Circuits

Exam 1

Spring 2020

1.	$/ 25$
2.	$/ 25$
3.	$/ 30$
4.	$/ 15$
Extra Credit	$/ 5$
Extra Credit	$/ 5$
Total	$/ 100$

Name

Notes:

1) One crib sheet will be handed out to you.
2) Calculators are okay as long as they don't have a wireless.
1.1: 10 pts Using KCL and KVL, derive the current divider equation for $\mathrm{I}_{\mathrm{R} 1}$. (Yes, you must do it both ways!!)

$$
I_{R 1}=\frac{R_{2}}{R_{2}+R_{1}} \cdot i
$$

Using KCL

$$
\begin{aligned}
& -\mathrm{i}+\mathrm{I}_{\mathrm{R} 1}+\mathrm{I}_{\mathrm{R} 2}=0 \\
& \mathrm{I}_{\mathrm{R} 1}=\mathrm{i}-\mathrm{I}_{\mathrm{R} 2}
\end{aligned}
$$

$$
I_{R 1}=i-\frac{i \cdot \frac{R_{1} \cdot R_{2}}{R_{1}+R_{2}}}{R_{2}}
$$

$$
\mathrm{I}_{\mathrm{R} 1}=\mathrm{i}\left(1-\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)
$$

$$
\mathrm{I}_{\mathrm{R} 1}=\mathrm{i} \cdot\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}-\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)
$$

$$
I_{R 1}=i \cdot \frac{\left(R_{1}+R_{2}-R_{1}\right)}{R_{1}+R_{2}}
$$

$$
I_{R 1}=i \cdot\left(\frac{R_{2}}{R_{1}+R_{2}}\right)
$$

Using KVL

$$
-\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}=0
$$

$$
\begin{gathered}
-\mathrm{I}_{\mathrm{R} 1} \cdot \mathrm{R}_{1}+\frac{\mathrm{V}}{\mathrm{R}_{2}}=0 \\
-\mathrm{I}_{\mathrm{R} 1} \cdot \mathrm{R}_{1}+\mathrm{i} \cdot \frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=0 \\
\mathrm{I}_{\mathrm{R} 1}=\mathrm{i} \cdot \frac{\mathrm{R}_{1} \cdot \mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \cdot \mathrm{R}_{1}}
\end{gathered}
$$

$$
\mathrm{I}_{\mathrm{R} 1}=\frac{\mathrm{i} \cdot \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

1.2: $\mathbf{1 5}$ pts Superposition and Circuit Reduction

Find the value of the current source I_{1} if $I_{R 3}=9 \mathrm{~mA}$ using superposition and circuit reduction techniques.

$\mathrm{V}_{1 \mathrm{a}}:=10 \mathrm{~V} \quad \mathrm{R}_{1 \mathrm{a}}:=1 \mathrm{k} \Omega \quad \mathrm{R}_{2 \mathrm{a}}:=3 \mathrm{k} \Omega \quad \mathrm{R}_{3 \mathrm{a}}:=1 \mathrm{k} \Omega \quad \mathrm{R}_{4 \mathrm{a}}:=2 \mathrm{k} \Omega \quad \mathrm{I}_{2 \mathrm{a}}:=7.5 \mathrm{~mA}$
For V1:

Open I1 and I2
Double voltage divider then ohm's law

$$
\begin{aligned}
& \mathrm{R}_{34 \mathrm{a}}:=\mathrm{R}_{3 \mathrm{a}}+\mathrm{R}_{4 \mathrm{a}}=3 \times 10^{3} \Omega \\
& \mathrm{R}_{234 \mathrm{a}}:=\frac{\mathrm{R}_{2 \mathrm{a}} \cdot \mathrm{R}_{34 \mathrm{a}}}{\mathrm{R}_{2 \mathrm{a}}+\mathrm{R}_{34 \mathrm{a}}}=1.5 \times 10^{3} \Omega
\end{aligned}
$$

$\mathrm{V}_{\mathrm{R} 234 \mathrm{a}}:=\mathrm{V}_{1 \mathrm{a}} \cdot \frac{\mathrm{R}_{234 \mathrm{a}}}{\mathrm{R}_{1 \mathrm{a}}+\mathrm{R}_{234 \mathrm{a}}}=6 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R} 3 \mathrm{~V} 1}:=\mathrm{V}_{\mathrm{R} 234 \mathrm{a}} \cdot \frac{\mathrm{R}_{3 \mathrm{a}}}{\mathrm{R}_{3 \mathrm{a}}+\mathrm{R}_{4 \mathrm{a}}}=2 \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{R} 3 \mathrm{~V} 1 \mathrm{a}:=\frac{\mathrm{V}_{\mathrm{R} 3 \mathrm{~V} 1}}{\mathrm{R}_{3 \mathrm{a}}}=2 \cdot \mathrm{~mA}$

For 12:

Short V1 and Open 11
Source conversion then voltage divider is one approach
$\mathrm{V}_{\mathrm{I} 2}:=\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{R}_{4 \mathrm{a}}=15 \mathrm{~V}$
$\mathrm{R}_{12 \mathrm{a}}:=\frac{\mathrm{R}_{1 \mathrm{a}} \cdot \mathrm{R}_{2 \mathrm{a}}}{\mathrm{R}_{1 \mathrm{a}}+\mathrm{R}_{2 \mathrm{a}}}=750 \Omega$
$V_{\text {R3I2 }}:=\frac{R_{3 a} \cdot V_{\text {I2 }}}{R_{12 a}+R_{3 a}+R_{4 a}}=4 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{R} 3 \text { tot }}:=9 \mathrm{~mA} \\
& \mathrm{i}_{\mathrm{R} 311}:=\mathrm{i}_{\mathrm{R} 3 \mathrm{tot}}-\mathrm{i}_{\mathrm{R} 3 \mathrm{~V} 1 \mathrm{a}}-\mathrm{i}_{\mathrm{R} 3 I 2}=11 \cdot \mathrm{~mA} \\
& \mathrm{R}_{124 \mathrm{a}}:=\mathrm{R}_{12 \mathrm{a}}+\mathrm{R}_{4 \mathrm{a}}=2.75 \times 10^{3} \Omega \\
& \mathrm{i}_{\mathrm{R} 311}=\mathrm{I}_{1} \cdot \frac{\mathrm{R}_{124 \mathrm{a}}}{\mathrm{R}_{124 \mathrm{a}}+\mathrm{R}_{3 \mathrm{a}}}
\end{aligned}
$$

$$
\mathrm{I}_{1}:=\frac{\mathrm{i}_{\mathrm{R} 3 \mathrm{I} 1}}{\frac{\mathrm{R}_{124 \mathrm{a}}}{\mathrm{R}_{124 \mathrm{a}^{2}+\mathrm{R}_{3 \mathrm{a}}}}}=15 \cdot \mathrm{~mA}
$$

I_{1}	(A or mA)

2.1: $\mathbf{2 0}$ pts Use any method to determine the voltage across R4.

Students don't have to calculate the number of equations needed for node or mesh but it would help them save time.
could use Vy as node then also have dependent source def for 3 equ.
Node KCL equations $\quad 4-1-1=2$ total

Mesh KVL equations $5-2=3 \quad$ need to define 2 supermesh definitions, $V y$ and $V x$ for 7 equ. total

Nodal (is easiest)

KCL at node $\mathrm{Vy}: \quad \frac{\mathrm{V}_{\mathrm{y}}}{\mathrm{R}_{1}}-\mathrm{I}_{1}+\frac{\mathrm{V}_{\mathrm{y}}-2 \mathrm{~V}_{\mathrm{x}}}{\mathrm{R}_{2}}=0$

$$
\mathrm{V}_{\mathrm{y}} \cdot\left(\frac{1}{4 \mathrm{k}}+\frac{1}{4 \mathrm{k}}\right)-\mathrm{V}_{\mathrm{x}} \cdot \frac{2}{4 \mathrm{k}}=0.002
$$

KCL at node above I 2 (called it Va)

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{A}}-2 \cdot \mathrm{~V}_{\mathrm{x}}}{\mathrm{R}_{4}}-0.001 \mathrm{~V}_{\mathrm{y}}+\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{R}_{5}}=0 \\
& \mathrm{~V}_{\mathrm{y}} \cdot-0.001-\mathrm{V}_{\mathrm{x}}\left(\frac{2}{1 \mathrm{k}}\right)+\mathrm{V}_{\mathrm{A}} \cdot\left(\frac{1}{1 \mathrm{k}}+\frac{1}{3 \mathrm{k}}\right)=0
\end{aligned}
$$

Dependent source definition

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{y}}-2 \cdot \mathrm{~V}_{\mathrm{x}} \\
\mathrm{~V}_{\mathrm{y}}-3 \cdot \mathrm{~V}_{\mathrm{x}}=0
\end{array}
$$

$\mathrm{V}_{\mathrm{R} 4}$	$(\mathrm{~V})$

$$
\begin{aligned}
& \mathrm{M}:=\left[\begin{array}{ccc}
\left(\frac{1}{4000}+\frac{1}{4000}\right) & \frac{-2}{4000} & 0 \\
-0.001 & \frac{-2}{1000}\left(\frac{1}{1000}+\frac{1}{3000}\right) \\
1 & -3 & 0
\end{array}\right] \quad \mathrm{C}_{1}:=\left(\begin{array}{c}
0.002 \\
0 \\
0
\end{array}\right) \\
& \left.\mathrm{M}^{-1} \mathrm{C}_{1}=\left(\begin{array}{c}
6 \\
2 \\
7.5
\end{array}\right) \begin{array}{ccc}
\mathrm{Vy} \\
\mathrm{Vx} & \mathrm{VA} & \mathrm{~V}_{\mathrm{R} 4}:=2 \cdot 2-7.5=-3.5
\end{array}\right]
\end{aligned}
$$

Mesh (so you like to do things the hard way...ok!)

KVL on supermesh 1 and 2

$$
\begin{array}{ll}
& \mathrm{i}_{1} \cdot \mathrm{R}_{1}+\mathrm{i}_{2} \cdot \mathrm{R}_{2}+\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \cdot \mathrm{R}_{3}=0 \\
& \mathrm{i}_{1} \cdot 4 \mathrm{k}+\mathrm{i}_{2} \cdot 4 \mathrm{k}+\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \cdot 2 \mathrm{k}=0 \\
\text { (1) } \quad \mathrm{i}_{1} \cdot 4 \mathrm{k}+\mathrm{i}_{2} \cdot 6 \mathrm{k}-\mathrm{i}_{3} \cdot 2 \mathrm{k}=0
\end{array}
$$

KVL on loop 3

$$
\left(i_{3}-i_{2}\right) \cdot R_{3}+2 \cdot V_{x}=0
$$

(2) $-\mathrm{i}_{2} \cdot 2 \mathrm{k}+\mathrm{i}_{3} \cdot 2 \mathrm{k}+2 \cdot \mathrm{~V}_{\mathrm{x}}=0$

KVL on supermesh 4 and 5

$$
-2 \cdot \mathrm{~V}_{\mathrm{x}}+\mathrm{i}_{4} \cdot \mathrm{R}_{4}+\mathrm{i}_{5} \cdot \mathrm{R}_{5}=0
$$

(3) $\mathrm{i}_{4} \cdot 1 \mathrm{k}+\mathrm{i}_{5} \cdot 3 \mathrm{k}-2 \cdot \mathrm{~V}_{\mathrm{x}}=0$

$$
M_{1}:=\left(\begin{array}{ccccccc}
4000 & 6000 & -2000 & 0 & 0 & 0 & 0 \\
0 & -2000 & 2000 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1000 & 3000 & -2 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -0.001 \\
0 & -4000 & 0 & 0 & 0 & 1 & 0 \\
4000 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(4) $-\mathrm{i}_{1}+\mathrm{i}_{2}=0.002$
source definition I2

$$
\mathrm{i}_{5}-\mathrm{i}_{4}=0.001 \cdot \mathrm{~V}_{\mathrm{y}}
$$

$$
\begin{equation*}
-\mathrm{i}_{4}+\mathrm{i}_{5}-0.001 \mathrm{~V}_{\mathrm{y}} \tag{5}
\end{equation*}
$$

dependent source

$$
\mathrm{V}_{\mathrm{x}}=\mathrm{i}_{2} \cdot 4 \mathrm{k}
$$

(6) $-\mathrm{i}_{2} \cdot 4 \mathrm{k}+\mathrm{V}_{\mathrm{x}}=0$
dependent source

$$
\begin{align*}
& \mathrm{V}_{\mathrm{y}}=-\mathrm{i}_{1} \cdot 4 \mathrm{k} \tag{7}\\
& \mathrm{i}_{1} \cdot 4 \mathrm{k}+\mathrm{V}_{\mathrm{y}}=0 \\
& \mathrm{~V}_{\mathrm{R} 4 \mathrm{~b}}:=-3.5 \cdot 10^{-3} \cdot 1000=-3.5 \mathrm{~V}
\end{align*}
$$

$$
\mathrm{C}_{2}:=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0.002 \\
0 \\
0 \\
0
\end{array}\right) \quad \mathrm{M}_{1}^{-1} \cdot \mathrm{C}_{2}=\left(\begin{array}{c}
-1.5 \times 10^{-3} \\
5 \times 10^{-4} \\
-1.5 \times 10^{-3} \\
-3.5 \times 10^{-3} \\
2.5 \times 10^{-3} \\
2 \\
6
\end{array}\right) \begin{gathered}
\mathrm{i}_{1} \\
\mathrm{i}_{2} \\
\mathrm{i}_{3} \\
\mathrm{i}_{4} \\
\mathrm{i}_{5} \\
\mathrm{~V}_{\mathrm{x}} \\
\mathrm{~V}_{\mathrm{y}}
\end{gathered}
$$

Conceptual questions

2.2: 2.5 pts If ground was placed at the node above I_{2} would your number of TOTAL NODAL equations needed (KCL, dependent source definitions, supernode definitons) to solve the problem increase, decrease, or stay the same? Draw the circuit to help describe why this is the case. Be sure to describe why you gave your answer.
increase you now need a supernode equation
you also need more dependent source defintions
2.3: $\mathbf{2 . 5}$ pts If ground was placed at the node above I_{2} would your number of TOTAL MESH equations needed (KVL, dependent source definitions, supermesh definitons) to solve the problem increase, decrease, or stay the same? Draw the circuit to help describe why this is the case. Be sure to describe exactly why you gave your answer.

Stay the same

3) Thevenin Dependent Circuits (30 pts)

3.1: 10 pts Find V_{TH} using the Open Circuit method.

Take of the load. Can use any analysis. I used mesh.
loop i1 (top)

$$
\mathrm{i}_{1} \cdot \mathrm{R}_{4}+4 \cdot \mathrm{~V}_{\mathrm{x}}+\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right) \cdot \mathrm{R}_{2}+\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right) \cdot \mathrm{R}_{1}=0
$$

(1) $\mathrm{i}_{1} \cdot 7 \mathrm{k}-\mathrm{i}_{2} \cdot 2 \mathrm{k}-\mathrm{i}_{3} \cdot 4 \mathrm{k}+4 \mathrm{~V}_{\mathrm{x}}=0$
loop i2 (bottom left)

$$
-8+\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right) \cdot \mathrm{R}_{1}+\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) \cdot \mathrm{R}_{5}=0
$$

(2) $-\mathrm{i}_{1} \cdot 2 \mathrm{k}+\mathrm{i}_{2} \cdot 3 \mathrm{k}-\mathrm{i}_{3} \cdot 1 \mathrm{k}=8$

loop i3 (bottom right)

$$
\left(\mathrm{i}_{3}-\mathrm{i}_{2}\right) \cdot \mathrm{R}_{5}+\left(\mathrm{i}_{3}-\mathrm{i}_{1}\right) \cdot \mathrm{R}_{2}+\mathrm{i}_{3} \cdot \mathrm{R}_{3}=0
$$

(3) $-\mathrm{i}_{1} \cdot 4 \mathrm{k}-\mathrm{i}_{2} \cdot 1 \mathrm{k}+\mathrm{i}_{3} \cdot 9 \mathrm{k}=0$
dependent source

$$
\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right) \cdot \mathrm{R}_{1}=\mathrm{V}_{\mathrm{x}}
$$

(4) $-\mathrm{i}_{1} \cdot 2 \mathrm{k}+\mathrm{i}_{2} \cdot 2 \mathrm{k}-\mathrm{V}_{\mathrm{x}}=0$

$$
\begin{aligned}
& \mathrm{M}_{2}:=\left(\begin{array}{cccc}
7000 & -2000 & -4000 & 4 \\
-2000 & 3000 & -1000 & 0 \\
-4000 & -1000 & 9000 & 0 \\
-2000 & 2000 & 0 & -1
\end{array}\right) \quad \mathrm{C}_{3}:=\left(\begin{array}{l}
0 \\
8 \\
0 \\
0
\end{array}\right) \\
& \mathrm{M}_{2}^{-1} \cdot \mathrm{C}_{3}=\left(\begin{array}{c}
-8 \times 10^{-3} \\
-4 \times 10^{-3} \\
-4 \times 10^{-3} \\
8
\end{array}\right) \quad \mathrm{i}_{3}:=-4 \mathrm{~mA}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{Th}}:=\mathrm{i}_{3} \cdot 4000 \Omega=-16 \mathrm{~V}
$$

3.2: $\mathbf{6} \boldsymbol{p}$ ts Find INorton uisng short circuit current (Isc).

R3 gets shorted but teh rest of the equations are the same

$$
\begin{aligned}
& \mathrm{M}_{2}:=\left(\begin{array}{cccc}
7000 & -2000 & -4000 & 4 \\
-2000 & 3000 & -1000 & 0 \\
-4000 & -1000 & 5000 & 0 \\
-2000 & 2000 & 0 & -1
\end{array}\right) \mathrm{C}_{3}:=\left(\begin{array}{l}
0 \\
8 \\
0 \\
0
\end{array}\right) \\
& \mathrm{M}_{2}{ }^{-1} \cdot \mathrm{C}_{3}=\left(\begin{array}{c}
-0.015 \\
-0.012 \\
-0.014 \\
5.714
\end{array}\right) \mathrm{I}_{\mathrm{N}}:=-14 \mathrm{~mA} \\
& \text { (OhMS) }
\end{aligned}
$$

3.3. $\mathbf{6}$ pts Find Rth using the Test Method.

Same equation as Vth for loop 1 and loop 2 without 8 except now with i4
loop i3

$$
M_{3}:=\left(\begin{array}{ccccc}
7000 & -2000 & -4000 & 0 & 4 \\
-2000 & 3000 & -1000 & 0 & 0 \\
-4000 & -1000 & 9000 & -4000 & 0 \\
0 & 0 & -4000 & 4000 & 0 \\
-2000 & 2000 & 0 & 0 & -1
\end{array}\right)
$$

loop i4

$$
\begin{gathered}
\left(\mathrm{i}_{4}-\mathrm{i}_{3}\right) \cdot \mathrm{R}_{3}+1=0 \\
-\mathrm{i}_{3} \cdot 4 \mathrm{k}+\mathrm{i}_{4} \cdot 4 \mathrm{k}=-1 \\
\mathrm{M}_{3}{ }^{-1} \cdot \mathrm{C}_{4}=\left(\begin{array}{c}
-4.286 \times 10^{-4} \\
-5 \times 10^{-4} \\
-6.429 \times 10^{-4} \\
-8.929 \times 10^{-4} \\
-0.143
\end{array}\right) \quad \mathrm{C}_{4}:=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
0
\end{array}\right) \\
\frac{-8.929 \times 10^{-4}}{} \begin{array}{l}
1 \\
-1.12 \times 10^{3}
\end{array}
\end{gathered}
$$

3.4: 2 pts Verify your answers from 3.1-3:3. (Prove they are correct).

$$
\frac{-16 \mathrm{~V}}{-14 \mathrm{~mA}}=1.143 \times 10^{3} \Omega \quad \text { close rounding errors } \quad \frac{\mathrm{V}_{\mathrm{TH}}}{\mathrm{I}_{\mathrm{N}}}=\mathrm{R}_{\mathrm{TH}}
$$

4) Cascading Multi-stage Op Amp Circuits and Design Concepts (15 pts)

4.1: 5 pts You are given $+/-10 \mathrm{~V}$ supplies. Design a circuit that switches to 10 V when below 0 V and -10 V when above 0 V . Label all inputs to you op amp including power supplies.

4.2: 10 pts Determine the output voltage, Vout. The power to the op amps are 9 V and -9 V but aren't shown to make the circuit easier to read.

U1 Comparator V- > V+ so -9V
U2 non inverting amplifier

$$
\mathrm{V}_{\mathrm{out}}:=1 \cdot\left(1+\frac{3000}{1000}\right)=4
$$

U3 summing inverting amplifier
$\mathrm{V}_{\text {outfinal }}:=\frac{-4000}{8000} \cdot-9+\left(\frac{-4000}{2000}\right) \cdot 4=-3.5$

$V_{\text {out }}$	(V)

4.3: 5 pts EXTRA CREDIT: Write detailed steps on how to derive/prove Thevein's Theorem for a circuit with many resistors and multiple sources. You do not have to do the full analysis, just major steps. Yes, this was posted to Piazza with 70 views!!!

Goal trying to find the current and voltage characteristic that the load sees.

1. Remove load
2. Superpoistion: Do multiple sub circuits with each source (turn off all other sources)
3. For each sub circuit find v in terms of i at the place where the load was
4. Need to add external current source to get resistance for the circuit...i=lext

4a. find Req
4b. Vlext = -i*Req=-lext*Req
4. Sum all with superposition

$$
\mathrm{v}=\mathrm{v}_{\mathrm{oc}}-\mathrm{I}_{\mathrm{ext}} \cdot \mathrm{R}_{\mathrm{eq}}
$$

Any reasonable combination of at least 2. and 4., and some equation that links the goal of current voltage characteristic with thevenin.

