1) Equivalent impedances
a

$$
\mathrm{C}_{1}:=8 \cdot 10^{-9} \mathrm{~F} \quad \mathrm{C}_{2}:=6 \cdot 10^{-9} \mathrm{~F} \quad \mathrm{C}_{3}:=610^{-9} \mathrm{~F} \quad \mathrm{C}_{4}:=3 \cdot 10^{-9} \mathrm{~F} \quad \mathrm{C}_{5}:=6.5 \cdot 10^{-9} \mathrm{~F}
$$

1.1: For the above circuit, determine the equivalent capacitance between A and B

Note: capacitors in series add like resistors in parallel

Long way:

$$
\mathrm{C} 23:=\frac{\mathrm{C}_{2} \cdot\left(\mathrm{C}_{3}\right)}{\mathrm{C}_{2}+\mathrm{C}_{3}}
$$

$$
\mathrm{C} 23=3 \times 10^{-9} \mathrm{~F}
$$

$$
\mathrm{C} 234:=\frac{\mathrm{C} 23 \cdot \mathrm{C}_{4}}{\mathrm{C} 23+\mathrm{C}_{4}}
$$

$$
\mathrm{C} 234=1.5 \times 10^{-9} \mathrm{~F}
$$

$$
\mathrm{C} 2345:=\mathrm{C} 234+\mathrm{C}_{5}
$$

$$
\mathrm{C} 2345=8 \times 10^{-9} \mathrm{~F}
$$

$$
\mathrm{CTotal}:=\frac{\mathrm{C} 2345 \cdot \mathrm{C}_{1}}{\mathrm{C} 2345+\mathrm{C}_{1}}
$$

$$
\text { CTotal }=4 \times 10^{-9} \mathrm{~F}
$$

1.2:

For the above circuit, determine the equivalent inductance between A and B
$\mathrm{L}_{1}:=20 \mu \mathrm{H} \quad \mathrm{L}_{2}:=5 \mu \mathrm{H} \quad \mathrm{L}_{3}:=10 \mu \mathrm{H} \quad \mathrm{L}_{4}:=15 \mu \mathrm{H} \quad \mathrm{L}_{5}:=20 \mu \mathrm{H}$

Note: Inductors in parallel add like resistors in parallel....

Long way:

$$
\mathrm{L} 45:=\frac{\mathrm{L}_{4} \cdot \mathrm{~L}_{5}}{\mathrm{~L}_{4}+\mathrm{L}_{5}}
$$

$L 45=8.571 \times 10^{-6} H$
$\mathrm{L} 345:=\mathrm{L} 45+\mathrm{L}_{3}$
$\mathrm{L} 345=1.857 \times 10^{-5} \mathrm{H}$
$\mathrm{L} 2345:=\frac{\mathrm{L}_{2} \cdot \mathrm{~L} 345}{\mathrm{~L}_{2}+\mathrm{L} 345}$

L2345 $=3.939 \times 10^{-6} \mathrm{H}$
$\mathrm{L}_{\mathrm{T}}:=\mathrm{L} 2345+\mathrm{L}_{1}$
$\mathrm{L}_{\mathrm{T}}=23.939 \cdot \mu \mathrm{H} \quad$ If students use sL, which is more accurate, or this answer mark correct.
2) Amplifier circuits

 RC amplifier circuits, KCL is a good starting point. (The power is taken out for simplicity but the op amp is powered).

Apply KCL at the negiative input node

$$
\begin{aligned}
& I_{1}+I_{2}+I_{3}=0 \\
& I_{1}=\frac{1}{L} \cdot \int V_{. L} d t=\frac{1}{L} \cdot \int(0-\mathrm{Vin}) \mathrm{dt}=\frac{-1}{L} \cdot \int \mathrm{~V}_{\text {in }} \mathrm{dt} \\
& \mathrm{I}_{2}=\frac{0-\text { Vout }}{R}=\frac{- \text { Vout }}{R}
\end{aligned}
$$

I1 is the current through the inductor. The negative terminal is also 0 since $v p=v n$ and $v p$ is grounded. $\mathrm{VL}=0$-Vin with current going away from the node.

12 is the current through the resistor

I3 is zero since there is now current draw in an ideal op amp.

$$
\begin{aligned}
& \frac{- \text { Vout }}{\mathrm{R}}-\frac{1}{\mathrm{~L}} \cdot \int \mathrm{~V}_{\text {in }} \mathrm{dt}+0=0 \\
& \text { Vout }=\frac{-\mathrm{R}}{\mathrm{~L}} \cdot \int \mathrm{~V}_{\text {in }} \mathrm{dt}
\end{aligned}
$$

2.2: What type of op amp is this?

It is an integrator (the signal is also inverted, it is ok if students mention this).

2.3: In the above circuit $V 1=V 2=1 \sin (2 \pi \mathrm{ft})$ where the frequency is 1 kHz . Determine Vout.

Opamp U1 is a differentiator circuit

$$
\begin{aligned}
& \text { Vout }_{\mathrm{U} 1}=-\mathrm{RC} \cdot \frac{\mathrm{dV}_{\mathrm{in}}}{\mathrm{dt}} \\
& \text { Vout }_{\mathrm{U} 1}=-\left(2 \cdot 10^{3}\right) \cdot\left(1 \cdot 59 \cdot 10^{-7}\right) \cdot(2000 \pi) \cdot \cos (2000 \pi \mathrm{t})=-2 \cdot \cos (2000 \pi \mathrm{t}) \quad[\mathrm{V}]
\end{aligned}
$$

Opamp U2 is a differentiator circuit

$$
\begin{align*}
& \text { Vout }_{\mathrm{U} 2}=\frac{-\mathrm{L}}{\mathrm{R}} \cdot \frac{\mathrm{dV}_{\mathrm{in}}}{\mathrm{dt}} \\
& \text { Vout }_{\mathrm{U} 2}=\frac{-1 \cdot 27}{2 \cdot 10} \cdot[(2000 \pi) \cdot \cos (2000 \pi \mathrm{t})]=-4 \cos (2000 \pi \mathrm{t}) \quad[\mathrm{V}] \tag{v}\\
& \text { Opamp U3 is a difference amplifier } \\
& \text { Note: } \mathrm{R} 4 / \mathrm{R} 2=\mathrm{R} 6 / \mathrm{R} 5 \text { so the equation can be simplified } \\
& \text { Vout }_{\mathrm{U} 3}=\frac{\mathrm{R}_{5}}{\mathrm{R}_{2}} \cdot[-4 \cdot \cos (2000 \pi \mathrm{t})-(-2 \cdot \cos (2000 \pi \mathrm{t}))] \\
& \text { Vout }_{\mathrm{U} 3}=2 \cdot-2 \cdot \cos (2000 \pi \mathrm{t})=-4 \cdot \cos (2000 \pi \mathrm{t}) \quad[\mathrm{V}]
\end{align*}
$$

3) Voltage/Current continuity

In the above circuit, the voltage is defined as follows:

$$
V 1=\left\{\begin{array}{cc}
5 V & t<0 \\
10 V & 0<t
\end{array} \quad \text { (the voltage source turns on at } \mathrm{t}=0\right. \text {) }
$$

3.1: Determine a mathematical expression for the source.

$$
\begin{aligned}
& 5+5 u(t) \quad \text { When } t \text { is zero } u(t)=0 \text { therefor } 5+5^{*} 0=5 \\
& \text { When } t \text { goes to infinity } u(t) \text { is } 1 \text { therefore } 5+5^{*} 1=10
\end{aligned}
$$

3.2: At $t=0$ - (just before the voltage changes), for the polarities indicated, determine the voltage across each component and the current through each component.

At $t=0$-, the souce is 5 V . Since the intial conditions are $\mathrm{V} 1=5 \mathrm{~V}$ and dc stead state, the inductor is a

Electric\$fibotitand the capacitor is an open circuit. Prof. Shayla Sawyer

Voltage divider
$\mathrm{V}_{\mathrm{R} 1}:=5 \mathrm{~V} \cdot \frac{2 \cdot 10^{3}}{2 \cdot 10^{3}+3 \cdot 10^{3}}$
$\mathrm{V}_{\mathrm{R} 1}=2 \mathrm{~V}$

$\mathrm{V}_{\mathrm{R} 2}:=5 \mathrm{~V} \cdot \frac{3 \cdot 10^{3}}{2 \cdot 10^{3}+3 \cdot 10^{3}}$
$\mathrm{V}_{\mathrm{R} 2}=3 \mathrm{~V}$

Circuit analysis gives the following results

Component	Voltage	Current
R1	2 V	1 mA
R2	3 V	1 mA
C1	3 V	0
L1	0	1 mA

3.3: At $t=0^{+}$(just after the voltage changes), determine the voltage across each component and the current through each component for the polarities indicated in the circuit.

Because of continuity $\operatorname{IL}(0-)=\mathrm{IL}\left(0^{+}\right)$like a current source

$$
\mathrm{VC}(0-)=\mathrm{VC}(0+) \text { like a voltage source }
$$

Must use Unit 1 circuit analysis
methncal

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R} 1 \mathrm{~b}}:=10 \mathrm{~V}-3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{R} 1 \mathrm{~b}}=7 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{R} 1 \mathrm{~b}}:=\frac{\mathrm{V}_{\mathrm{R} 1 \mathrm{~b}}}{2 \cdot 10^{3} \Omega}=3.5 \times 10^{-3} \mathrm{~A} \\
& \mathrm{I}_{\mathrm{R} 2 \mathrm{~b}}:=1 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{R} 2 \mathrm{~b}}:=3 \cdot 10^{3} \Omega \cdot 1 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{R} 2 \mathrm{~b}}=3 \mathrm{~V}
\end{aligned}
$$

Circuit analysis gives the following results

Component	Voltage	Current
R1	7 V	3.5 mA
R2	3 V	1 mA
C1	3 V (continuity)	2.5 mA (KCL)
L1	$0 \mathrm{~V}(\mathrm{KVL})$	1 mA (continuity)

4) First order circuits

4.1: Determine the voltage as a function of time for the source voltage $\mathrm{V} 1=10 \mathrm{u}(\mathrm{t})$.

This is the familiar RC circuit with a step function source, which has a solution for $t>0$ of the form

RC time constant

$$
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{A}_{1} \cdot \exp \left(\frac{-t}{\mathrm{RC}}\right)+\mathrm{A}_{2}=\mathrm{A}_{1} \cdot \exp \left(\frac{-t}{1 \cdot 10^{-5}}\right)+\mathrm{A}_{2} \quad 10 \cdot 10^{3} \cdot 1 \cdot 10^{-9}=1 \times 10^{-5}
$$

The inital condition at $t=0$ is $\mathrm{Vc}(\mathrm{t})=0=\mathrm{A} 1+\mathrm{A} 2$
The steady state condition as t approaches ∞ (capacitor acts an a open circuit) is $\mathrm{Vc}=10=$ 0 + A2
The two conditions lead to A1 = -10 and A2 = 10

$$
V_{C}(t)=-10 \cdot \exp \left(\frac{-t}{1 \cdot 10^{-5}}\right)+10 \quad[\mathrm{~V}]
$$

4.2: Determine the voltage as a function of time for the source voltage
Electric Circaito $\quad V 1=\left\{\begin{array}{cc}10 & t<0 \\ 10 & 0<t<0.001 \\ 0 & 0.001<t\end{array}\right.$

For $0<t<0.001$ the solution for part a is the same expression
$\mathrm{V}_{\mathrm{c1}}(\mathrm{t})=-10 \cdot \exp \left(\frac{-\mathrm{t}}{1 \cdot 10^{-5}}\right)+10$

For $0.001<\mathrm{t}$, the solution takes the form

$$
\mathrm{V}_{\mathrm{c} 2}(\mathrm{t})=\mathrm{A}_{3} \cdot \exp \left[\frac{-(\mathrm{t}-0.001)}{1 \cdot 10^{-5}}\right]+\mathrm{A} 4
$$

For $0.001<t$ The DC steady state is zero since the source is off, $0=0+\mathrm{A} 4$, giving $\mathrm{A} 4=0$
For $0.001<t$, when $t=0.001$ we have continuity (and the circuit is in steady since since $0.001 \gg R C$).

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}(0.001-)=\mathrm{V}_{\mathrm{C}}(0.001+)=10 \mathrm{~V} \\
& 10=\mathrm{A} 3+\mathrm{A} 4 \\
& 10=\mathrm{A}_{3}+0 \\
& \mathrm{~A}_{3}=10
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{c} 1}(\mathrm{t})=-10 \cdot \exp \left(\frac{-\mathrm{t}}{1 \cdot 10^{-5}}\right)+10
$$

$$
\mathrm{V}_{\mathrm{c} 2}(\mathrm{t})=10 \cdot \exp \left[\frac{-(\mathrm{t}-0.001)}{1 \cdot 10^{-5}}\right]
$$

5. First order switching circuit

In the above circuit, the voltage source turns on at $\mathrm{t}=0$. Switch U 1 closes at $\mathrm{t}=0.1 \mathrm{~ms}$. Switch U2 closes and switch U3 opens at $\mathrm{t}=0.3 \mathrm{~ms}$ (effectively putting resistor R3 in series with C3 at $\mathrm{t}=0.3 \mathrm{~ms}$).
5.1: Determine the voltage across R 3 as a function of time for $\mathrm{t}>0$.

Three regions of interest
$\mathrm{t}<0.1 \mathrm{~ms}$
$0.1 \mathrm{~ms}<\mathrm{t}<0.3 \mathrm{~ms}$
$0.3 \mathrm{~ms}<\mathrm{t}$

For $\mathrm{t}<0.1 \mathrm{~ms}$, the circuit is a voltage divier with $\mathrm{R} 1, \mathrm{R} 2$ and R 3

$$
\mathrm{V}_{\mathrm{R} 3}=\mathrm{v}_{1} \cdot \frac{\mathrm{R}_{3}}{\mathrm{R} 1+\mathrm{R}_{2}+\mathrm{R}_{3}}=10 \cdot \frac{4 \mathrm{k}}{10 \mathrm{~K}}=4 \mathrm{~V}
$$

For $0.1 \mathrm{~ms}<\mathrm{t}<0.3 \mathrm{~ms}$, the circuit is an RC circuit. Use a Thevenin transformation

$$
\mathrm{V}_{\mathrm{TH}}=4 \mathrm{~V} \quad \mathrm{R}_{\mathrm{TH}}=2.4 \mathrm{k} \Omega
$$

The voltage across R3 is equal to the voltage acorss the capacitor. Including time delay

$$
\mathrm{V}_{\mathrm{R} 3}(\mathrm{t})=\mathrm{V}_{\mathrm{C}}(\mathrm{t})=-\mathrm{A}_{1} \cdot \exp \left[\frac{-(\mathrm{t}-0.0001)}{2.4 \cdot 10^{-6}}\right]+\mathrm{A}_{2}
$$

The initial condition at $\mathrm{t}=0.1 \mathrm{~ms}$ is $\mathrm{Vc}(\mathrm{t})=0=\mathrm{A} 1+\mathrm{A} 2$
The steady state condition at t approaches ∞ is $\mathrm{Vc}(\mathrm{t})=4=0+\mathrm{A} 2$
Therefore A1 $=-4$ and A2 $=4$
For $0.3 \mathrm{~ms}<\mathrm{t}$, the capacitor reaches steady state voltage well before 0.3 ms . Essentially, the capacitor is an open circuit. Adding a resistor in seires with the capacitor at this point will not introduce change in the circuit Therefore...

$$
\mathrm{V}_{\mathrm{R} 3}=\mathrm{v}_{\mathrm{cap}}=4 \mathrm{~V}
$$

Electric Circuits
4
Prof. Shayla Sawyer
$\mathrm{t}<0.1 \mathrm{mS}$
$\mathrm{V}_{\mathrm{R} 3}(\mathrm{t})=\mathrm{e} \quad-3 \exp \left[\frac{-(\mathrm{t}-0.001)}{2.4 \cdot 10^{-6}}\right]+4 \quad 0.1 \mathrm{~ms}<\mathrm{t}<0.3 \mathrm{~ms}$

4
$0.3 \mathrm{~ms}<\mathrm{t}$

