

2ND ORDER FILTERS

- Let's Take a Closer Look at What Happens When We Have Real Poles, Repeated Poles and Complex Conjugate Poles for Low Pass, High Pass and Bandpass Filters
- All Will Exhibit Resonance if Poles are Complex Conjugates

Rensselaer 🖲

2ND ORDER LOW PASS
Low Pass:
$$H1_{LP}(s) = \frac{1000}{s^2 + 12s + 25}; \quad \zeta = 1.2$$

 $H2_{LP}(s) = \frac{1000}{s^2 + 10s + 25}; \quad \zeta = 1.0$
 $\omega_0 = 5$ $H3_{LP}(s) = \frac{1000}{s^2 + 8s + 25}; \quad \zeta = .8$
 $H4_{LP}(s) = \frac{1000}{s^2 + .8s + 25}; \quad \zeta = .08$
 $H5_{LP}(s) = \frac{1000}{s^2 + .08s + 25}; \quad \zeta = .008$

2 ND ORDER HIGH PASS
High Pass: $H1_{HP}(s) = \frac{1000s^2}{s^2 + 12s + 25}; \zeta = 1.2$
H2 _{HP} (s) = $\frac{1000s^2}{s^2 + 10s + 25}$; $\zeta = 1.0$
$\omega_0 = 5$ $H3_{HP}(s) = \frac{1000s^2}{s^2 + 8s + 25}; \zeta = .8$
H4 _{HP} (s) = $\frac{1000s^2}{s^2 + .8s + 25}$; $\zeta = .08$
$H5_{HP}(s) = \frac{1000s^2}{s^2 + .08s + 25}; \zeta = .008$
Rensselaer

2 ND ORDER 1	BANDPASS
Bandpass:	H1 _{HP} (s) = $\frac{1000s}{s^2 + 12s + 25}$; $\zeta = 1.2$
	H2 _{HP} (s) = $\frac{1000s}{s^2 + 10s + 25}$; $\zeta = 1.0$
$\omega_0 = 5$	H3 _{HP} (s) = $\frac{1000s}{s^2 + 8s + 25}$; $\zeta = .8$
	H4 _{HP} (s) = $\frac{1000s}{s^2 + .8s + 25}$; $\zeta = .08$
	H5 _{HP} (s) = $\frac{1000s}{s^2 + .08s + 25}$; $\zeta = .008$
	🕲 Rensselaer 🔵

PARALLEL RESONANCE KCL: $\underline{I}_L + \underline{I}_C + \underline{I}_R = \underline{I}_N$; At Resonance: $\underline{I}_L = -\underline{I}_C$ $\underline{V} = \underline{I}_N Z_{eq} = \underline{I}_R R_T = \underline{I}_L (j \omega L) = \underline{I}_C (\frac{1}{j \omega C})$ At $\omega = \omega_0$; $Z_{eq} = R_T$ $\Rightarrow \frac{\underline{I}_L}{\underline{I}_N} = \frac{R_T}{j \omega_0 L} \Rightarrow \frac{|\underline{I}_L|}{|I_N|} = \frac{R_T}{\omega_0 L}$ $\Rightarrow \frac{\underline{I}_C}{\underline{I}_N} = R_T j \omega_0 C \Rightarrow \frac{|\underline{I}_C|}{|I_N|} = \omega_0 R_T C$ **EVALUATE:**

PARALLEL RESONANCE

For Q_{parallel} >>1:
Want "large" R_T, "small" L, "large"C
Just the opposite of what makes Q_{series} >>1
=> A good Series Resonant circuit will be a lousy Parallel Resonant circuit

Rensselaer

NOTES ON RESONANCE

- In "real" circuits, often do not have a "pure" Series or "pure" Parallel situation:
 - **Inductors always have R**_w
 - Elements may not all be in series or parallel
 - Will still have Resonance, but at a slightly different Resonant Frequency

Rensselaer

NOTES ON RESONANCE

- In "real" circuits, often do not have a "pure" Series or "pure" Parallel situation:
 - May also have Multiple Resonances in same Circuit
 - Define Resonance as when X (serieslike circuit) or B (parallel-like circuit)
 => 0
 - Let's do an Example

Rensselaer