ELECTRIC CIRCUITS ECSE-2010

Lecture 20.1

LECTURE 20.1 AGENDA

- AC Thevenin/Norton circuits
- AC node equations
- AC mesh equations
- AC bridge circuits

FREQUENCY DEPENDENCE

- Usually Interested in the Steady State Behavior of a Circuit as the <u>Frequency</u> of the Input is Varied:
 - Frequency Response of a Circuit
- Since $Z = R(\omega) + j X(\omega)$ is Frequency Dependent:
 - Behavior of a Circuit in AC Steady State Varies Considerably with Frequency

FREQUENCY DEPENDENCE

$$Z_{\rm C} = -\frac{\rm j}{\omega \rm C};$$

$$Z_{\rm C} = -\frac{\rm j}{\omega C};$$
 $Z_{\rm C} \to \infty \text{ as } \omega \to 0 \text{ Open Circuit}$ $Z_{\rm C} \to 0 \text{ as } \omega \to \infty \text{ Short Circuit}$

$$Z_C \rightarrow 0$$
 as $\omega \rightarrow \infty$ Short Circuit

$$Z_L = j\omega L;$$

$$Z_L \rightarrow 0$$
 as $\omega \rightarrow 0$ Short Circuit

$$Z_L \rightarrow \infty$$
 as $\omega \rightarrow \infty$ Open Circuit

AC SS CIRCUIT ANALYSIS

- Now have all the tools we need to solve circuits in the AC Steady State
- Transform to Frequency Domain

$$\Rightarrow$$
 v(t), i(t) \rightarrow \underline{V} , \underline{I}

$$\Rightarrow$$
 R, L, C \rightarrow R, $j\omega$ L, $\frac{-j}{\omega C}$

- Find Output Y as a Phasor Unit I Techniques
- Observe Frequency Response

EQUIVALENT IMPEDANCE

$$Z_{eq} = \frac{V}{I}$$

AC THEVENIN/NORTON

AC Thevenin Circuit

$$\underline{V_{\scriptscriptstyle T}} = \underline{I_{\scriptscriptstyle N}} \ Z_{\scriptscriptstyle T}$$

AC Norton Circuit

$$Z_T = Z_{eq}$$
 of Dead Source Network

AC SOURCE CONVERSIONS

$$\underline{I}_{S} = \frac{\underline{V}_{S}}{Z_{S}}$$

AC NODE EQUATIONS

Technique to Solve Any AC Steady State Circuit

- Label Unknown Phasor Node Voltages, \underline{V}_1 , \underline{V}_2 , etc.
- 2. # Unknown Nodes = # Nodes # Voltage Sources 1 (Reference)
- 3. Write a KCL at Each Unknown Node
- 4. Sum of Phasor Currents OUT of Node = 0
- Relate Phasor Currents to Phasor Node Voltages using Ohm's Law for AC Steady State
- 6. Will Always Get the Same Number of Equations as Unknowns
- 7. Solve Complex Linear Equations for $\underline{V}_1, \underline{V}_2$, etc.

AC MESH EQUATIONS

Technique to Solve Any AC Steady State Circuit

- 1. Define All Phasor Mesh Currents
 - 1. Unknown Mesh Currents $(\underline{I}_1, \underline{I}_2, \underline{I}_3, \text{ etc.})$ and Current Sources (Independent and Controlled)
- 2. Write KVL around Each Unknown Mesh
- 3. Sum of Phasor Voltages around Mesh = 0
- 4. Relate Phasor Voltages to Phasor Mesh Currents using Ohm's Law for AC Steady State
- 5. Will Always get Same Number of Equations as Unknowns
- 6. Solve Complex Linear Equations for $\underline{\mathbf{I}}_1$, $\underline{\mathbf{I}}_2$, $\underline{\mathbf{I}}_3$, etc.

EXAMPLE PROBLEM

Use node analysis to find the current lx.

AC BRIDGE CIRCUITS

- AC Bridge Circuits are often used to Accurately Measure R, L and C's:
 - Often called Impedance Bridges
 - □ Wheatstone Bridge Measures R (AC/DC)
 - Experiment #2b used DC
 - Maxwell Bridge Measures L (AC Only)
 - □ There are Several Other Types of AC Bridges

WHEATSTONE BRIDGE

Connect Voltmeter across "Bridge"

Adjust R₃ such that VM reads 0

"Balancing the Bridge"

Accurate Measurement of R₁₁

WHEATSTONE BRIDGE

If Balanced:

$$i_{M} = v_{M} = 0$$

$$i_1 = i_2$$
 => $R_u = \frac{R_2 R_3}{R_1}$

IMPEDANCE BRIDGES

Balance the Bridge

Accurate Measurement of Z_u

IMPEDANCE BRIDGES

Parallel voltage dividers

$$V_{.M} = V_{.A} - V_{.B} = \left(\frac{Z_{.2}}{Z_{.1} + Z_{.2}}\right) \cdot V_{.s} - \left(\frac{Z_{.u}}{Z_{.3} + Z_{.u}}\right) \cdot V_{.s}$$

$$V_{.M} = \left[\frac{Z_{.2} \cdot Z_{.3} - Z_{.1} \cdot Z_{.u}}{(Z_{.1} + Z_{.2}) \cdot (Z_{.3} + Z_{.u})} \right] \cdot V_{.s}$$

VM is zero when $Z_2Z_3 = Z_1Z_n$

$$Z_{.u} = \frac{Z_{.2} \cdot Z_{.3}}{Z_{.1}} = R_{.X} + jX_{.X}$$

Measures an Inductive Impedance

IMPEDANCE BRIDGES

- Why 2 Variable Impedances?:
 - Must balance Resistance and Reactance of the Circuit
 - Amplitude and Phase of \underline{I}_{m} , \underline{V}_{m}
 - Real and Imaginary Parts of \underline{I}_{m} , \underline{V}_{m}

MAXWELL BRIDGE

$$R_{.w} + j\omega L_{.u} = \frac{R_{.2} \cdot R_{.3}}{R_{.1}} + j\omega C_{.1} \cdot R_{.2} \cdot R_{.3}$$

$$R_{.w} = \frac{R_{.2} \cdot R_{.3}}{R_{.1}}$$

$$L_{.u} = R_{.2} \cdot R_{.3} \cdot C_{.1}$$