ELECTRIC CIRCUITS ECSE-2010

Lecture 22.1

LECTURE 22.1

- Coupled Inductors
- Ideal Transformer
- Transformer Circuit
- Power Transfer
- Impedance Matching
- Mutual Inductance (Tee Model)

COUPLED INDUCTORS

Magnetic Fields of Inductors Link Each Other

If Magnetic Field is Time Varying => Creates Voltages

COUPLED INDUCTORS

Inductor 1:
$$v_1(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt}$$

Inductor 2: $v_2(t) = \pm M \frac{di_1(t)}{dt} + L_2 \frac{di_2(t)}{dt}$

Thomas, Rosa, Toussaint, The Analysis and Design of Linear Circuits, 7th edition.

www.rpi.edu/~sawyes

TRANSFORMERS

- Transformers are Easy to Make:
- Transformers Can Be Used to Easily Change AC Voltages:
- One of the Key Reasons why World Runs on AC, not DC:
- Can Model Most "Real" Transformers with "Ideal" Transformers:

www.rpi.edu/~sawyes

Uses for Transformers: "Step Up" or "Step Down" Voltages Isolate Load from Source Impedance Matching

www.rpi.edu/~sawyes

TRANSFORMER CIRCUIT

To do Circuit Analysis, Want to Replace this Circuit with an Equivalent Circuit that has No Transformer! Can Then Use AC Steady State Circuit Analysis

TRANSFORMER CIRCUIT

2 Choices for the Equivalent Circuit Refer Secondary Circuit to the Primary OR Refer Primary Circuit to the Secondary

Circuit Analysis with Transformers:

 Want to Replace Ideal Transformer with a Circuit that Does NOT Contain an Ideal Transformer so We Can Use our Regular AC Steady State Techniques for Circuit Analysis

- Two Choices for Finding the Equivalent Circuit:
 - Refer Secondary Circuit to Primary
 - Refer Primary Circuit to Secondary
 - Can Use Either; Choose the Referral Method that is Easiest for the Particular Problem

REFERRAL TO PRIMARY

REFERRAL TO PRIMARY

sawyes@rpi.edu

REFERRAL TO PRIMARY

Equivalent to Basic Transformer Circuit Can Now Do AC Steady State Circuit Analysis Rensselaer 💷

Find Thevenin Equivalent Circuit Seen Looking BACK IN to the Secondary

$$\underline{V}_{oc}; Z_{T}$$

$I_2 = 0 \Longrightarrow I_1 = NI_2 = 0$

 $\underline{\mathbf{V}}_1 = \underline{\mathbf{V}}_s \qquad \Longrightarrow \underline{\mathbf{V}}_{oc} = \mathbf{N}\underline{\mathbf{V}}_1 = \mathbf{N}\underline{\mathbf{V}}_s$ Rensselaer 23

www.rpi.edu/~sawyes

Equivalent to Basic Transformer Circuit Can Now Do AC Steady State Circuit Analysis

REFERRAL METHODS

- Can Replace Ideal Transformer and Secondary Circuit with Z_L/N² in the Primary Circuit:
 Referral to Primary
- Can Replace Primary Circuit and Ideal Transformer with N V_s, N²
 Z_s in the Secondary Circuit:
 Referral to Secondary

REFERRAL METHODS

Can Refer to Primary OR Refer to Secondary => Choose the Easiest for Particular Problem:

POWER TRANSFER

For Maximum Power to Z_{L} , Choose $Z_{L} = Z_{s}^{*}$ => $R_{L} = R_{s}$ and $X_{L} = -X_{s}$

IMPEDANCE MATCHING

- For P_{MAX} to $Z_L => Want Z_L = Z_s^*$
 - $\hfill\square$ For Fixed Z_L Helps to Use Transformer
 - $\Box Make Z_L / N^2 = Z_s^*$
 - Provides an Additional Knob
 - Most Power Amps use a Transformer to Couple the Output to the Speakers
 - Provides both Isolation and Impedance Matching
 - Let's Look at this with an Example

Choose Values for X and N to Maximize Power to Load

For Maximum Power to Load

$$\frac{50}{N^2} = 2 \implies N = 5$$

$$\frac{X}{N^2} = \frac{X}{25} = -3 \Longrightarrow X = -75 \ \Omega$$

- Consider 2 Inductors, L₁, L₂:
- Magnetic Field of L₁ can Link with L₂ and Vice Versa:
 - If Magnetic Field changes with Time
 => Creates Voltages in L₁, L₂
 - Refer to this as Mutual Inductance, M
 - M is also measured in Henries
 - $\Box =>M = k \sqrt{L_1 L_2} ; 0 \le k \le 1$

Must Keep Track of How Inductors are Wound

=> Dot Convention

Must Keep Track of How Inductors are Wound

=> Dot Convention

Would Like to Replace with an Equivalent Circuit that does NOT have any Mutual Inductance

Consider a Circuit That Looks Like a "Tee": 3 Ideal Inductors No Mutual Inductance

No Coupling Between Inductors

For a "Tee" Circuit:

- B 3 Ideal Inductors, No Mutual Inductance
- Same Equations as Before
- => Can Replace Inductors exhibiting Mutual Inductance with "Tee Model" and then do AC Steady State Circuit Analysis :

b M	c b $L_1 - M$ $L_2 - M$ c	
		*
	$\mathbf{V}_{\mathbf{L}}$	
$ \begin{array}{c} \mathbf{L}_{1} \\ \end{array} $	$ \begin{array}{c} \mathbf{L}_2 \\ \vdots \\ $	-
a Transformer-lil	a Tee Model	

If Dots on Opposite Sides $\Rightarrow M \rightarrow -M$

Some Inductors in Tee Model May Be Negative!

