{0}} \qquad \underline{\mathbf{B}} = 26 - \mathrm{j}15$$

$$\underline{C} = 2/\underline{-150^{0}} \qquad \underline{D} = 2/\underline{30^{0}}$$
Find
$$\underline{E} = \frac{\underline{A}^{*} \times \underline{B}}{C}$$

Convert All to Polar Form

$$\underline{\mathbf{A}} = 4\underline{/-120^{\circ}}, \Longrightarrow \underline{\mathbf{A}}^* = 4\underline{/+120^{\circ}}$$

$$\underline{B} = 26 - j15 = 30 / -30^{\circ}$$

$$\underline{\mathbf{E}} = \frac{\underline{\mathbf{A}}^* \underline{\mathbf{B}}}{\underline{\mathbf{C}}} = \frac{4/120^0 \ 30/-30^0}{2/-150^0}$$

$$\underline{E} = 60 \text{ (angle of } 240^\circ\text{)} = 60/240^\circ\text{)}$$

ACTIVITY 24-1

$$\underline{\mathbf{F}} = \underline{\mathbf{D}}^3 - \underline{\mathbf{E}} - 55$$

Convert All to Rectangular Form

 $\underline{D}^{3} = (2/30^{\circ})^{3} = 8/90^{\circ} = j8$ $\underline{E} = 60/240^{\circ} = -30 - j52$ 55 = 55 + j0 $= \sum \underline{F} = \underline{D}^{3} - \underline{E} - 55 = -25 + j60 = 65 / 112.6^{\circ}$

-	TITT	1 1 1	11100	1 1 1	111111	1 1 1	111111	1 1 1 1	1001	1.1.1	11011	1 1 1	1111	π,
	++++++			- + + +	11111		+++++++			+ + +		+++	+++++	H.
	++++++								+++++				++++	H.
	1 1 1 1 1													H.
	11111					_			1111				+++++	
							11111						111	
	11111				11111									п
						_			1111		11111			п
							11111		1111		1111		+++++	H.
														п
- 1			1 1 1 1 1	1 1 1	11111	111	11111	1 1 1 1	11111	1 11	11111	1 1 1	1111	
					11111		11111							п
														п
													\ddagger	a.
									11111				TTT	п
									1111					1
				1 1 20			1111		1111				1111	n
									THE					Ø.
														Ð
				1.										
			1.1.1.111		11111	1 1 1	11111	1 1 1 1	1111	1 1 1		1 1 1	1111	1
	11111	1.1				1.1.1		1 1 1 1		1 1 1		1 1 1	1111	П
			1 1 1 1 1 1		11111		1 1 1 11						111	0
													1111	н
														Ð
-								1 1 1 1	11111		11111			
							1.1111							8
							1111						1111	4
-														4
							11111		110		11111			
						1 1 1	11111		1111				1111	
									1111			_		
-						_								Ц
							11111		1111				++++	4
-									1111				1111	4
	1 1 1 1 1						+++++++		1111					H
													+++++	H.
	1 1 1 1 1					_	1111						111	
									1111		11111		TTT	
	1 1 1 1 1								1111		11111		110	
							11111						111	H
									1111				111	
	++++++						11111		1111	1	1111		111	H
					++++++								+++	H
	++++++								+++++				+++++	H
	++++++												+++	H
						_								
	++++++						11111						++++	
													TH	
								1 1 1	100				1111	ш

