ELECTRIC CIRCUITS ECSE-2010

Lecture 18.1: Introduction

Rensselaer

LECTURE 18.1 AGENDA

- Transfer Functions
- Phasors
- Phasor Math

TRANSFER FUNCTIONS

$\mathrm{H}(\mathrm{s})=$ One of the most important things we can find for a circuit
$\mathrm{H}(\mathrm{s})$ depends only the circuit
$\mathrm{H}(\mathrm{s})$ does NOT depend on the Input
Find H(s) by ASSUMING there is no Initial Stored Energy
and then finding the Ratio of $\frac{\text { Output(s) }}{\operatorname{Input}(s)}$
Will use $\mathrm{H}(\mathrm{s})$ to find the Frequency Response of a Circuit

TRANSFER FUNCTIONS

Output
Y(s)
sinusoid

FREQUENCY RESPONSE

For No Initial Stored Energy

$$
Y(s)=H(s) X(s)
$$

For AC Steady State: $\mathrm{s}=\mathrm{j} \omega \quad(\sigma=0)$

$$
\mathrm{Y}_{\mathrm{SS}}(\mathrm{j} \omega)=\mathrm{H}(\mathrm{j} \omega) \mathrm{X}(\mathrm{j} \omega)
$$

$\mathrm{Y}_{\mathrm{SS}}(\mathrm{j} \omega), \mathrm{H}(\mathrm{j} \omega), \mathrm{X}(\mathrm{j} \omega)$ are all Complex Numbers
Each has an Amplitude and a Phase

FREQUENCY RESPONSE

$$
\left|\mathrm{Y}_{\mathrm{SS}}\right|=(|\mathrm{H}|)(|\mathrm{X}|)
$$

Output Amplitude $=|\mathrm{H}| \mathrm{x}$ Input Amplitude

$$
\phi_{\mathrm{Y}}=\theta+\phi_{\mathrm{x}}
$$

Output Phase $=\theta+$ Input Phase
If we know Input and Network Function
=> Can Find Amplitude and Phase of Output

FREQUENCY RESPONSE

$$
|\mathrm{H}|=|\mathrm{H}(\mathrm{j} \omega)| \quad \theta=\theta(\mathrm{j} \omega)
$$

Amplitude and Phase of Network Function are Functions of Frequency

Plots of $|\mathrm{H}|$ and θ vs. $\omega=>$ Frequency Response
Describe how a circuit "behaves" as a function of frequency in the AC Steady State

FREQUENCY RESPONSE

$$
|\mathrm{H}|=\frac{\left|\mathrm{Y}_{\mathrm{SS}}\right|}{|\mathrm{X}|}=\text { "Gain" of Circuit }
$$

$$
\theta=\phi_{\mathrm{Y}}-\phi_{\mathrm{X}}=\text { "Phase Shift" of Circuit }
$$

Frequency Response is described by plots of the Gain and Phase Shift of the Network Function as a function of frequency

BODE PLOT: DECIBELS AND LOG

$\|\mathbf{H}\|$	$\|\mathbf{H}\|_{\mathrm{dB}}$
1	$20 \log (1)=0 \mathrm{~dB}$
$\sqrt{2}$	$20 \log (\sqrt{2})=10 \log 2=3 \mathrm{~dB}$
2	$20 \log (2)=6 \mathrm{~dB}$
4	$20 \log (4)=12 \mathrm{~dB}$
5	$20 \log (5)=14 \mathrm{~dB}$
10	$20 \log (10)=20 \mathrm{~dB}$

http://my.ece.ucsb.edu/York/Bobsclass/2B/Frequency\ Response.pdf. Bob York, 2009

BODE PLOT: SIMPLE POLE

$$
\mathrm{H}(\mathrm{~s})=\frac{1}{(s+1)} \quad \longrightarrow \quad \mathrm{H}(\mathrm{j} \omega)=\frac{1}{(j \omega+1)}
$$

The magnitude of the transfer function is then given by

$$
|H(j \omega)| \frac{1}{\sqrt{\omega^{2}+1}}=\left(\omega^{2}+1\right)^{-1 / 2}
$$

The magnitude of the transfer function is given by

$$
<H(j \omega)=-\tan ^{-1} \frac{\omega}{1}
$$

PHASORS

Input $=$ Projection of \underline{X} on Real Axis

PHASORS

Will Show \underline{X} as a Snapshot at $\mathrm{t}=0$:
Imaginary
Complex Space

PHASORS

Phasor $=$ Rotating Vector in Complex Space Phasor X Rotates at Angular Frequency ω
Amplitude (or Magnitude) of $\underline{X}=|X|$
Angle (or Phase) of $\underline{X}=\underline{X}=\phi_{X}$
$=>$ Can Express as $\underline{X}=|X| / \phi_{X}=>"|X|$ at an angle of $\phi_{X}{ }^{\prime \prime}$
$\underline{X}=|X| / \phi_{X}=$ "Polar Form for $\underline{X} "$

PHASORS

PHASORS

$$
\begin{aligned}
& \underline{X}=X_{r}+j X_{i} \Rightarrow>\text { Re ctangular Form } \\
& \underline{X}=|X| \underline{\phi_{X}} \Rightarrow>\text { Polar Form } \\
& X_{\mathrm{r}}=|X| \cos \phi_{\mathrm{X}} \quad \mathrm{X}_{\mathrm{i}}=|\mathrm{X}| \sin \phi_{\mathrm{X}}
\end{aligned}
$$

Can Easily Convert from Polar (P) to Rectangular (R) forms using Calculator Need to be able to do this by next class

PHASORS

Imaginary
$\mathrm{X}_{\mathrm{i}}=|\mathrm{X}| \sin \phi_{\mathrm{X}}$

$$
\mathrm{X}_{\mathrm{r}}=|\mathrm{X}| \cos \phi_{\mathrm{X}} \quad \text { Real }
$$

$$
\underline{X}=X_{r}+j X_{i}=\text { Rectangular Form }
$$

$$
\underline{\mathrm{X}}=|\mathrm{X}| \mathrm{e}^{\mathrm{j} \phi_{\mathrm{x}}}=\text { Euler Form }
$$

EULER FORM

Euler's Formula:

$$
e^{\mathrm{j} \phi_{\mathrm{x}}}=\cos \phi_{\mathrm{x}}+\mathrm{j} \sin \phi_{\mathrm{x}}
$$

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{j} \phi_{\mathrm{x}}}=\text { Unit Vector in Direction of } \underline{X} \\
& =>\underline{X}=|X| \mathrm{e}^{\mathrm{j} \phi_{\mathrm{x}}}=>\text { Euler Form for } \underline{X}
\end{aligned}
$$

PHASORS

- Phasors are Complex Numbers:
- Need to Use Complex Math
- Will Use Complex Math Instead of Solving Differential Equations or Using Laplace Transforms to Find Amplitude and Phase Changes between AC Input and AC Steady State Output

PHASORS

- Phasors are Complex Numbers:
- Will Find that Equations Relating Current Phasors, \underline{I}, and Voltage Phasors, \underline{V} for R, L and C will be Linear and Algebraic
- Can Use All Techniques from Unit I to Solve Circuits in the AC Steady State

PHASORS

- 3 Ways to Express Phasors

Rectangular Form; $\underline{X}=X_{r}+j X_{i}$
Polar Form;

$$
\underline{\mathrm{X}}=|\mathrm{X}| / \underline{\phi_{\mathrm{x}}}
$$

Euler Form; $\quad \underline{X}=|X| \mathrm{e}^{\mathrm{j} \phi_{x}}$

- Will Need to Be Able to Easily

Convert Between the 3 Different Forms

COMPLEX MATH

- Addition:

$$
\begin{aligned}
\cdot \underline{A}+\underline{B} & =\left(a_{r}+j a_{i}\right)+\left(b_{r}+j b_{i}\right) \\
& =\left(a_{r}+b_{r}\right)+j\left(a_{i}+b_{i}\right)
\end{aligned}
$$

- Subtraction:

$$
\begin{aligned}
\cdot \underline{A}-\underline{B}= & \left(a_{r}+j a_{i}\right)-\left(b_{r}+j b_{i}\right) \\
& =\left(a_{r}-b_{r}\right)+j\left(a_{i}-b_{i}\right)
\end{aligned}
$$

- => Do Addition/Subtraction in Rectangular Form

COMPLEX MATH

- Multiplication:
- Difficult to do in Rectangular Form
. Use Euler or Polar Form

$$
\begin{aligned}
\underline{\mathrm{A}} \times \underline{\mathrm{B}} & =\mathrm{Ae}^{\mathrm{j} \phi_{1}} \times \mathrm{Be}^{\mathrm{j} \phi_{2}}=\mathrm{AB} \mathrm{e}^{\mathrm{j}\left(\phi_{1}+\phi_{2}\right)} \\
& =\mathrm{A} \underline{\phi_{1}} \times \mathrm{B} / \underline{\phi_{2}}=\mathrm{AB} /\left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

COMPLEX MATH

■ Division:

$$
\begin{aligned}
\underline{\mathrm{A}} \div \underline{\mathrm{B}} & =A \mathrm{e}^{\mathrm{j} \phi_{1}} / B \mathrm{e}^{\mathrm{j} \phi_{2}}=\frac{\mathrm{A}}{\mathrm{~B}} \mathrm{e}^{\mathrm{j}\left(\phi_{1}-\phi_{2}\right)} \\
& =\mathrm{A} / \underline{\phi_{1}} / \mathrm{B} / \underline{\phi_{2}}=\frac{\mathrm{A}}{\mathrm{~B}} /\left(\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

- Do Multiplication/Division in Polar Form or Euler Form

RATIONALIZATION

- Division in Rectangular Form:

$$
\underline{\mathrm{C}}=\underline{\mathrm{A}} \div \underline{\mathrm{B}}=\frac{\mathrm{a}_{\mathrm{r}}+\mathrm{ja} \mathrm{a}_{\mathrm{i}}}{\mathrm{~b}_{\mathrm{r}}+\mathrm{j} \mathrm{~b}_{\mathrm{i}}}
$$

Want to express as $\underline{\mathrm{C}}=\mathrm{C}_{\mathrm{r}}+\mathrm{jC}_{\mathrm{i}}$

$$
\text { Multiply } \frac{a_{r}+j a_{i}}{b_{r}+j b_{i}} \text { by } \frac{b_{r}-j b_{i}}{b_{r}-j b_{i}}
$$

$$
\Rightarrow \underline{C}=\frac{a_{r} b_{r}+a_{i} b_{i}}{b_{r}^{2}+b_{i}^{2}}+j \frac{a_{i} b_{r}-a_{r} b_{i}}{b_{r}^{2}+b_{i}^{2}}
$$

$$
=C_{r}+j \quad C_{i}
$$

COMPLEX CONJUGATES

- $\underline{A}=a_{r}+j a_{i}$
- $\underline{A}^{*}=a_{r}-j a_{i}=$ Complex Conjugate of \underline{A}
- $\underline{\mathbf{A}} \times \underline{A}^{*}=\mathbf{a}_{\mathrm{r}}{ }^{2}+\mathbf{a}_{\mathrm{i}}{ }^{2}=|\mathrm{A}|^{2}$
- Angle of $\underline{A}^{*}=-($ Angle of $\underline{A})$

$$
\underline{/ \underline{\mathrm{A}}^{*}=-\mid \underline{\mathrm{A}} \underline{A}}
$$

ACTIVITY 24-1

$$
\underline{A}=-j 5 \quad \underline{B}=-4+j 2 \quad \underline{C}=1+j 3
$$

Find $\underline{D}=\underline{A} \times \underline{B}$

Find $\underline{E}=\frac{\underline{D}}{\underline{C^{*}}}$

ACTIVITY 24-1

$$
\underline{\mathrm{A}}=-\mathrm{j} 5 \quad \underline{B}=-4+\mathrm{j} 2 \quad \underline{\mathrm{C}}=1+\mathrm{j} 3
$$

Find $\underline{D}=\underline{A} \times \underline{B}=(-j 5) \times(-4+j 2)=j 20-j^{2} 10$

$$
j^{2}=-1 \quad \underline{D}=10+j 20
$$

ACTIVITY 24-1

$$
\text { Find } \begin{aligned}
& \underline{E}=\frac{\underline{D}}{\underline{C}^{*}} \underline{D}=10+j 20 \\
& \underline{C}=1+j 3 \quad \Rightarrow \underline{C}^{*}=1-j 3
\end{aligned}
$$

$$
\underline{E}=\frac{10+\mathrm{j} 20}{1-j 3} \times \frac{1+\mathrm{j} 3}{1+\mathrm{j} 3}=\frac{10+\mathrm{j} 30+\mathrm{j} 20-60}{1+9}
$$

$$
=\frac{-50+\mathrm{j} 50}{10}=-5+\mathrm{j} 5
$$

ACTIVITY 24-1

$$
\begin{array}{ll}
\underline{\mathrm{A}}=4 \mathrm{e}^{-\mathrm{j} 120^{0}} & \underline{\mathrm{~B}}=26-\mathrm{j} 15 \\
\underline{\mathrm{C}}=2 \underline{/-150^{0}} & \underline{\mathrm{D}}=2 / 30^{\circ}
\end{array}
$$

Find $\underline{E}=\frac{\underline{A}^{*} \times \underline{B}}{\underline{C}}$

ACTIVITY 24-1

Convert All to Polar Form

$$
\begin{aligned}
& \underline{A}=4 \underline{/-120^{\circ}},=>\underline{A}^{*}=4 /+120^{\circ} \\
& \underline{B}=26-j 15=30 \underline{/-30^{\circ}} \\
& \underline{E}=\frac{\underline{A^{*}} \underline{B}}{\underline{C}}=\frac{4 / 120^{\circ} 30 /-30^{\circ}}{2 \underline{-150^{\circ}}}
\end{aligned}
$$

$$
\underline{E}=60\left(\text { angle of } 240^{\circ}\right)=60 / 240^{\circ}
$$

ACTIVITY 24-1

$$
\underline{\underline{E}=60 / 240^{\circ}} \text { Imag } \underbrace{-30}_{\text {Real }}
$$

ACTIVITY 24-1

$$
\underline{\mathrm{F}}=\underline{\mathrm{D}}^{3}-\underline{\mathrm{E}}-55
$$

Convert All to Rectangular Form

$$
\begin{aligned}
& \underline{\mathrm{D}}^{3}=\left(2 / \underline{30^{0}}\right)^{3}=8 / 90^{0}=j 8 \\
& \underline{E}=60 / 240^{\circ}=-30-j 52 \\
& 55=55+\mathrm{j} 0 \\
& \Rightarrow \underline{\mathrm{~F}}=\underline{\mathrm{D}}^{3}-\underline{\mathrm{E}}-55=-25+\mathrm{j} 60=65 / \underline{112.6^{\circ}}
\end{aligned}
$$

ACTIVITY 24-1

$$
\underline{F}=-25+j 60=65 \underline{/ 112.6^{\circ}}
$$

