ELECTRIC CIRCUITS ECSE-2010

Lecture 19.1

LECTURE 19.1 AGENDA

- Kirkoff's laws for phasors
- AC steady state impedence
- Examples

PHASORS

Phasors module

Phasor $=$ Rotating Vector in Complex Space
Phasor X Rotates Counterclockwise at
Angular Frequency ω
Amplitude (or Magnitude) of $\underline{X}=|X|$
Angle (or Phase) of $\underline{X}=\underline{X}=\phi_{\mathrm{X}}$
$=>$ Can Express as $\underline{X}=|X| / \underline{\phi_{X}}=>"|X|$ at an angle of $\phi_{X}{ }^{\prime \prime}$
$\underline{X}=|X| / \phi_{X}=$ "Polar Form for $\underline{X} "$

I'S LAWS FOR PHASORS

- Circuit in AC steady state:

$$
\text { Input }=\mathrm{x}(\mathrm{t})=|\mathrm{X}| \cos \left(\omega \mathrm{t}+\phi_{\mathrm{X}}\right)
$$

Express $\mathrm{x}(\mathrm{t})$ as a Phasor $\underline{\mathrm{X}}=|\mathrm{X}| \underline{/ \phi_{\mathrm{X}}}$

- Can express all v's and i's in circuit as phasors:

$$
\begin{aligned}
& \mathrm{v}_{1}(\mathrm{t}) \rightarrow \underline{\mathrm{V}_{1}} ; \mathrm{v}_{2}(\mathrm{t}) \rightarrow \underline{\mathrm{V}_{2}} \\
& \mathrm{i}_{1}(\mathrm{t}) \rightarrow \underline{\mathrm{I}_{\underline{1}}} ; \mathrm{i}_{2}(\mathrm{t}) \rightarrow \underline{\mathrm{I}_{2}}
\end{aligned}
$$

AC STEADY STATE

- Time Domain:
- Currents, Voltages expressed as Sinusoids; i(t), v(t)
- Frequency Domain:
. Currents, Voltages expressed as Phasors; I,V

K'S LAWS FOR PHASORS

- KCL:
- If $\mathrm{i}_{1}+\mathrm{i}_{2}=\mathrm{i} ;=>\underline{\mathrm{I}}_{1}+\underline{\mathrm{I}}_{2}=\underline{\mathrm{I}}$

■ KVL:

- If $\mathrm{v}_{1}+\mathrm{v}_{2}=\mathrm{v} ;=>\underline{\mathrm{V}}_{1}+\underline{\mathrm{V}}_{2}=\underline{\mathrm{V}}$
- K's Laws Work for Phasors!
- Complex Addition, not Simple Addition

AC STEADY STATE

- Phasor Diagram:
- Plot of Phasors in Complex Space
- Same as Plotting Vectors in Real Space

AC STEADY STATE IMPEDANCE

- Capacitor:

$$
\begin{aligned}
\mathrm{i}_{\mathrm{C}} & =\mathrm{C} \frac{\mathrm{dv}_{\mathrm{C}}}{\mathrm{dt}} \\
\mathrm{v}_{\mathrm{C}}(\mathrm{t}) & =\mathrm{V} \cos (\omega \mathrm{t}+\phi) \xrightarrow{\mathrm{c}} \mathrm{v}_{\mathrm{C}} \\
& =\operatorname{Real}\left[\mathrm{Ve}^{\mathrm{j}(\omega t+\phi)}\right] \\
& =\operatorname{Real}\left[\mathrm{Ve}^{\mathrm{j} \phi} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right]=\operatorname{Real}\left[\underline{\mathrm{V}}_{\mathrm{C}} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right]
\end{aligned}
$$

AC STEADY STATE IMPEDANCE

- Inductor:

$$
\begin{aligned}
\mathrm{v}_{\mathrm{L}} & =\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}} \\
\mathrm{i}_{\mathrm{L}}(\mathrm{t}) & =\mathrm{I} \cos (\omega \mathrm{t}+\phi) \stackrel{\stackrel{\mathrm{I}_{\mathrm{L}}}{\mathrm{v}_{\mathrm{L}}}}{ } \\
& =\operatorname{Real}\left[\mathrm{I} \mathrm{e}^{\mathrm{j}(\omega t+\phi)}\right] \\
& =\operatorname{Real}\left[\mathrm{Ie}^{\mathrm{j} \phi} \mathrm{e}^{\mathrm{j} \omega t}\right]=\operatorname{Real}\left[\underline{\mathrm{I}_{\underline{1}} \mathrm{e}^{\mathrm{j} \omega t}}\right]
\end{aligned}
$$

AC STEADY STATE IMPEDANCE

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{R}}=\mathrm{R} \Omega \\
& \mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{~L} \Omega \\
& \mathrm{Z}_{\mathrm{C}}=-\frac{\mathrm{j}}{\omega \mathrm{C}}=\frac{1}{\mathrm{j} \omega \mathrm{C}} \Omega
\end{aligned}
$$

AC STEADY STATE IMPEDANCE

Note:
As $\omega \rightarrow 0 ; \mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{L} \rightarrow 0$
Inductor is a Short Circuit for DC

As $\omega \rightarrow \infty ; \mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{L} \rightarrow \infty$
Inductor is an Open Circuit for
Very High Frequencies

AC STEADY STATE IMPEDANCE

Note:
As $\omega \rightarrow 0 ; \mathrm{Z}_{\mathrm{C}}=-\frac{\mathrm{j}}{\omega C} \rightarrow \infty$
Capacitor is an Open Circuit for DC
As $\omega \rightarrow \infty ; \mathrm{Z}_{\mathrm{C}}=-\frac{\mathrm{j}}{\omega C} \rightarrow 0$
Capacitor is a Short Circuit for
Very High Frequencies

AC STEADY STATE IMPEDANCE

- In General, V = Z I in AC Steady State:
- Z = HC SS Impedance
- Units of Ohms
- Ohm's Law for AC Steady State
- $\mathrm{Y}=\mathrm{HC}$ Steady State Admittance

$$
=1 / Z \quad \text { (Units of Siemens) }
$$

ac STtady State Imphdence

$\underline{V}=$ ZII; Ohm's Law for AC Steady State
$\mathrm{Z}=\mathrm{R}(\omega)+\mathrm{jX}(\omega)=\mathrm{AC}$ Steady State Impedance $\mathrm{R}(\omega)=$ AC Steady State Resistance $\mathrm{X}(\omega)=$ AC Steady State Reactance
$\mathrm{Y}=\mathrm{G}(\omega)+\mathrm{jB}(\omega)=\mathrm{AC}$ Steady State Admittance $\mathrm{G}(\omega)=$ AC Steady State Conductance B $(\omega)=$ AC Steady State Susceptance

HC SS CIRCUIT $\operatorname{ANALYSIS}$

- Time Domain \rightarrow Frequency Domain
- Express all Voltages and Currents as Phasors

$$
\mathrm{v}_{1}(\mathrm{t}) \rightarrow \underline{\mathrm{V}}_{1} ; \quad \mathrm{i}_{1}(\mathrm{t}) \rightarrow \underline{\mathrm{I}}_{1} ; \quad \text { etc. }
$$

- Express R, L and C with AC Steady State Impedances

$$
Z_{R}=R \Omega ; Z_{L}=j \omega L \Omega ; Z_{C}=\frac{-j}{\omega C} \Omega
$$

EXHMPLE 1A

The circuit in Figure 8-15(a) is operating in the sinusoidal steady state with $v_{s}(t)=35 \cos 100 t V$

(a)

EXAMPLE 1T

The circuit in Figure 8-15(a) is operating in the sinusoidal steady state with $\mathrm{V}_{\mathrm{s}}(\mathrm{t})=35 \cos 100 \mathrm{t} V$
(a) Transform the circuit into the phasor domain
(b) Solve the phasor current I
(c) Solve for the phassor voltage across each element
(d) Find the waveforms corresponding to the phasors found in (b) and (c)

EXAMPLE 1B

The circuit in Figure 8-15(a) is operating in the sinusoidal steady state with $\mathrm{v}_{\mathrm{s}}(\mathrm{t})=100$ cos $2000 \mathrm{t}-45 \mathrm{deg} \mathrm{V}$
(a) Transform the circuit into the phasor domain
(b) Solve the phasor current I
(c) Solve for the phassor voltage across each element
(a) Find the waveforms corresponding to the phasors found in (b) and (c)
(a) Draw a phasor diagram of all three voltages and the current

