ELECTRIC CIRCUITS ECSE-2010

Lecture 21.1

LECTURE 21.1

- AC Power
- Average Power
- Complex Power
- Real Power
- Reactive Power
- Apparent Power
- Power Factor

AC POWER

- AC Steady State Circuit Analysis: ${ }^{\circ}$ Find $\underline{\mathbf{V}}, \underline{\mathrm{I}}$ => Write down v(t), i(t)
- Will Now Focus on AC Power: םRMS Values
\square Average Power
-Reactive Power
${ }^{\square}$ Complex Power
aPower Factor

RMS VALUES

Consider $\mathrm{x}(\mathrm{t})=|\mathrm{X}| \cos \omega \mathrm{t} \quad$ Periodic Function

$$
\begin{gathered}
\mathrm{x}_{\text {ave }}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}|\mathrm{X}| \cos \omega \mathrm{tdt}=0 \\
\left(\mathrm{x}^{2}\right)_{\text {ave }}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}}|\mathrm{X}|^{2} \cos ^{2} \omega \mathrm{tdt}=\frac{|\mathrm{X}|^{2}}{2} \\
\text { Define } \mathrm{X}_{\mathrm{RMS}}=\sqrt{\left(\mathrm{x}^{2}\right)_{\text {ave }}} \\
\text { For Sinusoids: } \mathrm{X}_{\mathrm{RMS}}=\frac{|\mathrm{X}|}{\sqrt{2}}=.707|\mathrm{X}|
\end{gathered}
$$

RMS VALUES

$$
\begin{aligned}
& \text { AC Voltage, } \mathrm{v}(\mathrm{t})=|\mathrm{V}| \cos (\omega \mathrm{t}+\phi) \\
& \quad \Rightarrow \mathrm{V}_{\mathrm{RMS}}=\frac{|\mathrm{V}|}{\sqrt{2}} \text { Volts }(\mathrm{RMS})
\end{aligned}
$$

AC Current, $\mathrm{i}(\mathrm{t})=|\mathrm{I}| \cos (\omega \mathrm{t}+\psi)$

$$
\Rightarrow \mathrm{I}_{\mathrm{RMS}}=\frac{|\mathrm{I}|}{\sqrt{2}} \operatorname{Amps}(\mathrm{RMS})
$$

RMS VALUES

- RMS Value is a Scalar: aNot a Phasor!
- Convenient Way to Describe Current and Voltage in AC Steady State:

RIIS VALUES

- Convenient Way to Calculate Power in AC Steady State: - All Residential AC Electricity is Described in Terms of RMS Values:
- 120 V = 120 Volts, RMS

$$
|\mathrm{V}|=\sqrt{2} \mathrm{~V}_{\mathrm{RMS}} \approx 170 \text { Volts (0 to Peak) }
$$

REACTIVE POWER

Recall:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{t})=|\mathrm{I}|^{2} \frac{|\mathrm{Z}|}{2}(\cos \theta+\cos (2 \omega \mathrm{t}-\theta)) \\
&|\mathrm{Z}|=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{m}}}=\frac{\mathrm{V}_{\mathrm{RMS}}}{\mathrm{I}_{\mathrm{RMS}}} ; \quad \mathrm{I}_{\mathrm{RMS}}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}} \\
& \Rightarrow \mathrm{p}(\mathrm{t})=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}(\cos \theta+\cos (2 \omega \mathrm{t}-\theta))
\end{aligned}
$$

REACTIVE POWER

Use a different Trignometric Identity:

$$
\cos (2 \omega \mathrm{t}-\theta)=\cos 2 \omega \mathrm{t} \cos \theta+\sin 2 \omega \mathrm{t} \sin \theta
$$

$$
=>\mathrm{p}(\mathrm{t})=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}(\cos \theta+\cos (2 \omega \mathrm{t}-\theta))
$$

$$
=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta(1+\cos 2 \omega \mathrm{t})+\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta \sin 2 \omega \mathrm{t}
$$

$$
\mathrm{P}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{p}(\mathrm{t}) \mathrm{dt}=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta+0+0
$$

=> Same result as before

REACTIVE POWER

$$
\begin{gathered}
\text { Define } \mathrm{P}=\text { "Real Power" }=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \cos \theta \\
\mathrm{P} \text { is Measured in Watts }
\end{gathered}
$$

Define $\mathrm{Q}=$ "Reactive Power" $=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \sin \theta$
Q is Measured in VAR's
(Volt-Amperes-Reactive)

REACTIVE POWER

- \mathbf{Q} is a Measure of the Rate of Change of Energy Stored in the Reactive Elements (L, C):
a Power companies must worry about Q since they supplied this energy
-Supplied Q over their Lines => Real Cost
aPower companies want customers to have Low \mathbf{Q}

REACTIVE POWER

- \mathbf{Q} is a Measure of the Rate of Change of Energy Stored in the Reactive Elements (L, C):
${ }_{\square}$ Big issue for a large user - like Rensselaer
aFans all use Motors - Motors are Inductive
a Large users are charged for \mathbf{Q}, not just P

REACTIVE POWER

$$
\begin{aligned}
& \text { Impedance Triangle: } \mathrm{Z}=|\mathrm{Z}| \underline{\rho} \\
& \mathrm{R}(\omega)=|\mathrm{Z}| \cos \theta ; \mathrm{X}(\omega)=|\mathrm{Z}| \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \text { Real Power }=\mathrm{P} & =\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta \\
& =\mathrm{I}_{\mathrm{RMS}}^{2} \mathrm{R}(\omega) \quad[\text { Watts }]
\end{aligned}
$$

\Rightarrow Reactive Power $=\mathrm{Q}=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \sin \theta$

$$
=\mathrm{I}_{\mathrm{RMS}}^{2} \mathrm{X}(\omega) \quad[\text { VAR's }]
$$

REACTIVE POWER

$$
\begin{aligned}
\mathrm{P} & =\mathrm{I}_{\mathrm{RMS}}^{2}|\mathrm{Z}| \cos \theta \\
& =\mathrm{I}_{\mathrm{RMS}}^{2} \mathrm{R}(\omega) \\
& =\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta \\
\mathrm{Q} & =\mathrm{I}_{\mathrm{RMS}}^{2}|\mathrm{Z}| \sin \theta \\
& =\mathrm{I}_{\mathrm{RMS}}^{2} \mathrm{X}(\omega) \\
& =\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Equivalent ways of } \\ \text { expressing Real Power }\end{array}\right.$
[Watts]
$\left\{\begin{array}{l}\text { Equivalent ways of } \\ \text { expressing Reactive Power } \\ {[\text { [VAR's] }}\end{array}\right.$

REACTIVE POWER

- Notes on Reactive Power:
\square Real Power $=P$ is always ≥ 0
\square Reactive Power $=\mathbf{Q}$ can be \geq 0 or ≤ 0
aFor Inductive Load, $\mathrm{X}>0=>$ Q > 0
-For Capacitive Load, X < 0 => Q < 0

COMPLEX POWER

Define "Complex Power" $=\underline{S}=\mathrm{P}+\mathrm{jQ}$

\underline{S} is a Complex Number, but not a Phasor

$\underline{\mathrm{S}}$ is a Convenient Way to Keep Track of P and Q
$\operatorname{Real}\{\underline{S}\}=\mathrm{P}=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \cos \theta=>$ Watts
$\operatorname{Imag}\{\underline{S}\}=\mathrm{Q}=\mathrm{V}_{\text {RMS }} \mathrm{I}_{\text {RMS }} \sin \theta=>$ VAR's

COMPLEX POWER

- Significance of $\underline{\mathbf{S}}=$ Complex

Power:
-For Several Loads $=>\underline{\mathbf{S}}_{\text {Total }}=\underline{\mathbf{S}}_{\mathbf{1}}+$ $\underline{S}_{2}+\underline{S}_{3}+\ldots$
${ }_{\square}^{S_{\text {Total }}}=\left(P_{1}+P_{2}+\ldots\right)+j\left(Q_{1}+Q_{2}\right.$ $+\ldots$)
\square Regardless of how loads are connected! Just Add P's and Q's

APPARENT POWER

Magnitude of $\underline{S}=|S|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}$
$|S|=$ "Apparent Power" $=>$ [Volt-Amperes]
$|S|=$ Product of $V_{\text {RMS }} \times I_{\text {RMS }}$ at Terminals

POWER TRIANGLE

Imaginary

$\mathrm{Q}=|\mathrm{S}| \sin \theta=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \sin \theta$

$$
\underline{S}=\mathrm{P}+\mathrm{jQ}
$$

Complex Power, $\underline{\mathbf{S}}$

Reactive Power; [VAR's]

$$
|\mathrm{S}|=\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}}
$$

Apparent Power; [VA]

POWER FACTOR

POWER FACTOR

For Inductive Loads, $\theta>0 ; \cos \theta>0$
For Capacitive Loads, $\theta<0 ; \cos \theta>0$
Need a Way to Distinguish

$$
\underline{\mathrm{I}}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{|\mathrm{V}| \underline{/ \phi}}{|\mathrm{Z}| \underline{\theta}}=\frac{|\mathrm{V}|}{|\mathrm{Z}|} / \phi-\theta
$$

If $\theta>0 ; \Rightarrow$ Lagging Power Factor (I lags $\underline{\text { V }}$)

If $\theta<0 ; \Rightarrow$ Leading Power Factor (I leads $\underline{\text { V }}$)

POWER FACTOR

Power Factor:

$$
\text { Define } \mathrm{pf}=\cos \theta ; \quad 0 \leq \mathrm{pf} \leq 1
$$

Must distinguish between $\theta \geq 0, \theta \leq 0$:
$\theta \geq 0 ; \mathrm{X} \geq 0 ; \mathrm{Q} \geq 0 ; \underline{\mathrm{I}}$ lags $\underline{\mathrm{V}} ; \quad$ lagging pf
$\theta \leq 0 ; \mathrm{X} \leq 0 ; \mathrm{Q} \leq 0 ; \underline{\mathrm{I}}$ leads $\underline{\mathrm{V}}$; leading pf
e.g: $\mathrm{pf}=.8$ lagging $\Rightarrow>$ Inductive Load $\mathrm{pf}=.8$ leading $=>$ Capacitive Load

