1) Laplace transforms/Transfer functions

Use Laplace transform tables!!!!

1.1: Find the Laplace transform of
$f(t)=\left(\cos (2 t)+e^{-4 t}\right) \cdot u(t) \quad$ (simplify into one ratio)
1.2: Find the poles and zeros of the following functions. Indicate any repearted poles and complex conjugate poles. Expand the transforms using partial fraction expansion.

1. $\quad \mathrm{F}(\mathrm{s})=\frac{20}{(\mathrm{~s}+3) \cdot\left(\mathrm{s}^{2}+8 \mathrm{~s}+25\right)}$
2. $F(s)=\frac{2 s^{2}+18 s+12}{s^{4}+9 \cdot s^{3}+34 \cdot s^{2}+90 \cdot s+100}$
2) Circuits and Differential Equations

2.1: Draw the s-domain equivalent circuit. Assume all intial conditions are zero and the source is an arbitrary source.
2.2 Using impedances, determine the expression for Vo(t). Consider using mesh analysis then make one ratio
2.3 Find $\operatorname{Vo}(\mathrm{t})$ which is the $\mathrm{VL}(\mathrm{t})$ for $\mathrm{t}>0$ using $\mathrm{Vs}=1 \mathrm{u}(\mathrm{t})$.
3) RLC and initial conditions

3.1: Draw the s-domain equivalent with initial conditions.
3.2: Find the value of the voltage across the capacitor, $\mathrm{vc}(\mathrm{t})$, using nodal analysis (at node V 1) and laplace.
4) RLC parallel circuits

In the above circuit, the source turns on at $\mathrm{t}=0$ with a voltage of 10 V . Additionally, switch U 1 is closed and switch U2 is open. At $15 \mathrm{E}-6 \mathrm{~s}$ switch U1 opens and switch U2 closes. The source also turns off at 15E-6 s.
4.1: Use Laplace analysis to determine the voltage across the capacitor as a function of time for $0<\mathrm{t}<15 \mathrm{E}-6$ (s)
4.2: Use Laplace analysis to determine the voltage across the capacitor as a function of time for t>15E-6 s

