ELECTRIC CIRCUITS ECSE-2010

Lecture 22.1

LECTURE 22.1

- Coupled Inductors
- Ideal Transformer
- Transformer Circuit
- Power Transfer
- Impedance Matching
- Mutual Inductance (Tee Model)

COUPLED INDUCTORS

Magnetic Fields of Inductors Link Each Other
If Magnetic Field is Time Varying $=>$ Creates Voltages

COUPLED INDUCTORS

(a) Additive

(b) Subtractive

$$
\begin{aligned}
& \text { Inductor 1: } v_{1}(t)=L_{1} \frac{d i_{1}(t)}{d t} \pm M \frac{d i_{2}(t)}{d t} \\
& \text { Inductor 2: } v_{2}(t)= \pm M \frac{d i_{1}(t)}{d t}+L_{2} \frac{d i_{2}(t)}{d t}
\end{aligned}
$$

Thomas, Rosa, Toussaint, The Analysis and Design of Linear Circuits, $7^{\text {th }}$ edition.

TRANSFORMERS

- Transformers are Easy to Make:
- Transformers Can Be Used to Easily Change AC Voltages:
- One of the Key Reasons why World Runs on AC, not DC:
- Can Model Most "Real" Transformers with "Ideal" Transformers:

IDEAL TRANSFORMER

Dots indicate direction of windings

IDEAL TRANSFORMER

IDEAL TRANSFORMER

For an Ideal Tranformer
there is No Energy Loss from Primary to Secondary

IDEAL TRANSFORMER

IDEAL TRANSFORMER

IDEAL TRANSFORMER

Uses for Transformers:
"Step Up" or "Step Down" Voltages
Isolate Load from Source
Impedance Matching

TRANSFORMER CIRCUIT

AC Steady State

To do Circuit Analysis, Want to Replace this Circuit with an Equivalent Circuit that has No Transformer!
Can Then Use AC Steady State Circuit Analysis

TRANSFORMER CIRCUIT

2 Choices for the Equivalent Circuit Refer Secondary Circuit to the Primary

OR
Refer Primary Circuit to the Secondary

IDEAL TRANSFORMERS

- Circuit Analysis with

Transformers:
ם Want to Replace Ideal Transformer with a Circuit that Does NOT
Contain an Ideal Transformer so We Can Use our Regular AC Steady State Techniques for Circuit Analysis

IDEAL TRANSFORMERS

- Two Choices for Finding the Equivalent Circuit:
\square Refer Secondary Circuit to Primary \square Refer Primary Circuit to Secondary ${ }_{\square}$ Can Use Either; Choose the Referral Method that is Easiest for the Particular Problem

REFERRAL TO PRIMARY

Find Equivalent Impedance Seen
Looking IN to the Primary

REFERRAL TO PRIMARY

REFERRAL TO PRIMARY

Equivalent to Basic Transformer Circuit Can Now Do AC Steady State Circuit Analysis

REFERRAL TO SECONDARY

Find Thevenin Equivalent Circuit Seen Looking BACK IN to the Secondary

$$
\underline{\mathrm{V}}_{o c} ; \mathrm{Z}_{\mathrm{T}}
$$

REFERRHL TO SECONDARY

REFERRAL TO SECONDARY

REFERRHL TO SECONDARY

Equivalent to Basic Transformer Circuit
Can Now Do AC Steady State Circuit Analysis

REFERRAL METHODS

- Can Replace Ideal Transformer and Secondary Circuit with $\mathbf{Z}_{\mathrm{L}} / \mathbf{N}^{\mathbf{2}}$ in the Primary Circuit: \square Referral to Primary
- Can Replace Primary Circuit and Ideal Transformer with $\mathbf{N} \mathbf{V}_{s} \mathbf{N}^{2}$ \mathbf{Z}_{s} in the Secondary Circuit: a Referral to Secondary

REFERRAL METHODS

- Can Refer to Primary OR Refer to Secondary => Choose the Easiest for Particular Problem:

POWER TRANSFER

For Maximum Power to Z_{L}, Choose $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{s}}^{*}$

$$
\Rightarrow R_{L}=R_{s} \text { and } X_{L}=-X_{s}
$$

IMPEDANCE MATCHING

- For $\mathrm{P}_{\mathrm{max}}$ to $\mathrm{Z}_{\mathrm{L}}=>$ Want $\mathrm{Z}_{\mathrm{L}}=\mathbf{Z}_{\mathrm{s}}{ }^{*}$
- For Fixed Z_{L}, Helps to Use Transformer
- Make $\mathbf{Z}_{\mathrm{L}} / \mathbf{N}^{\mathbf{2}}=\mathbf{Z}_{\mathrm{s}}{ }^{*}$
- Provides an Additional Knob
- Most Power Amps use a Transformer to Couple the Output to the Speakers
- Provides both Isolation and Impedance Matching
a Let's Look at this with an Example

Example

Choose Values for X and N to Maximize Power to Load

Example

For Maximum Power, Choose $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{s}}^{*}$

$$
\Rightarrow \frac{50}{\mathrm{~N}^{2}}=2 \text { and } \frac{\mathrm{X}}{\mathrm{~N}^{2}}=-3
$$

Example

For Maximum Power to Load

$$
\frac{50}{\mathrm{~N}^{2}}=2 \Rightarrow \mathrm{~N}=5
$$

$$
\frac{\mathrm{X}}{\mathrm{~N}^{2}}=\frac{\mathrm{X}}{25}=-3 \Rightarrow \mathrm{X}=-75 \Omega
$$

- Consider 2 Inductors, L_{1}, L_{2} :
- Magnetic Field of L_{1} can Link with L_{2} and Vice Versa:
\square If Magnetic Field changes with Time $=>$ Creates Voltages in L_{1}, L_{2} \square Refer to this as Mutual Inductance, M $\square M$ is also measured in Henries
$a=>\mathbf{M}=k \sqrt{L_{1} L_{2}} \quad ; \mathbf{0} \leq \mathbf{k} \leq \mathbf{1}$

MUTUAL INDUCTANCE

Must Keep Track of How Inductors are Wound
$=>$ Dot Convention

MUTUAL INDUCTANCE

Must Keep Track of How Inductors are Wound

$=>$ Dot Convention

MUTUAL INDUCTANCE

$$
\mathrm{v}_{2}=\mathrm{M} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\mathrm{L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}
$$

MUTUAL INDUCTANCE

$$
\mathrm{v}_{2}=-\mathrm{M} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+\mathrm{L}_{2} \frac{\mathrm{di}_{2}}{\mathrm{dt}}
$$

MUTUAL INDUCTANCE

Would Like to Replace with an Equivalent Circuit that does
NOT have any Mutual Inductance

TEE MODEL

- Consider a Circuit That Looks Like a "Tee":
-3 Ideal Inductors
-No Mutual Inductance

TEE MODEL

No Coupling Between Inductors

TEE MODEL

TEE MODEL

- For a "Tee" Circuit:
- 3 Ideal Inductors, No Mutual Inductance
aSame Equations as Before
- => Can Replace Inductors exhibiting Mutual Inductance with "Tee Model" and then do AC Steady State Circuit Analysis :

TEE MODEL

If Dots on Opposite Sides $=>\mathrm{M} \rightarrow-\mathrm{M}$

Some Inductors in Tee Model May Be Negative!

