ELECTRIC CIRCUITS ECSE-2010

Lecture 21.1

LECTURE 21.1

- AC Power
 - Average Power
 - Complex Power
 - Real Power
 - Reactive Power
 - Apparent Power
- Power Factor

AC POWER

AC Steady State Circuit Analysis: • Find <u>V</u>, <u>I</u> => Write down v(t), i(t)

Will Now Focus on AC Power:

RMS Values

Average Power

Reactive Power

Complex Power

• Power Factor

Consider $x(t) = |X| \cos \omega t$ Periodic Function $x_{ave} = \frac{1}{T} \int_{0}^{1} |X| \cos \omega t \, dt = 0$ $(x^{2})_{ave} = \frac{1}{T} \int_{0}^{T} |X|^{2} \cos^{2} \omega t \, dt = \frac{|X|^{2}}{2}$ Define $X_{RMS} = \sqrt{(x^2)_{ave}}$ For Sinusoids: $X_{RMS} = \frac{|X|}{\sqrt{2}} = .707 |X|$ Rensselaer

AC Voltage, v(t) =
$$|V| \cos(\omega t + \phi)$$

=> $V_{RMS} = \frac{|V|}{\sqrt{2}}$ Volts (RMS)

AC Current,
$$i(t) = |I| \cos(\omega t + \psi)$$

=> $I_{RMS} = \frac{|I|}{\sqrt{2}}$ Amps (RMS)

RMS Value is a Scalar: Not a Phasor!

Convenient Way to Describe Current and Voltage in AC Steady State:

- Convenient Way to Calculate Power in AC Steady State:
- All Residential AC Electricity is Described in Terms of RMS Values:
- 120 V = 120 Volts, RMS
 - $|\mathbf{V}| = \sqrt{2} \mathbf{V}_{\text{RMS}} \approx 170 \text{ Volts (0 to Peak)}$

Recall:

$$p(t) = |I|^2 \frac{|Z|}{2} (\cos\theta + \cos(2\omega t - \theta))$$
$$|Z| = \frac{V_m}{I_m} = \frac{V_{RMS}}{I_{RMS}}; \quad I_{RMS} = \frac{I_m}{\sqrt{2}}$$

 $\Rightarrow p(t) = V_{RMS} I_{RMS} (\cos\theta + \cos(2\omega t - \theta))$

Use a different Trignometric Identity: $\cos(2\omega t - \theta) = \cos 2\omega t \cos \theta + \sin 2\omega t \sin \theta$ $\Rightarrow p(t) = V_{RMS} I_{RMS} (\cos \theta + \cos (2\omega t - \theta))$ $= V_{RMS} I_{RMS} \cos \theta (1 + \cos 2\omega t) + V_{RMS} I_{RMS} \sin \theta \sin 2\omega t$

$$P = \frac{1}{T} \int_{0}^{T} p(t) dt = V_{RMS} I_{RMS} \cos \theta + 0 + 0$$

=> Same result as before

Define P = "Real Power" = $V_{RMS}I_{RMS}\cos\theta$ P is Measured in Watts

Define Q = "Reactive Power" = $V_{RMS}I_{RMS}\sin\theta$ Q is Measured in VAR's (Volt-Amperes-Reactive)

- Q is a Measure of the Rate of Change of Energy Stored in the Reactive Elements (L, C):
 - Power companies must worry about
 Q since they supplied this energy
 - Supplied Q over their Lines => Real Cost
 - Power companies want customers to have Low Q

- Q is a Measure of the Rate of Change of Energy Stored in the Reactive Elements (L, C):
 - Big issue for a large user like Rensselaer
 - Fans all use Motors Motors are Inductive
 - Large users are charged for Q, not just P

Impedance Triangle:
$$Z = |Z|/\underline{\theta}$$

 $R(\omega) = |Z|\cos\theta; X(\omega) = |Z|\sin\theta$
=> Real Power = $P = V_{RMS}I_{RMS}\cos\theta$
 $= I_{RMS}^2R(\omega)$ [Watts]
=> Reactive Power = $\Omega = V_{RMS}I_{RMS}\sin\theta$

> Reactive Power = $Q = V_{RMS} I_{RMS} \sin \theta$ = $I_{RMS}^2 X(\omega)$ [VAR's]

$$P = I_{RMS}^{2} |Z| \cos \theta$$

$$= I_{RMS}^{2} R(\omega)$$

$$= V_{RMS} I_{RMS} \cos \theta$$
[Watts]

$$Q = I_{RMS}^2 |Z| \sin \theta$$
$$= I_{RMS}^2 X(\omega)$$

 $= V_{RMS} I_{RMS} \sin \theta$

Equivalent ways of expressing Reactive Power [VAR's]

- Notes on Reactive Power:
 - Real Power = P is always > 0
 - Reactive Power = Q can be >
 0 or
 - For Inductive Load, X > 0 => Q > 0
 - For Capacitive Load, X < 0 =>
 Q < 0

COMPLEX POWER

Define "Complex Power" = $\underline{S} = P + jQ$

 \underline{S} is a Complex Number, but not a Phasor \underline{S} is a Convenient Way to Keep Track of P and Q Real{ \underline{S} = P = V_{RMS}I_{RMS}cos θ => Watts

 $Imag\{\underline{S}\} = Q = V_{RMS}I_{RMS}\sin\theta \Longrightarrow VAR's$

COMPLEX POWER

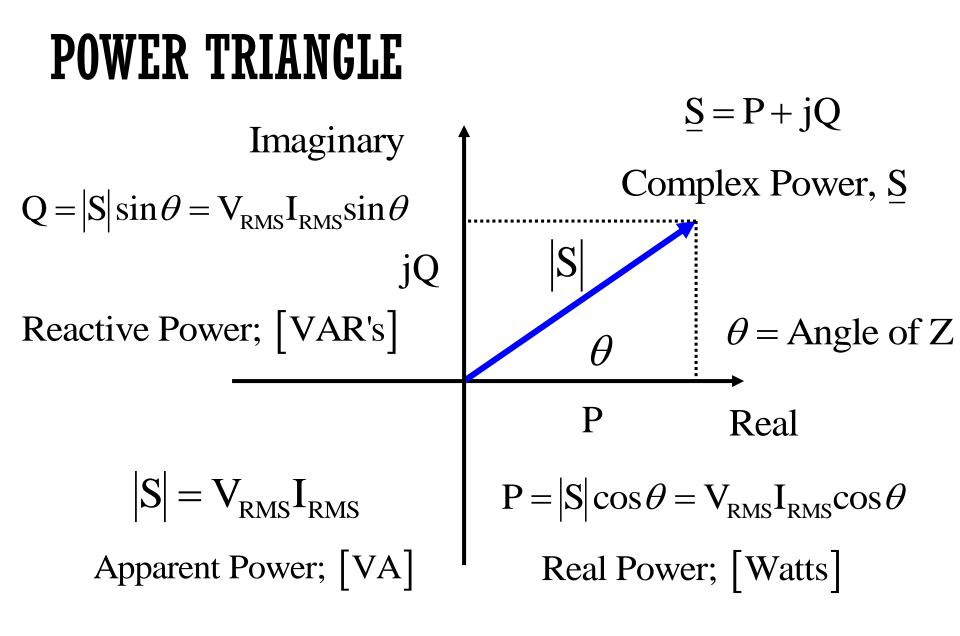
- Significance of <u>S</u> = Complex Power:
 - $\Box \text{ For Several Loads } = S_{\text{Total}} = S_1 + S_2 + S_3 + \dots$
 - $\Box \underline{S}_{Total} = (P_1 + P_2 + ...) + j (Q_1 + Q_2 + ...)$
 - Regardless of how loads are connected! Just Add P's and Q's

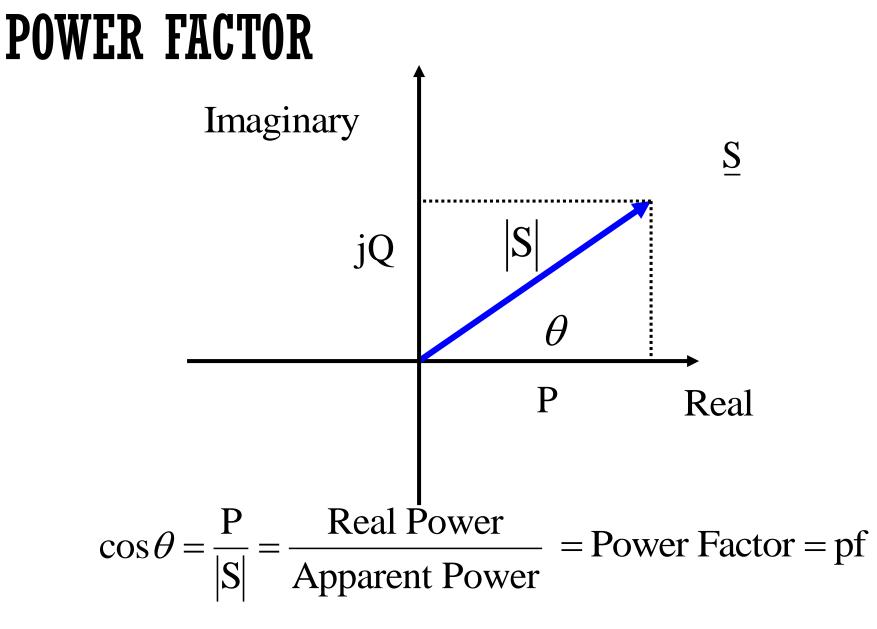
APPARENT POWER

Magnitude of
$$\underline{S} = |S| = \sqrt{P^2 + Q^2} = V_{RMS}I_{RMS}$$

|S| = "Apparent Power" => [Volt-Amperes]

$|S| = Product of V_{RMS} \times I_{RMS}$ at Terminals





POWER FACTOR

For Inductive Loads, $\theta > 0$; $\cos \theta > 0$ For Capacitive Loads, $\theta < 0$; $\cos \theta > 0$ Need a Way to Distinguish $\underline{\mathbf{I}} = \frac{\underline{\mathbf{V}}}{Z} = \frac{|\mathbf{V}|/\phi}{|Z|\theta} = \frac{|\mathbf{V}|}{|Z|}/|\phi-\theta|$ If $\theta > 0$; \Rightarrow Lagging Power Factor (I lags V)

If $\theta < 0$; \Rightarrow Leading Power Factor (I leads V)

POWER FACTOR

Power Factor: Define $pf = \cos\theta$; $0 \le pf \le 1$ Must distinguish between $\theta \ge 0$, $\theta \le 0$: $\theta \ge 0$; X ≥ 0 ; Q ≥ 0 ; I lags V; lagging pf $\theta \le 0$; X ≤ 0 ; Q ≤ 0 ; I leads V ; leading pf e.g: pf = .8 lagging => Inductive Loadpf = .8 leading => Capacitive Load

