
Problem 1) Sketching Bode Plots

Sketch the 'ideal' Bode plots of the magnitude (dB) and phase for the following transfer functions.

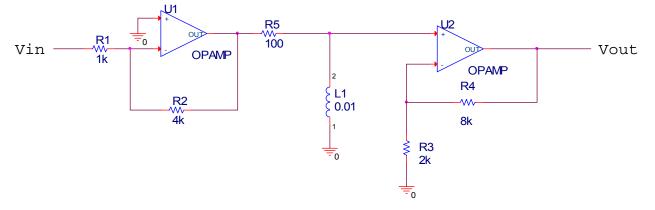
1.1
$$H(s) = -10 \cdot \frac{s}{s + 1 \cdot 10^4}$$

Magnitude Bode Plot

$$H(s) = \frac{(s+5000)}{(s+10)(s+1E6)}$$

Magnitude Bode Plot

+		
1		
1		
4L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_		


HW09

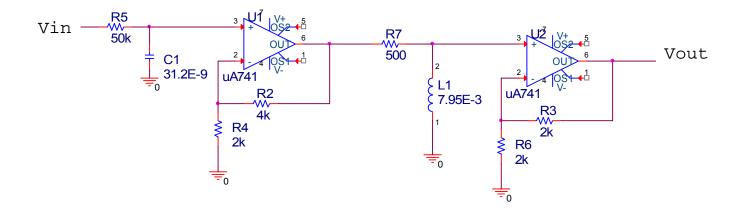
Phase Bode Plot

Problem 2) Transfer functions, Bode plots, first order circuits

Determine the transfer functions in the following circuits

2.1 Draw the above circuit as a three stage network (put boxes around the stages for example and label Hn(2) n=1,2.3...etc). Indicate the tranfer function for each stage.

2.2. Determine the transfer functions, H(s) Vout(s)/Vin(s), for the circuit.


2.3. What is the gain of the circuit?

2.4. What is the cutoff frequency?

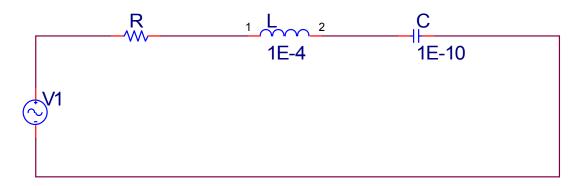
2.5. Sketch an approximate Bode (dB-log) plot of the magnitude.

		+++++
		+++++

ļ										
5										
5										
L			 			 				
5										
т										
×.										
т										
4			 			 				
т										
										_
т										
н			 			 				
۰.										
т										
т										
+	 		 	 		 		_		
т										
×.										
£										
ı.										
1										
5										
1										
4										
£										
1	 	111				 	-			11
T										111
4										-
£										
т										11
î							1			
4										
£										
5										_
1										
1	 	111	 			 	-			11
T										
ı.										11.
î							1			
1										
î							1			
×.										
£										
I.							I			111
÷							1			
1										
+								_	_	_
ĩ							1			
н										
2										
1									\mapsto	
ĩ					+ + + + + + + + + + + + + + + + + + + +			_	\vdash	
L										
2	\vdash							-		Ŧ
1										
ł										
ł										
ţ										
ł										
ļ										
ł										
ļ										

2.8. Draw the above circuit as a three stage network (put boxes around the stages for example and label Hn(2) n=1,2.3...etc). Indicate the tranfer function for each stage.

2.9. What is the transfer function of the circuit?

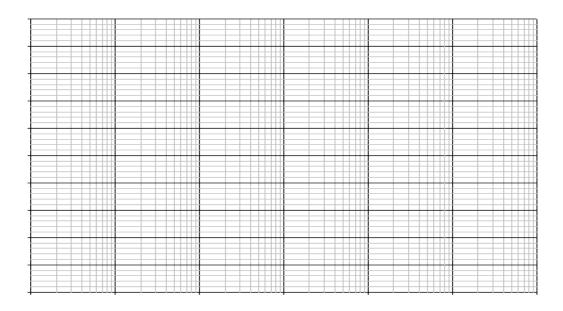

2.10. Sketch an approximate Bode (db-log) of the magnitude.

+	↓	+	

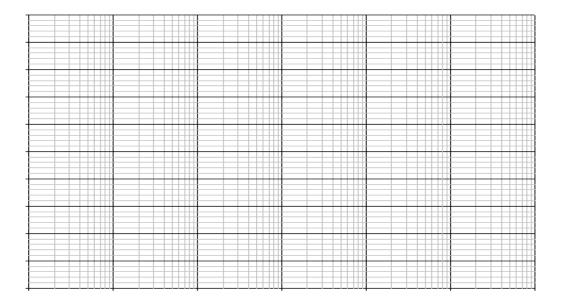
HW09

2.11. Sketch an approximate Bode (phase-log) plot of the phase.

Problem 3) 2nd Order Filter Circuits

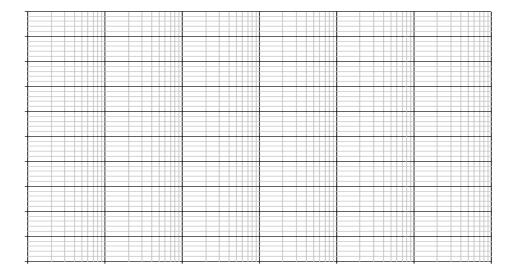


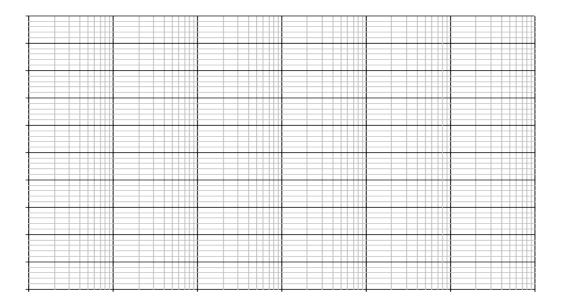
3.1. What is the resonant frequency of the circuit?


3.2. When R = 100.01 k Ω ,

3.2.1. What is the damping ratio, ζ ?

3.2.2. Sketch the Bode plot of the magnitude (dB-log) when Vout is the voltage across the inductor, H(s) = VL(s)/V1(s)

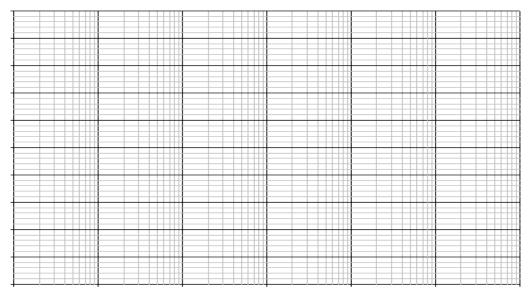

3.2.3. Sketch the Bode plot of the magnitude (dB-log) when Vout is the voltage across the resistor, H(s) = VR(s)/V1(s).


3.3. When $R = 2000\Omega$,

3.3.1. What is the damping ratio, ζ ?

3.3.2. Sketch the Bode plot of the magnitude (dB-log) when Vout is the voltage across the inductor, H(s) = VL(s)/V1(s)

3.3.3. Sketch the Bode plot of the magnitude (dB-log) when Vout is the voltage across the resistor, H(s) = VR(s)/V1(s)


Problem 4) Design Problems

For the problem design specifications, determine a transfer function that meets the requirements. The answers may not be unique. You should provide a plot that verifies that your transfer function meets the specifications.

- 1. Design 1
- a. Bandpass filter with a passband of 100 [rad/s] to 100E3 [rad/s]
- b. In the passband, the gain should be 0<gain<10dB
- c. The rolloff (slope) in the stopbands should have a magnitude of 40dB/decade

		+++	
		•	

- 2. Design 2
- a. Narrow bandpass filter centered at f = 960MHz
- b. The gain at the center of the passband should be 20dB
- c. The 17dB points should be ~940MHz at ~980MHz

