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Let's Look at the Impedance of this Circuit
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  Let's Take a Closer Look at What Happens

  When We Have Real Poles, Repeated Poles

  and Complex Conjugate Poles for Low Pass, 

  High Pass and Bandpass Filters

•

  All Will Exhibit Resonance if Poles are

   Complex Conjugates

•
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Always See Resonance When We Have 

        Complex Conjugate Poles
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Avoid Resonance for Good Low Pass

             and High Pass Filters

Use Resonance for Good Bandpass

             and Bandgap Filters
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     Same as for Series Resonance
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SUMMARY

Series Resonance:                  Parallel Resonance:
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NOTES ON RESONANCE

� In “real” circuits, often do not have 
a “pure” Series or “pure” Parallel 
situation:

� Inductors always have Rw

� Elements may not all be in series or 
parallel

� Will still have Resonance, but at a 
slightly different Resonant Frequency

NOTES ON RESONANCE

� In “real” circuits, often do not have 
a “pure” Series or “pure” Parallel 
situation:

� May also have Multiple Resonances in 
same Circuit

� Define Resonance as when X (series-
like circuit) or B (parallel-like circuit) 
=> 0 

� Let’s do an Example 


