ELECTRIC CIRCUITS ECSE-2010

Lecture 20.1

LECTURE 20.1 AGENDA

- AC Thevenin/Norton circuits
- AC node equations
- AC mesh equations
- AC bridge circuits

FREQUENCY DEPENDENCE

- Usually Interested in the Steady State Behavior of a Circuit as the Frequency of the Input is Varied:
- Frequency Response of a Circuit
- Since $Z=R(\omega)+j X(\omega)$ is Frequency Dependent:
- Behavior of a Circuit in AC Steady State Varies Considerably with Frequency

FREQUENCY DEPENDENCE

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{C}}=-\frac{\mathrm{j}}{\omega \mathrm{C}} ; & \mathrm{Z}_{\mathrm{C}} \rightarrow \infty \text { as } \omega \rightarrow 0 \text { Open Circuit } \\
\mathrm{Z}_{\mathrm{C}} \rightarrow 0 \text { as } \omega \rightarrow \infty \text { Short Circuit } \\
\mathrm{Z}_{\mathrm{L}}=j \omega \mathrm{~L} ; & \mathrm{Z}_{\mathrm{L}} \rightarrow 0 \text { as } \omega \rightarrow 0 \text { Short Circuit } \\
& \mathrm{Z}_{\mathrm{L}} \rightarrow \infty \text { as } \omega \rightarrow \infty \text { Open Circuit }
\end{array}
$$

HC SS CIRCUIT RNHLYSIS

- Now have all the tools we need to solve circuits in the AC Steady State
- Transform to Frequency Domain

$$
\begin{aligned}
& =>v(t), i(t) \rightarrow \underline{V}, \underline{I} \\
& =>R, L, C \rightarrow R, j \omega L, \frac{-j}{\omega C}
\end{aligned}
$$

- Find Output \underline{Y} as a Phasor - Unit I Techniques
- Observe Frequency Response

EQUIVALENT IMPEDANCE

AC THEVENIN/NORTON

AC Thevenin Circuit

$$
\underline{\mathrm{V}_{\mathrm{T}}}=\underline{\mathrm{I}_{\mathrm{N}}} \mathrm{Z}_{\mathrm{T}}
$$

$\mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{eq}}$ of Dead Source Network

AC SOURCE CONVERSIONS

$$
\underline{I}_{\mathrm{S}}=\frac{\underline{\mathrm{V}}_{\mathrm{S}}}{\mathrm{Z}_{\mathrm{S}}}
$$

AC NODE EQUATIONS

Technique to Solve Any AC Steady State Circuit

1. Label Unknown Phasor Node Voltages, $\underline{V}_{1}, \underline{V}_{2}$, etc.
2. \# Unknown Nodes = \# Nodes - \# Voltage Sources - 1 (Reference)
3. Write a KCL at Each Unknown Node
4. Sum of Phasor Currents OUT of Node $=0$
5. Relate Phasor Currents to Phasor Node Voltages using Ohm's Law for AC Steady State
6. Will Always Get the Same Number of Equations as Unknowns
7. Solve Complex Linear Equations for $\underline{V}_{1}, \underline{V}_{2}$, etc.

HC MESH EQUATIONS

Technique to Solve Any HC Steady State Circuit

1. Define Ill Phasor Mesh Currents
2. Unknown Mesh Currents $\left(\underline{I}, 1, I_{2}, I_{3}\right.$, etc.) and Current Sources (Independent and Controlled)
3. Write KVL around Each Unknown Mesh
4. Sum of Phasor Voltages around Mesh $=0$
5. Relate Phasor Voltages to Phasor Mesh Currents using Ohm's Law for IC Steady State
6. Will Ilways get Same Number of Equations as Unknowns
7. Solve Complex Linear Equations for $\underline{I}_{1}, \mathrm{I}_{2} \mathrm{I}_{3}$, etc.

EXAMPLE PROBLEM

Use node analysis to find the current Ix.

AC BRIDCE CIRCUITS

- AC Bridge Circuits are often used to Accurately Measure R, L and C's:
- Often called Impedance Bridges
- Wheatstone Bridge Measures R (AC/DC)
- Experiment \#2b used DC
- Maxwell Bridge Measures L (AC Only)
- There are Several Other Types of AC Bridges

WHEATSTONE BRIDGE

Connect Voltmeter across "Bridge"
"Balancing the Bridge"
Adjust R_{3} such that VM reads $0 \quad$ Accurate Measurement of R_{u}

WHEATSTONE BRIDGE

If Balanced:

$$
\mathrm{i}_{\mathrm{M}}=\mathrm{v}_{\mathrm{M}}=0
$$

$$
\Rightarrow \mathrm{R}_{\mathrm{u}}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{1}}
$$

(19) Rensselaer (14)

IMPEDANCE BRIDGES

Balance the Bridge
Accurate Measurement of Z_{u}

IMPEDANCE BRIDCES

Parallel voltage dividers

$$
\begin{gathered}
\mathrm{V}_{. \mathrm{M}}=\mathrm{V}_{. \mathrm{A}}-\mathrm{V}_{. \mathrm{B}}=\left(\frac{\mathrm{Z}_{.2}}{\mathrm{Z}_{.1}+\mathrm{Z}_{.2}}\right) \cdot \mathrm{V}_{. \mathrm{s}}-\left(\frac{\mathrm{Z}_{. \mathrm{u}}}{\mathrm{Z}_{.3}+\mathrm{Z}_{. \mathrm{u}}}\right) \cdot \mathrm{V}_{. \mathrm{s}} \\
\mathrm{~V}_{. \mathrm{M}}=\left[\frac{\mathrm{Z}_{.2} \cdot \mathrm{Z}_{.3}-\mathrm{Z}_{.1} \cdot \mathrm{Z}_{. \mathrm{u}}}{\left(\mathrm{Z}_{.1}+\mathrm{Z}_{.2}\right) \cdot\left(\mathrm{Z}_{.3}+\mathrm{Z}_{. \mathrm{u}}\right)}\right] \cdot \mathrm{V}_{. \mathrm{s}} \quad \mathrm{VM} \text { is zero when } \\
\mathrm{Z}_{2} \mathrm{Z}_{3}=\mathrm{Z}_{1} \mathrm{Z}_{\mathrm{u}} \\
\mathrm{Z}_{. \mathrm{u}}=\frac{\mathrm{Z}_{.2} \cdot \mathrm{Z}_{.3}}{\mathrm{Z}_{.1}}=\mathrm{R}_{. \mathrm{X}}+\mathrm{j} \mathrm{X}_{. \mathrm{X}}
\end{gathered}
$$

Measures an Inductive Impedance

IMPEDANCE BRIDGES

- Why 2 Variable Impedances?:
- Must balance Resistance and Reactance of the Circuit
- Amplitude and Phase of $\underline{\underline{I}}_{m}, \underline{\mathrm{~V}}_{\mathrm{m}}$
- Real and Imaginary Parts of $\underline{\underline{I}}_{m}, \underline{V}_{m}$

MAXWELL BRIDGE

$$
\mathrm{R}_{. \mathrm{W}}+\mathrm{j} \omega \mathrm{~L}_{. \mathrm{u}}=\frac{\mathrm{R}_{.2} \cdot \mathrm{R}_{.3}}{\mathrm{R}_{.1}}+\mathrm{j} \omega \mathrm{C}_{.1} \cdot \mathrm{R}_{.2} \cdot \mathrm{R}_{.3} \quad \mathrm{R}_{. \mathrm{w}}=\frac{\mathrm{R}_{.2} \cdot \mathrm{R}_{.3}}{\mathrm{R}_{.1}} \quad \mathrm{~L}_{. \mathrm{u}}=\mathrm{R}_{.2} \cdot \mathrm{R}_{.3} \cdot \mathrm{C}_{.1}
$$

