

LECTURE 20.1 AGENDA

- Series Resonance

SERIES RESONANCE

(2) RensselaerO

SERIES RESONANCE

(2)RensselaerO

SERIES RESONANCE

$$
\begin{aligned}
& \mathrm{H}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{T}}(\mathrm{~s})}=\frac{1 / \mathrm{LC}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}} \mathrm{~s}+\frac{1}{\mathrm{LC}}} \\
&=\frac{\omega_{0}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2}} \\
& 2 \zeta \omega_{0}=\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{~L}}, \omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}} \\
& \zeta=\frac{\mathrm{R}_{\mathrm{T}}}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}}
\end{aligned}
$$

SERIES RESONANCE

$$
\zeta=\frac{\mathrm{R}_{\mathrm{T}}}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}}
$$

For $\zeta<1$, Circuit is Underdamped
For Small R_{T}, Small C, Large $\mathrm{L} \Rightarrow \zeta \square 1$
Circuit is Very Underdamped
Let's Look at the Impedance of this Circuit
(4) Rensselaer○

SERIES RESONANCE

$$
\mathrm{Z}(\mathrm{~s})=\mathrm{R}_{\mathrm{T}}+\mathrm{sL}+\frac{1}{\mathrm{sC}}
$$

SERIES RESONANCE

$$
\begin{gathered}
\mathrm{Z}(\mathrm{~s})=\mathrm{R}_{\mathrm{T}}+\mathrm{sL}+\frac{1}{\mathrm{sC}} \\
\text { In AC Steady State: } \\
\mathrm{Z}(\mathrm{j} \omega)=\mathrm{R}_{\mathrm{T}}+\mathrm{j} \omega \mathrm{~L}-\frac{\mathrm{j}}{\omega \mathrm{C}} \\
=\mathrm{R}_{\mathrm{T}}+\mathrm{j}\left(\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}\right)=\mathrm{R}(\omega)+\mathrm{jX}(\omega)
\end{gathered}
$$

At $\omega^{2}=\frac{1}{\mathrm{LC}}=\omega_{0}^{2} \quad \mathrm{X}(\mathrm{j} \omega) \rightarrow 0$
(2)Rensselaer

SERIES RESONANCE

$$
\begin{gathered}
Z(j \omega)=R_{T}+j\left(\omega L-\frac{j}{\omega C}\right)=R(\omega)+j X(\omega) \\
|Z(j \omega)|=\sqrt{R^{2}+X^{2}} \\
X=A C \text { Reactance } \rightarrow 0 \text { at } \omega=\omega_{0}=\sqrt{\frac{1}{L C}} \\
\omega_{0}=\text { Resonant Frequency } \\
\text { Series Resonant Circuit }
\end{gathered}
$$

$\left|\mathrm{Z}\left(\mathrm{j} \omega_{0}\right)\right|=\mathrm{R}_{\mathrm{T}}=$ Minimum at $\omega=\omega_{0}$

SERIES RESONANCE

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{C}}(\mathrm{~s})}{\mathrm{V}_{\mathrm{T}}(\mathrm{~s})}=\frac{\omega_{0}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2}} ; \quad \zeta=\frac{\mathrm{R}_{\mathrm{T}}}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}}
$$

Let Input be a Sinusoid at $\omega=\omega_{0} ; \Rightarrow \mathrm{s}=\mathrm{j} \omega_{0}$

$$
\begin{array}{r}
H\left(j \omega_{0}\right)=\frac{\omega_{0}^{2}}{-\omega_{0}^{2}+2 \zeta \omega_{0}\left(j \omega_{0}\right)+\omega_{0}^{2}}=\frac{\omega_{0}^{2}}{j 2 \zeta \omega_{0}^{2}} \\
\left|H\left(j \omega_{0}\right)\right|=\frac{1}{2 \zeta}=\frac{2}{2 R_{T}} \sqrt{\frac{L}{C}}=\frac{1}{R_{T}} \sqrt{\frac{L}{C}}
\end{array}
$$

SERIES RESONANCE

$\left|\mathrm{H}\left(\mathrm{j} \omega_{0}\right)\right|=\left|\frac{\mathrm{V}_{\mathrm{C}}\left(\mathrm{j} \omega_{0}\right)}{\mathrm{V}_{\mathrm{T}}\left(\mathrm{j} \omega_{0}\right)}\right|=\frac{1}{2 \zeta}=\frac{1}{\mathrm{R}_{\mathrm{T}}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$
For Small R_{T}, Small C, Large $\mathrm{L} \Rightarrow \zeta=\frac{\mathrm{R}_{\mathrm{T}}}{2} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}} \square 1$
For Small R_{T}, Small C, Large $\mathrm{L} \Rightarrow\left|\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{T}}}\right|_{\omega=\omega_{0}}=\frac{1}{\mathrm{R}_{\mathrm{T}}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \square 1$
For $\omega=\omega_{0} \Rightarrow\left|\mathrm{~V}_{\mathrm{C}}\right| \square\left|\mathrm{V}_{\mathrm{T}}\right|$
Series Resonance
(2) Rensselaer

SERIES RESONANCE

For Small R_{T}, Small C, Large $\mathrm{L} \Rightarrow\left|\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{V}_{\mathrm{T}}}\right|_{\omega=\omega_{0}}=\frac{1}{\mathrm{R}_{\mathrm{T}}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \square 1$
For $\omega=\omega_{0} \Rightarrow$ Output Voltage \square Input Voltage
For $\omega=\omega_{0}$: Voltage Gain $=\frac{\left|\mathrm{V}_{\mathrm{C}}\right|}{\left|\mathrm{V}_{\mathrm{T}}\right|}=\mathrm{Q}_{\text {series }}=\frac{1}{2 \zeta}=\frac{1}{\mathrm{R}_{\mathrm{T}}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}$

SERIES RESONANCE

(1)Rensselaer○

$2^{\text {WN }}$ ORDER PILTERS

General $2^{\text {nd }}$ Order Bandpass Filter
$\mathrm{H}_{\mathrm{BP}}(\mathrm{s})=\frac{\mathrm{Ks}}{\mathrm{s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2}} ; 1$ Zero at Origin, 2 Poles

General $2^{\text {nd }}$ Order Notch Filter or Bandgap Filter
$H_{B G}(\mathrm{~s})=\mathrm{K} \frac{\mathrm{s}^{2}+2 \beta \mathrm{~s}+\omega_{0}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2}} ; 2$ Zeros, 2 Poles

$2^{\text {WD }}$ ORDER PILTERS

- Let's Take a Closer Look at What Happens When We Have Real Poles, Repeated Poles and Complex Conjugate Poles for Low Pass, High Pass and Bandpass Filters
- All Will Exhibit Resonance if Poles are Complex Conjugates

2 ND ORDER LOW PASS

Low Pass: $\mathrm{H}_{\mathrm{LP}}(\mathrm{s})=\frac{1000}{\mathrm{~s}^{2}+12 \mathrm{~s}+25} ; \quad \zeta=1.2$

$$
\mathrm{H} 2_{\mathrm{LP}}(\mathrm{~s})=\frac{1000}{\mathrm{~s}^{2}+10 \mathrm{~s}+25} ; \quad \zeta=1.0
$$

$\omega_{0}=5$
$\mathrm{H} 3_{\mathrm{LP}}(\mathrm{s})=\frac{1000}{\mathrm{~s}^{2}+8 \mathrm{~s}+25} ; \quad \zeta=.8$
$\mathrm{H} 4_{\mathrm{LP}}(\mathrm{s})=\frac{1000}{\mathrm{~s}^{2}+.8 \mathrm{~s}+25} ; \quad \zeta=.08$
$\mathrm{H} 5_{\mathrm{LP}}(\mathrm{s})=\frac{1000}{\mathrm{~s}^{2}+.08 \mathrm{~s}+25} ; \quad \zeta=.008$ (2)Rensselaer

2ND ORDER LOW PASS

$2^{\text {ND }}$ ORDER HIGH PASS

High Pass: $\mathrm{H} 1_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+12 \mathrm{~s}+25} ; \quad \zeta=1.2$

$$
\mathrm{H} 2_{\mathrm{HP}}(\mathrm{~s})=\frac{1000 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+10 \mathrm{~s}+25} ; \quad \zeta=1.0
$$

$$
\omega_{0}=5 \quad \mathrm{H} 3_{\mathrm{HP}}(\mathrm{~s})=\frac{1000 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+8 \mathrm{~s}+25} ; \quad \zeta=.8
$$

$$
\mathrm{H} 4_{\mathrm{HP}}(\mathrm{~s})=\frac{1000 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+.8 \mathrm{~s}+25} ; \quad \zeta=.08
$$

$$
\mathrm{H} 5_{\mathrm{HP}}(\mathrm{~s})=\frac{1000 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+.08 \mathrm{~s}+25} ; \quad \zeta=.008
$$ (2) Rensselaer \bigcirc

2ND ORDER HICH PASS

2ND ORDER HIGH PASS

2ND ORDER HICH PASS

$2^{\text {ND }}$ ORDER BHNDPASS

Bandpass: $\mathrm{H} 1_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}}{\mathrm{~s}^{2}+12 \mathrm{~s}+25} ; \quad \zeta=1.2$
$\mathrm{H} 2_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}}{\mathrm{~s}^{2}+10 \mathrm{~s}+25} ; \quad \zeta=1.0$
$\omega_{0}=5 \quad \mathrm{H} 3_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}}{\mathrm{~s}^{2}+8 \mathrm{~s}+25} ; \quad \zeta=.8$
$\mathrm{H} 4_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}}{\mathrm{~s}^{2}+.8 \mathrm{~s}+25} ; \quad \zeta=.08$
$\mathrm{H} 5_{\mathrm{HP}}(\mathrm{s})=\frac{1000 \mathrm{~s}}{\mathrm{~s}^{2}+.08 \mathrm{~s}+25} ; \quad \zeta=.008$ (2)Rensselaer

2ND ORDER BANDPASS

2ND ORDER FILTERS

Always See Resonance When We Have Complex Conjugate Poles
$\zeta<1 \Rightarrow$ Underdamping
Avoid Resonance for Good Low Pass and High Pass Filters
Use Resonance for Good Bandpass and Bandgap Filters

PARALLEL RESONANCE

Frequency Domain

$$
\begin{gathered}
=\frac{1}{R_{T}}+\frac{1}{j \omega L}+\frac{\omega C}{-j}=\frac{1}{R_{T}}+j\left(\omega C-\frac{1}{\omega L}\right) \\
=G(\omega)+j B(\omega)
\end{gathered}
$$

PARALLEL RESONANCE

Frequency Domain

$\omega_{0}=\sqrt{\frac{1}{\text { LC }}} \quad \begin{aligned} & \omega_{0}=\text { Resonant Frequency } \\ & \Rightarrow \text { Same as for Series Resonance }\end{aligned}$
(2) Rensselaer

$$
\Rightarrow \text { Same as for Series Resonance }
$$

PARALLEL RESONANCE

$$
\mathrm{Y}_{\mathrm{cq}}=\frac{1}{\mathrm{R}_{\mathrm{T}}}+\mathrm{j}\left(\omega \mathrm{C}-\frac{1}{\omega \mathrm{~L}}\right)=\mathrm{G}(\omega)+\mathrm{jB}(\omega)
$$

AC Susceptance $=\mathrm{B}(\omega) \rightarrow 0$ when $\omega=\omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}}$

PARALLEL RESONANCE

Frequency Domain

(2)RensselaerO

PARHLLEL RESONANCE

TYPE OF RESONANCE

Parallel Resonance:

$$
\Rightarrow\left|\mathrm{Z}_{\mathrm{eq}}\right|=\text { MAXIMUM at } \omega=\omega_{0}
$$

Series Resonance:

$$
\Rightarrow\left|\mathrm{Z}_{\mathrm{eq}}\right|=\text { MINIMUM at } \omega=\omega_{0}
$$

Often the best way to determine type of resonance

PARTLLEL RESONANCE

KCL: $\underline{I}_{L}+\underline{I}_{C}+\underline{I}_{R}=\underline{I_{N}}$; At Resonance: $\underline{\mathrm{I}}_{\mathrm{L}}=-\underline{\mathrm{I}}_{\mathrm{C}}$
$\underline{V}=\underline{I_{N}} Z_{e q}=\underline{I}_{R} R_{T}=\underline{I}_{L}(j \omega L)=\underline{I}_{C}\left(\frac{1}{j \omega C}\right)$
At $\omega=\omega_{0} ; \quad \mathrm{Z}_{\mathrm{cq}}=\mathrm{R}_{\mathrm{T}}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{L}}}{\underline{I_{\mathrm{N}}}}=\frac{R_{\mathrm{T}}}{j \omega_{0} \mathrm{~L}} \Rightarrow \frac{\left|\mathrm{I}_{\mathrm{L}}\right|}{\left|\mathrm{I}_{\mathrm{N}}\right|}=\frac{R_{\mathrm{T}}}{\omega_{0} \mathrm{~L}}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{C}}}{\underline{I_{\mathrm{N}}}}=R_{\mathrm{T}} \mathrm{j} \omega_{0} \mathrm{C} \Rightarrow \frac{\left|\mathrm{I}_{\mathrm{C}}\right|}{\left|\mathrm{I}_{\mathrm{N}}\right|}=\omega_{0} \mathrm{R}_{\mathrm{T}} \mathrm{C}$
(i) Rensselaer

PARALLEL RESONANCE

At Resonance: $\omega_{0} \mathrm{CR}_{\mathrm{T}}=\frac{\mathrm{R}_{\mathrm{T}}}{\omega_{0} \mathrm{~L}} ; \quad \omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}}$;

$$
\Rightarrow Q_{\text {parallel }}=\frac{\left|\mathrm{I}_{\mathrm{c}}\right|}{\left|\mathrm{I}_{\mathrm{N}}\right|}=\frac{\left|\mathrm{I}_{\mathrm{L}}\right|}{\left|\mathrm{I}_{\mathrm{N}}\right|}=\mathrm{R}_{\mathrm{T}} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}} ;
$$

$=$ "Current Gain" at $\omega=\omega_{0}$
Note: $\mathrm{Q}_{\text {parallel }}=\frac{1}{\mathrm{Q}_{\text {series }}}$

PARALLEL RESONANCE

For $\mathrm{Q}_{\text {parallel }} \gg 1$:
Want "large" R_{T}, "small" L, "large"C
Just the opposite of what makes $\mathrm{Q}_{\text {series }} \gg 1$
\Rightarrow A good Series Resonant circuit will be a lousy Parallel Resonant circuit

NOTES ON RESONANCE

- In "real" circuits, often do not have a "pure" Series or "pure" Parallel situation:
\square Inductors always have \mathbf{R}_{w}
aElements may not all be in series or parallel
- Will still have Resonance, but at a slightly different Resonant Frequency
(2)RensselaerO

SUMMMRY

Series Resonance:

$$
\begin{array}{rlrl}
\mathrm{X} & \rightarrow 0 \text { at } \omega=\omega_{0} & \mathrm{~B} \rightarrow 0 \text { at } \omega=\omega_{0} \\
\omega_{0} & =\sqrt{\frac{1}{\mathrm{LC}}} & \omega_{0}=\sqrt{\frac{1}{\mathrm{LC}}} \\
\mathrm{Q}_{\text {series }} & =\frac{1}{\mathrm{R}_{\mathrm{T}}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} & \mathrm{Q}_{\text {parallel }}=\mathrm{R}_{\mathrm{T}} \sqrt{\frac{\mathrm{C}}{\mathrm{~L}}} \\
\left|\mathrm{Z}_{\mathrm{eq}}\left(\omega_{0}\right)\right| & =\text { MINIMUM } & \left|\mathrm{Z}_{\mathrm{eq}}\left(\omega_{0}\right)\right|=\text { MAXIMUM }
\end{array}
$$

Parallel Resonance:
(5) Rensselaer○

NOTES ON RESONANCE

- In "real" circuits, often do not have a "pure" Series or "pure" Parallel situation:
- May also have Multiple Resonances in same Circuit
-Define Resonance as when X (serieslike circuit) or B (parallel-like circuit)
=> 0
- Let's do an Example

