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Abstract 

The process  of arriving to a dynamical model (difference or differential equations) from 

observed data is called System Identification and is of great importance in the area of control 

theory. The complexity of modern power systems, which is augmented by the increasing 

penetration of renewable resources along with the necessity to secure power system's 

reliability, has been a strong motivation for extensive research in control and system 

identification area in particular.  

The objective of the thesis is two-fold: 1) provide an insight to different identification methods 

by presenting the mandatory related theoretical background and 2) apply them to synthetic time 

domain data derived from simulations using PSAT software in order to identify dynamic 

systems.  

The first study is based on a 24-state space representation of Kundur power system and is an 

introductory and illustrative example for the better understanding of the identification 

techniques. ARX, ARMAX and ERA methods are applied, identified models are extracted while 

for validation purposes different input signals are introduced and finally a comparison between 

the eigenvalues of the identified and the original model is conducted.  

The second test case corresponds to a wind farm model in a 14-bus system. After selecting the 

proper input-output signals for the identification, the three aforementioned methods are applied 

and the identified models are constructed. Validation with completely different wind speed time 

series present accurate estimates and Hankel Singular Value Decomposition (a mode 

truncating technique) is applied for the reduction of the model order and consequently, for the 

additional simplification of the system. As a final step for the assessment  of the results, 

measurement noise is introduced to the output signals, the methods are applied and residual 

tests are conducted for every identification procedure.  
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Notation 

PCC  Point of Common Coupling 

PSAT  Power System Analysis Toolbox 

GUI  Graphical User Interface 

SVD  Singular Value Decomposition 

HSVD  Hankel Singular Value Decomposition 

MOR  Model Order Reduction 

ARX  AutoRegressive with eXternal Input 

ARMAX  AutoRegressive Moving Average with eXternal input 

ERA  Eigensystem  Realization Algorithm 

WT  Wind Turbine 

SSSA  Small Signal Stability Analysis 

SISO  Single Input Single Output  

MIMO  Multi Input Multi Output 

PMU  Phasor Measurement Unit 

PSS  Power System Stabilizer 

SNR  Signal to Noise Ratio 
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1 Introduction 

1.1 Problem Definition 
Power systems continuously undergo changes especially due to the stochastic nature of the 

loads. Each change in load leads to an oscillatory response of the power system, a logical fact 

considering the dynamic nature of power generation systems. These responses of the system 

are observable in most of the measured variables like bus voltages, injected active and reactive 

powers, transmission line currents and in the frequencies as well [7],[15].  

Besides the stochastic evolution of loads that affect the system operating conditions there is 

another factor which plays a significant role in modern power grid operating scenarios 

determination: the growing use of non-conventional and renewable energy technologies. Wind 

power as well as solar energy are always associated with a degree of uncertainty given that 

wind velocities and sunlight often present big variations. These variations can potentially cause 

disturbances between the load and generation balance which consequently may cause 

instabilities, rendering the system insecure and unreliable. 

In order to maintain the balance between the electric power produced and the power 

consumed, modern control theory techniques are being applied. The modern control theory 

results require that the models of the processes in terms of state equations are available. The 

necessity of obtaining such models has led to the extensive research in the area of system 

identification theory.   

The aim of this thesis is the identification of aggregate models of renewable resources and of 

wind farms in particular by applying different methods to time domain data obtained from 

measurements on various components of the power system. A detailed, high order model is not 

only not required but also not desirable given that it is impractical to be processed even by 

advance modern control tools. Consequently, the final goal of the thesis is the proper 

representation of the dynamic modes of the models under identification at the point of common 

coupling (PCC).  

 

1.2 Objectives  

In order to achieve the goal listed above, the following objectives were set: 

 Perform a literature review. 

 Learn the PSAT software for power system simulations. 

 Perform illustrative example of system identification for a pre-known 24 state-space 

representation of a power system. 

 Perform system identification of a wind farm as a part of a power system. 

 Validate the results of the various identification processes. 
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1.3 Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 is a brief description of the software 
tools that are used. Chapter 3 corresponds to a general introduction to dynamic systems and 
model identification theory while Chapter 4 provides valuable information regarding the 
mandatory background in systems theory for the understanding of the various system 
identification approaches. In Chapter 5 there is a detailed description of the methods used in 
the context of this thesis and in Chapter 6 wind turbine model and the components that 
compose it are presented. Identification and model validation of a 24 state-space system using 
ARX,  ARMAX and ERA methods are performed in Chapter 7. Chapter 8 discusses the 
identification and validation of a wind farm model as a part of a 14 -bus test system. Finally 
conclusions, future work and the challenges that should be faced are provided in Chapter 9. 
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2 Software tools used 

2.1 Introduction to MATLAB  
MATLAB  is a high-level language being used in a wide variety of domains, from natural 

sciences to all disciplines of engineering and beyond.  

In this thesis, MATLAB is used for the processing of the results derived from PSAT simulations, 

for the realization of the identification methods, and finally for the validation of the efficiency of 

the proposed models. 

 

2.2 Introduction to Power System Analysis Toolbox (PSAT) 

Power System Analysis toolbox is a free software Matlab toolbox for electric power system 

analysis and control. It supports a variety of static and dynamic components in order to perform 

an accurate power system analysis and includes several features like power flow, continuation 

power flow, optimal flow, time domain simulation and small signal stability analysis [16]. 

All operations can be assessed by means of user-friendly Graphical User Interfaces (GUIs) 

which facilitate the application of PSAT's various features. 

PSAT main window is shown in Fig. 2.1: 

 

 Figure 2.1: Main GUI of PSAT 
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Finally, PSAT provides a Simulink-based library in order to assist  the user in designing the 

desirable networks.  
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3. Dynamic Systems 

3.1 Introduction to Dynamic Systems 
In loose terms a system is an object in which variables of different kinds interact and produce 

observable signals. The system is also affected by external stimuli, which can be either inputs 

or disturbances, or both. Inputs are the signals that can be manipulated by the observer 

whereas the others are the disturbances and can be divided into those that are directly 

measured and those that are only observed through their influence on the output. 

Dynamic Systems are the systems whose current output value depends not only on the current 

external stimuli but also on their earlier values. Time series are the outputs of dynamical 

systems whose external stimuli are not observed [3].  

A broad definition of a model of a system is the relationship among observed signals; in other 

words it is the concept of how system's variables relate and interact to each other.  

For  advanced systems we use models that describe the relationships among the system 

variables in terms of mathematical expressions such as difference or differential equations. 

These models are called mathematical or analytical models. Analytical models can be further 

categorized by a number of adjectives (time continuous or time discrete, deterministic or 

stochastic linear or nonlinear etc.) signifying the type of difference or differential equation used. 

 

3.2 The System Identification Procedure 

The goal of System Identification is a mathematical model of a dynamic system based on 

experimental data. The model should be compact and adequate with respect to the purpose it 

is to be used for. The construction of a model from data involves four basic entities: 

1. A data set like the recorded inputs and outputs over a time interval: 

                              (3.1). 

The input-output data are sometimes recorded during a specifically designed 

identification experiment, where the user may determine which signals to measure and 

when. The main objective and at the same time a big challenge of the experiment 

design is to make the "right" choices so that the data become maximally informative. 

2. A set of candidate models; a Model Structure. A set of candidate models is obtained by 

specifying within which collection of models we are going to look for a suitable one. 

There is no doubt that this step is the most important and the most difficult one. It is 

here that a priori knowledge, engineering intuition and insight play a significant role. 

Generally speaking, a model structure is a parameterized mapping from past inputs 

and outputs      to the space of the model outputs: 

                    (3.2) 

3. Here   is the finite dimensional vector used to parameterize the mapping and         

is the calculated value based on the past data. 
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4. A rule by which candidate models can be assessed using the data. Determining the 

"best" model in the set, guided by the data. The assessment  of  model quality is based 

on how the models perform when they attempt to reproduce the measured data. 

5. Model Validation. At this final step the model that has been chosen is going to be 

tested in order to conclude whether it is "good enough" or not, that is, whether it is valid 

for its purpose. Such tests are known as model validation and involve various 

procedures to assess how the model relates to observed data, to prior knowledge, and 

to its intended use. A model can never be accepted as a final and true description, thus 

it can at best be regarded as a good description of certain aspects that are of particular 

interest to us. 

 

The system identification loop can be understood from the following figure, known as "The 

System Identification Loop": 

Data

Choose Model Set

Validate model

Choose Criterion of 
Fit

Calculate Model

Experiment Design

Prior 
Knowledge

Not OK: 

Revise

OK

 

Figure 3.1: General system identification loop 
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3.3 Categories of Modal Identification Methods 

The oscillatory dynamic response of a power system can be divided in two main categories: 1) 

transient (sometimes termed a ringdown); and 2) ambient. For the ambient case, the power 

system is excited by low-amplitude random variations typically assumed to be load variations. 

This leads to a system response that reveals the system dynamics. On the other hand, a 

sudden switching or a fault is the basic assumption for the transient case which typically is 

larger in amplitude than the ambient one. The resulting time-domain response is a multi-modal 

oscillation superimposed on the underlying ambient response. Both categories are shown in 

the following figures: 

 Figure 3.2: Transient reponse of a system 

 Figure 3.3: Ambient response of a system 
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In terms of application, we classify modal frequency and damping parameter estimation 

algorithms into two categories: 1) ringdown analyzers and 2) mode meters. A ringdown 

analysis tool operates solely on the ringdown portion of the response; typically the first several 

cycles of the oscillation (between 5 and 20 seconds).  On the other hand, a mode meter can be 

applied in any portion of the response: ambient; transient or a combination of them. Finally, 

mode meters are automated tools that estimate modal properties continuously and without 

reference to any exogenous system input [14]. 

Generally, there is a variety of categories in which the analysis methods can be classified: 

 Parametric or non-parametric depending on whether they are based on a basic model 

or on several assumptions, respectively. 

 Time-domain or frequency-domain depending on whether they use time-domain or 

frequency-domain data. 

  Block or Recursive processing algorithms techniques. The block processing 

algorithms generate modal estimates based on an entire data set. On the other hand, 

recursive algorithms computes modal estimates using adaptive strategies to ensure 

that the most accurate model is used for the most recent data. 
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4. Systems Theory Background 

 

4.1 State-Space Representation 

 

Consider the following linear system: 

 

                     

       
      (4.1) 

where  

 x is a vector of n elements (n is the order of the differential equation) and represents 

the internal state of the system. 

 u is the input of the system. 

 y is the output of the system. 

    
 

  
     is the differentiation of x with respect to time. 

 A is the state or system matrix with dimensions    . 

 B is the input matrix with dimensions    . 

 C is the output matrix with dimensions    . 

 D is the feedthrough or feedforward matrix with dimensions    . 

The corresponding form of the system (4.1) in discrete time is the following: 

 
                                

                

 
  (4.2) 

The forms (4.1) and (4.2) are called the general state-space representation of a linear system 

with   inputs,   outputs and n state variables. 

The main goal of the modal analysis (the study of dynamic properties under vibration 

excitation) is to determine the eigenvalues of A. Transfer function identification must, in addition 

to the poles, determine also the zeros and gains along one or more response paths. More 

precisely, system's transfer function includes all the matrices in equation (4.1). 
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 Figure 4.1: Discrete state-space representation block diagram 

 

4.2 Transfer Function Representation  

Contrary to the state space representation, which describes the complete internal behavior of 

the system as well as the input and the output properties, the transfer function representation is 

related only to the input-output behavior. A prerequisite for the transfer function to be defined is 

the knowledge of the state-space representation of the system.   

Let a dynamic system be described in state-space as in eq. (4.1). 

Taking the Laplace Transformation of the equation (4.1) with zero initial condition: 

                 
                

                
      (4.3) 

The state equation can be placed in the form: 

                  (4.4) 

and by pre-multiplying both sides by         : 

                    (4.5) 

In the output equation      can be substituted according to (4.5): 

                         (4.6) 

Finally, using (4.6), transfer function can be defined: 

      
    

    
               (4.7) 

The poles of      are given by the eigenvalues of the state matrix A previously defined in 

section 4.1. 
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4.3 Eigenproperties of the state matrix 

A power system typically comprises a large number of components that are described through 

differential-algebraic equations. Hence, just as every other dynamic system, the behavior of a 

power system can be described by a set of   first order nonlinear ordinary differential 

equations denominated as state equations, together with a set of algebraic equations, 

developed on the basis of the system model [11].  

Even though power systems are highly nonlinear, they can be expressed in the linearized state 

space representation form around an initial operating point: 

                                

                               
        (4.8) 

Where the matrices A,B,C,D have been described in the equation (4.1) 

The eigenvalues of the state matrix A determine the time domain response of the system and 

provide valuable information for the dynamic behavior of the system, such as information 

regarding the stability characteristics of the system: 

 A real eigenvalue corresponds to a non-oscillatory mode. A negative real eigenvalue 

represents a decaying mode whereas a positive real eigenvalue represents aperiodic 

instability. 

 Complex eigenvalues occur in conjugate pairs, and each pair corresponds to an 

oscillatory mode. The real component of the eigenvalues gives the damping and the 

imaginary component gives the frequency of oscillation. A negative real party 

corresponds to a damped oscillation whereas a positive real part represents oscillation 

of increasing amplitude. Thus, for a complex pair of eigenvalues: 

        (4.9) 

The frequency of oscillation in Hz is given by  

  
 

  
  (4.10) 

 

The natural frequency    of the eigenvalue can be computed: 

               (4.11) 

 

The damping ratio is given by: 

 

   
 

      
  (4.12) 

 The damping ratio   determines the rate of decay of the amplitude of the oscillation. 
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4.4 Model Order Reduction Methods 

4.4.1 Introduction to Model Order Reduction (MOR) 

Although power systems are high order, the grid dynamic behavior can be described and 

understood by constructing suitable reduced order models. The Model Order Reduction (MOR) 

is an established field of study in linear control theory and its aim is to arrive at reduced models 

of system that retain selected aspects of the dynamic behavior [2]. The techniques that are 

used within the frameworks of this thesis are 1) the magnitude of the residues of the transfer 

function model, 2) the Singular Value Decomposition (SVD) and 3) the Hankel Singular Value 

Decomposition (HSVD). 

4.4.2 Residues 

As  already stated, a physical problem description can be utilized by the state space 

representation: 

                         
             

    (4.13) 

which input-output relationship can be given by the transfer function: 

                  
    

    
  (4.14) 

 

If      and      can be factored,      can be rewritten: 

       
                   

                   
  (4.15) 

Where, 

 the   values of   are called poles of G(s) 

and  

the   values of z are called zeros of G(s). 

Now,      can be expanded in partial fractions as: 

      
  

      

 
  

  

      
 

  

      
   

  

      
  (4.16) 

 

The general form of the equation above can contain potential multiplicities    of the 

eigenvalues           : 
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     (4.17) 

Residues can be described also in terms of the eigenvectors, according to the following 

equation: 

              (4.18) 

where 

    is the normalized right eigenvector 

    is the normalized left eigenvector 

 B is the     input matrix 

 C is the     output 

  

It is necessary to mention that    and    are the normalized eigenvectors with  

         (4.19) 

In addition, we can define the new matrices    and    such that: 

            (4.20) 

       (4.21) 

The     matrix    is referred to as the mode controllability matrix, while the     matrix    as 

the mode observability matrix.  

The equation (4.18) can be rewritten: 

         (4.22) 

 

The importance of residues knowledge is highly reflected in model order reduction problems. A 

pole    that corresponds to a residue   with large magnitude      is called a dominant pole, 

i.e. a pole that is "well" observable and controllable in the transfer function. This can also be 

observed from the corresponding Bode Magnitude plot of H(s), where peaks occur at 

frequencies close to the imaginary parts of the dominant poles of the     . The transfer 

function can be approximated by a new transfer function consisting of     terms with      

above a specified value [9]. 
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4.4.3 Singular Value Decomposition (SVD) 

 

Let A be a     matrix. The singular values of A are the square roots of the eigenvalues of 

    matrix     listed according to their algebraic multiplicity [13]. The eigenvalues of the 

matrix     will always be positive numbers so it makes sense to take the square root. The 

singular values are denoted in a descending order (regarding their magnitude) by          

 with: 

                (4.23) 

 

Every     matrix A can be written in the form        where: 
   is an     matrix whose r first diagonals entries are the non zero singular values 

σ1, ... ,σr of A and whose other entries are all zeros.  

 U, V are unitary matrices (orthogonal for real numbers) such that          

     (A complex matrix B is unitary when       where    is the conjugate 

transpose of B). 

The expression      is known as the Singular Value Decomposition of the matrix A and it is 

a useful tool for determining an appropriate order of the model. The determination of the order 

of the model is based on the ratio of the singular values in Σ [6]. Matrix Σ can be decomposed 

into two parts Σn and Σz regarding the relative size of the singular values such that: 

    will contain in the diagonal entries all the singular values              
  

    
 

     (4.24) where      is called threshold value and   is the number of significant 

decimal digits. 

    will contain in the diagonal entries all the singular values              

Finally matrix A can be now factorized as following: 

         
   
   

  
  

 

  
    (4.25) 

 

4.4.4 Hankel Singular Value Decomposition (HSVD) 

For simplification purposes a mode truncation can be applied on the original system by using 

the Hankel Singular Value Decomposition (HSVD) in order to construct a new state space 

model by retaining only the dominant poles. In order to truncate the order of the system, the 

contribution of the modes in the transfer function can be examined by using the State Energy 

indicator. High energy states are retained while lower energy states are discarded in order to 

preserve most of its characteristics in terms of stability, frequency, and time responses [8]. 

In order to explore the energy intuition, the energy interpretation of the following norm is the 

key: 

                
    

 
        

        

           
 

             )  (4.26) 

The value         
measures the amount of energy received by the system G and the value 

        
 measures the amount of energy produced by G, given the received energy 
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  This norm provides an estimate of how much energy can be produced by a system 

to an arbitrary input signal u and based on this norm, modes that are least involved in the 

energy transfer from input to output are deleted. 

L2  is the space of square-summable functions with 2- norm, or energy: 

                 
   

  
                 

  

  
         

       (4.27) 

where  

  is a random vector with n elements  

                (4.28) 

To some extent, the amount of received and induced energy can be measured by two energy 

functions. These functions are known as    and    and can be computed with the use of the 

following Gramians: 

               
     (4.29) 

and 

               
       (4.30) 

In a similar manner the two functions can be computed: 

        
      (4.31) 

 and 

             (4.32) 

Where, 

      are the controllability and observability matrices respectively, 

and  

operator       corresponds to the inner product of the two vectors      

The HSVD method is based on finding an appropriate coordinate system for the state-space in 

which the chosen Gramian matrices of the system are diagonal and equal. In the simplest 

case, the controllability and observability Gramians    and    can be equal diagonal 

matrices: 

       

     
    
       
     

      
     

   .  (4.33) 
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The matrices    and    can be computed by solving the next equations, which are called 

Lyapunov equations and are defined as: 

               (4.34) 

               (4.35) 

The two Gramians can be computed according to [1]: 

                     

  
                (4.36) 

                      

  
               (4.37) 

where    ,    correspond to zero and infinity respectively if the system is universally stable [12]. 

Finally, the energy transfer from past inputs to future outputs by considering the output energy 

resulting from an initial state          and the minimal energy needed to reach         can 

be computed according to [12]: 

  
  

  
 

        

 
     

 
    

         
  (4.38) 

where 

       

 

   
  (4.39) 

Note that: 

         
 

       

 

     

 

   
 

     (4.40) 

Thus, according to eq. (4.38) and eq. (4.40), the HSVs  measure how much the states are 

involved in the energy transfer from inputs to outputs. 

In summary, it seems reasonable to obtain a new reduced-order model by removing the least 

controllable and observable states, keeping states containing the major part of the system 

energy as these are the ones which are most involved in the energy transfer from inputs to 

outputs. That is, keeping the states corresponding to largest HSVs and therefore two matrices 

  ,    can be created, where: 

    is the diagonal matrix that contains all the singular values    in descending order. 

The SVs               correspond to states    "much more" observable and 

 controllable than               . That means that the magnitude of    is 

significantly bigger than of                   

    is the diagonal matrix that contains all the singular values    in descending order. 

The SVs     correspond to states    that are less important due to low observability 

and controllability. 
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   (4.40) 

 

The reduction of the model is based on the truncation of the less important states according to 

the process described and the matrices         can be partitioned respectively: 

 

                                                                  
      

      
  

                                 
  

  
                      (4.41)                

         

 

Finally, the reduced model is described by the new matrices formed from the truncation    , 

  ,   . 
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5. System Identification Methods 

5.1 Introduction to the Identification Methods  
In the context of this thesis three different methods are used for the identification of the 

dynamic systems: 1) Autoregressive with external input (ARX), 2) Autoregressive moving 

average with exernal input (ARMAX) and 3) Eigensystem realization algorithm (ERA). The first 

two methods, which are going to be described and applied in the next chapters, belong to the 

family of transfer function models while the third one belongs to the family of state-space 

models. The ARX and ARMAX methods are considered mode meters according to the 

definition given in Chapter 3.4 and use input and output data for the identification process, a 

fact that classify these methods in the family of I/O methods. On the other hand, ERA is a 

ringdown analyzer according to the definition given also in Chapter 3.4 and requests only 

output data, which renders it an output-only identification technique. Finally, it is of great 

importance to emphasize that all of the three aforementioned model structures are black-box 

models, i.e. they are used for identifying a system without any knowledge of its internal 

workings.  

 

5.2 AutoRegressive with eXternal input (ARX) Model Description 

The system's input and output at time   can be denoted by      and      respectively. The 

most basic relationship between the input and output is the linear difference equation: 

                                               (5.1) 

The system is in discrete time, primarily because observed data are always collected by 

sampling and therefore it is more straightforward to relate observed data to time discrete 

models.  

Equation (5.1) can be reconstructed in order to provide a way of determining the next output 

value given previous observations: 

                                                  (5.2) 

We introduce the following vectors: 

                       (5.3) 

                                              (5.4) 

With the previous, (5.2) can be rewritten as: 

             (5.5) 

To emphasize that the calculation of y(t) from past data depends on the parameters of θ we will 

use the following notation: 

                (5.6) 
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From the equation (5.5) we conclude that the predictor    is the scalar product between a 

known vector φ(t) and the parameter vector θ. In statistics such a model is called linear 

regression and the vector φ(t) is known as the regression vectors. 

At this point we will introduce the forward shift operator q by : 

              (5.7) 

and the backward shift operator     by: 

                (5.8) 

In the equation (5.1) we will introduce a white-noise term      as a direct error and we will call 

the new model an equation error model (structure): 

                                                       (5.9) 

We introduce the following polynomials: 

          
           

     (5.10) 

        
                (5.11) 

and we see that (5.9) can be written as : 

                             
    

    
     

 

    
      (5.12) 

Finally if we set: 

        
    

    
  (5.13) 

        
 

    
  (5.14) 

then (5.12) takes its final form: 

                               (5.15) 
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+ Input signal u

Noise e

Output y

ARX model structure  

 Figure 5.1: ARX model structure block diagram 

 

 

5.3  AutoRegressive Moving Average with eXternal input  (ARMAX) Model 

Description                                       

 

The ARX model (5.9) lacks adequate freedom in describing the properties of the disturbance 

    . This disadvantage could be counterbalanced by describing the equation error as a 

moving average of noise. This gives the following model: 

                           
                       

       

                     
   (5.16) 

Let            
           

     (5.17) 

Then the eq. (5.16) can be rewritten: 

                                 
    

    
     

    

    
      (5.18) 

and clearly corresponds to (5.15) with 

        
    

    
  (5.19) 

       
    

    
  (5.20)  

                                 
   (5.21) 
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The involvement of the moving average (MA) part          leads to the model (5.18) known 

as ARMAX. The ARMAX model is widely used a tool in control theory for both system 

description and control design. 

 

 

 

 

+ Input signal u

Noise e

Output y

ARMAX model structure  

 Figure 5.2: ARMAX model structure block diagram 

 

5.4 Parameter Estimation 

In order to construct the ARX and ARMAX transfer function models, the parameters contained 

in the vector   have to be estimated. 

The prediction error of a proposed method is equal: 

                     (5.22) 

When the dataset    defined in equation (3.1) is known, these errors can be computed for 

           . 

The main goal of the identification is to select the parameters     at time     so that the 

prediction error ε                   becomes minimum. 

The prediction error sequence is a vector in    and can be measured using any norm in   .  

In order to restrict the amount of choices of norms, we let the prediction error sequence to be 

filtered through a stable linear filter L(q):  

                    (5.23) 

The general type of the norm is the following: 

   
 

 
    

           (5.24) 
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where      is a positive-scalar valued function. 

The minimization of the function    defines the estimated vector of the parameters (minimizing 

arguments)    : 

              (5.25) 

For the Linear Regression methods ARX and ARMAX that we are using, we will assume that 

        (5.26), since the pre-filtering of      is done by the corresponding linear functions 

      as shown in Fig. (5.1), (5.2). 

The scalar function      will be equal to a quadratic norm: 

     
 

 
    (5.27) 

Using the equation (5.6) the prediction error becomes: 

                 (5.28) 

and by assuming that L(q)=1 and      
 

 
    (5.29) the criterion function    

 is: 

   θ     
 

 
 

 

 
      φ   θ   

   (5.30) 

 

The equation (5.30) is known as the Least-Squares Criterion for linear regression and it can be 

minimized analytically given that it is a quadratic function of  . 

The minimizing arguments are being found by setting the derivative of (5.30) to zero: 

 

  
            

 

 
                    

 

 

     

 

 
  φ         

  
 

 
  φ   φ    θ  

   (5.31) 

or 

   
                   

 

 
  φ   φ      

  
   

 
  φ         

   (5.32) 

   
   is known as the Least-Squares Estimate (LSE) 

 

Let   

     
 

 
  φ   φ      

   (5.33) 
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and  

     
 

 
  φ         

   (5.34) 

Now, if we suppose that the original data      are generated for some sequence      then 

they will have the following form: 

                 (5.35) 

We may think of    as a "true value" of the parameter vector. 

Then,      can be replaced in the equation (5.32) and using the notations    ) and     : 

   
         

 

 
   φ           

 
    φ         

 
    (5.36) 

Finally, the deviation of    
   can be computed from the original vector   : 

          
                    

 

 
  φ         

 
             (5.37) 

where    and    are the following mathematical expectations: 

      φ   φ       (5.38) 

      φ           (5.39) 

 

5.5 Computation of the Least Square Estimate based on QR Factorization 

The prediction-error approach with a quadratic norm gives the least squares method described 

in Chapter 5.4 and according to equations (5.32), (5.33) and (5.34) the minimizing element    
   

can be written as: 

   
               (5.40) 

An alternative is to view    
   as the solution of: 

       
         (5.41) 

The coefficient matrix R(N), particularly if it is of high dimension, can render the computation of 

   
   inefficient and at some cased unbearable. Instead of forming matrix R(N),  a new matrix   

can be introduced with the property: 

           (5.42) 

For the construction of the matrix   the QR-factorization is being used. 

 

The QR factorization of an      matrix A is a decomposition as the following: 
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      (5.43) 

where 

  is an      orthonormal matrix (i.e      ) 

  is an      upper triangular matrix 

 

Let's introduce the matrices: 

                 ,   is a matrix of  N*dimensions(y)×1 elements  (5.44) 

               ,   is a matrix of N*dimensions(y)×d elements  (5.45) 

Then the Least Square Criterion (5.30) can be rewritten as: 

   θ              (5.46) 

Since Q is an orthonormal matrix, the norm in equation (5.46) is not affected by inserting matrix 

Q in the norm (orthonormal transformation in the vector of     ) as shown below: 

   θ                                     (5.47) 

The QR factorization of the matrix      : 

                   , with    
  

 
 

   (5.48) 

Here    is an upper triangular       x       matrix which can be decomposed as: 

 

                        
    

   
  

                       is      matrix               (5.49) 

                      is     

                      is scalar   

Using the equation (5.47), (5.48) can be written as: 

   θ                   
  

  
   

   
 

  
 

   
      

  
  

 

   

   θ                   
   (5.50) 

Thus, the minimizing arguments    
    and the minimum value of the norm are equal to: 
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      (5.51) 

      
            

   (5.52) 

Equations (5.51) and (5.52) show that for computing the    
   and the loss function    θ     

the matrix Q is never required. Note that there are many algorithms for computing matrix   

such as Householder transformations and the Gram-Schmidt procedure. Matlab computes full 

QR factorization of a matrix A using the Householder algorithm by the matlab command: 

             (5.53) 

Detailed information regarding the algorithm for computing the QR can be found in [5]. 

 

5.6 Introduction to Eigensystem Realization Algorithm (ERA) 

The main goal of the Eigensystem Realization Algorithm as well as of every modal analysis 

technique (the study of dynamic properties under vibration excitation) is to determine the 

eigenvalues of the matrix A in the State-Space description (4.1) of the dynamical system. 

The Eigensystem Realization algorithm (ERA) is based on the Singular Value Decomposition 

(SVD) of the Hankel matrix H0 of the system's impulse response [4]. A Hankel matrix is a 

square matrix with constant skew-diagonals. In this method we are computing the two Hankel 

matrices   ,   using all the available data                : 

    

     

   
       

   (5.54) 

    

       

   
       

   (5.55) 

where   
 

 
    (5.56) 

The number of data must be sufficient so that    . 

The singular value decomposition of H0 is the following: 

          
   
   

  
  

 

  
    (5.57) 

where 

                        (5.58)  

and 

                            (5.59) 
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The set of singular values to be contained in Σn is determined after deciding a value for the 

threshold according to (4.24) 

The Hankel matrix H0 can be approximated by: 

         
   (5.60) 

where it is assumed that: 

           (5.61) 

Finally, the discrete matrices of the state space representation of the model are computed as 

follows: 

 

 
             

  
    

       

            
 

    
 

              
 

  

             

 
 

  (5.62) 

To calculate the corresponding matrices in continuous time, the  discrete matrices above have 

to be converted by assuming a zero order hold (holding each sample value for one sample 

interval) and sampling interval Δt: 

 
 

              
         

  
 

 
                  

  
  

  
         

   (5.63) 

The identified system response can be computed from the continuous matrices. 

A conceptual view of the ERA identification process is shown in the Fig. (5.3) 

 

Hankel Matrices SVD
Discrete System State 

Matrices
System Modes

Impulse Response

 

 Figure 5.3: ERA process block diagram 
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6. Wind Turbine Description 

6.1 Introduction 
The wind turbine (WT) is designed in such a way as to allow the production of electrical energy 

generated from wind power. Wind generates a twisting force on the blades of the wind turbine 

and causes the blades to rotate and consequently produce the mechanical energy required for 

varying speed shafts to generate electricity. There is a variety of components that ensure the 

smooth operation of the wind turbine. The Fig (6.1) shows the components found within the 

wind turbine: 

 

 Figure 6.1: Wind Turbine components  

 

The movement of the blades with respect to the direction of the wind is facilitated by a system 

which consists of a drive and a motor and is called Yaw system. The Yaw system is found on 

the tower which provides supports to the various components.  

A wind turbine can be divided in three functional sub-systems: The mechanical-drive train 

system, the electrical system and the control system. This division leads to a deep 

understanding of how wind turbine actually works. 
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6. 2 Mechanical and Drive Train System 

This System is the entry point of the wind turbine system. The wind provides input to the wind 

turbine, to the blade and pitch system. A hub and three blades make up the blade and pitch 

system forming the rotor. The blades are designed to optimize the aerodynamic properties of 

the wind turbine and the pitch corresponds to the angle formed by the blades to an imaginary 

horizontal axis plane. The Rotor generates torque and rotational force which serves as an input 

to the drive train system. The drive train system usually consists of a low-speed shaft, a high 

speed shaft and a gear box. The principle of operation of the drive train is based on a speed 

transmission mechanism. Firstly, a planetary gear system is used to boost the speed generated 

by the low speed shaft unto a high-speed shaft. In many cases the drive train system also 

contains a brake which is used in order to slow down the low speed shaft in cases of extremely 

high wind speeds. The high-speed shaft is used in order to transmit the adequate torque and 

rotational speed to the generator for the production of the electrical energy. 

 

6.3 Electrical System 

This system consists of the generator and the converter. The generator takes as input the 

rotational energy transferred from the drive train system and converts it into electrical energy. 

The converter utilizes the control of the power flow by providing a constant power output from 

the system. 

 

6.4 Control System 

The control system is "responsible" for the monitoring and regulation of the operation of the 

wind turbine. Monitoring provides knowledge of faults when a component fails to satisfy its 

original purpose. Regulating the system involves all the necessary processes to ensure that the 

system delivers the expected output at all times. Control can be applied in both the mechanical 

and the electrical part of the wind turbine. At the early stages of the development of wind 

turbines the control was applied only to the mechanical system and satisfied the very basic 

functions (starting, rated power, shut down), usually with only mechanical devices. In recent 

years, the development of power electronics not only made possible the control of the wind 

turbine through the electrical system but also rendered the control more robust, flexible and 

reliable.  

Typically, there are two modes of operation: the partial load mode and the full load mode as 

shown in the next figure: 
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 Figure 6.2: Power output of Wind Turbine with steady wind speed 

The partial load mode concerns wind velocities from 3.5 m/s to 14 m/s where the control 

system seeks to secure the maximization of the electric power measured in Watts by capturing 

the maximum amount of energy of the wind. In the full load region, from 14 m/s to 25m/s, the 

control system keeps the electric power constant by changing both the pitch angle and the 

rotational speed of the generator. At wind speeds above 25m/s the wind turbine is shut down to 

prevent potential structural damages due to adverse wind conditions. To summarize, the main 

goal of the controller is to follow a reference power output and in some instances, when this 

cannot be achieved, the controller minimizes the reference error. 

The following diagram contains the basic parts of the wind turbine as described above: 

 

Rotor Drive Train Generator Converter

Control System

Mechanical System Electrical System

Grid

Wind

Wind Speed

Pitch Control

Tm

ωr

 Figure 6.3: Basic parts of the Wind Turbine 
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Based on the relationship between power and rotor speed the wind turbines can be divided 

into: 

 Constant Speed at Constant Frequency Wind Turbines (CSWT) 

 Variable Speed at Constant Frequency Wind Turbines (VSWT) 

 

The Variable Speed WT's superiority comparing to the Constant Speed WT lies on the fact that 

the rotor can operate in different speeds for which the performance coefficient Cp(λ) is 

optimized and consequently the produced power is maximized. Besides that, another important 

advantage of the VSWT is that the mechanical torques which are caused due to wind variations 

are decreased and, consequently, so are the power variations. 

 

The next figure shows the variation of the mechanical power for different values of wind speed. 

 

 

 Figure 6.4: Mechanical power for different wind speeds 

 

It is obvious that for a certain wind speed the mechanical power is maximized for a specific 

rotor speed. In other words, the maximum power is obtained when the WT follows the curve 

that connects the maximum points of the wind speed curves as shown above. Variable Speed 

WT's base their operation on that observation while on the other hand, in constant speed WT's 

the generator output is tied directly to the grid (local ac power network) and, therefore the 

rotation speed of the generator is fixed (typically it can vary a little given that slip is allowed to 

vary 2% to 3%). Any fluctuation in wind speed causes the mechanical power at the wind turbine 

to vary as well and, because the rotation speed is fixed, this causes the torque at the wind 

turbine to vary accordingly. Whenever a wind gust occurs, this leads to a significant increase of 
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the torque while the rotor speed varies a little. Wind gust stresses the mechanical components 

of the WT (especially the gearbox) and causes sudden increase in rotor torque and in the 

output power. As a result, wind speed variations and gusts render CSWTs a source of 

instability in the power network to which they are connected. 

 

On the other hand, VSWT cannot be implemented by synchronous generators which operate at 

a strictly constant speed when they are connected to the grid and by asynchronous generators 

as  the rotation speed of the generator is quasi-constant when its output is tied directly to the 

grid. Finally, for the case of VSWT power electronics must be introduced as an interface 

between the wind turbine and the grid.  

 

6.5 Doubly Fed Induction Generator (DFIG) for Wind Turbine 

The Doubly Fed Induction generator (DFIG) is a common configuration for large, variable-

speed wind turbines that are connected to the grid. This is primarily due to the many 

advantages that doubly-fed induction generators offer and can be summarized below: 

 Reduced inverter cost, because inverter rating is typically low (around 25% of total 

power system output) 

 Reduced cost of the inverter filters because filters are rated for 0.25 p/u of totally 

system power 

 Improved system efficiency given that the system losses are reduced. 

 Power-factor can be implemented at lower cost because DFIG system basically 

operates similar to a synchronous generator. The converter provides only excitation 

energy. 

The implementation scheme of the DFIG WT is shown in the next figure:  

Figure 6.5: DFIG Wind Turbine connected to the grid 
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6.6 Mathematical Description of the DFIG system 

Steady-state electrical equations of the doubly fed induction generator are assumed and the 

converter controls basically decouple the generator from the grid. As a result, the following 

equations describe the system: 

                               (6.1) 

                               (6.2) 

                                     (6.3) 

                                     (6.4) 

where      is the stator resistance,    is the stator reactance,    is the magnetizing 

reactance,    is the rotor angular speed and                are the dq axis currents of the 

rotor and stator respectively. 

The stator voltages are functions of the grid voltage magnitude and phase: 

            (6.5) 

           (6.6) 

The generator active and reactive powers depend on the stator and converter currents 

accordingly as follows: 

                        (6.7) 

                        (6.8) 

where    ,    ,    ,     are the voltages and converter's voltages and currents respectively. 

The converter powers on the grid side are: 

                  (6.9) 

                  (6.10) 

while on the rotor side are: 

                  (6.11) 

                  (6.12) 
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Assuming a loss-less converter model, the active power of the converter coincides with the 

rotor active power and, therefore,      . In addition, by neglecting stator resistance and 

assuming the d-axis coincides with the maximum of the stator flux the active and reactive 

powers injected in the grid are: 

                               (6.13) 

   
      

     
 

  

  
  (6.14) 

Assuming that the converter controls can filter shaft dynamics, the generator motion equation is 

modeled as single shaft: 

                 (6.15) 

                  (6.16) 

where     is the rotor inertia,     ,      are the stator fluxes and    and    are the 

mechanical and electrical torques. 

The link between stator fluxes and generator currents is: 

                         (6.17) 

                         (6.18) 

The simplified electrical torque is approximated as follows: 

    
      

         
  (6.19) 

where    is the system frequency rate. 

The mechanical torque is: 

    
  

  
  (6.20) 

where    is the mechanical power exctracted from the wind and can be computed as follows: 

   
   

   
            

   (6.21) 

         is the performance or power coefficient, λ is the tip speed ration,    is the pitch 

angle, and    is the area swept by the rotor. 

   and   can be approximated as follows: 

        
   

  
          

 
    

    (6.22) 
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  (6.23) 

Converter dynamics are modeled as an ideal current source, where     and     are state 

variables and are used for the rotor speed control and voltage control respectively. 

 

Differential and algebraic equations are as follows: 

      

     

   
       

  
     

 

   
  (6.24) 

               
 

  
      (6.25) 

where    is the power control time constant,      is the initial reference signal and    (    

is the power-speed characteristic which optimizes the wind energy capture and is calculated 

using the current rotor speed value as: 

         

                       
                           

                         

  (6.26) 

The following schemes show the rotor speed control and voltage control respectively: 

 Figure 6.6: Rotor speed control 
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 Figure 6.7: Voltage control 

 

Rotor current limits are computed based on active and reactive limits and assuming bus 

voltage     as follows: 

 

   
     

     

  
      (6.27) 

   
     

     

  
      (6.28) 

   
     

     

  
     

     

  
   (6.29) 

   
     

     

  
     

     

  
   (6.30) 

 

Finally, the pitch angle control is described by the following differential equation: 

  
                        (6.31) 

where   is the pitch control gain,    is the pitch control time constant and   is a function 

which allows varying the pitch angle set point only if the difference           exceeds a 

predefined value. 

Pitch control is illustrated in the following scheme: 



52 
 

 Figure 6.8: Pitch control 
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7. Identification of a 24 State-Space model 

7.1 Introduction to state-space representation of Kundur System 
As a first approach on the identification of dynamic models, the three aforementioned 

identification techniques are going to be applied directly into a 24 state-space system that 

describes the dynamic behavior of the Kundur System. This system and its respective matrices 

have been obtained by performing Small Signal Stability Analysis (SSSA) using PSAT after 

solving the power flow for the Kundur system:  

   

          

   
            

   
         
    

           
  

                                     
  

 
   

  

 
 
 
 
 

 
 

        
 
  

 
 
 
 

                                                             (7.9)                  

   

          

   
            

   
         

   
         

  

    

Kundur System is a power system that contains eleven buses and two areas, connected by a 

weak tie between bus 07 and bus 09. One load and one zip load are connected to the bus 07 

while another load along with a second zip load are connected to the bus 09 along. The zip 

loads are used for retaining the voltage at the buses within acceptable limits by controlling the 

active and reactive power. Each area of the system consists of two generators, each having a 

rating of 900 MVA and 20 kV.  

 Figure 7.1: Kundur Power System 



55 
 

 

The original matrix   contains the output of the system measured as the voltage magnitude at 

the 11 buses comprising the system.  

For simplification purposes, the system will be conceptualized as a SISO model where different   

input signals depending on the identification process are going to be applied. The measured 

output is the voltage magnitude at the 9th bus. Consequently, the C matrix that is used for the 

representation of the system (7.9) is replaced by the following: 

                           (7.10) 

 

7.2 Implementation of ARX Identification technique 

ARX is a technique tailored for ambient data, which, as it has been already mentioned 

corresponds to random low-amplitude variations. For the identification of the 24-state system a 

signal consisting of random numbers of zero mean value and a standard deviation of 4 is being 

introduced as input. That input could correspond to the random variations of the load 

connected to the Buses 07 and 09. 

The system is simulated and the response is measured in order to create the estimation data 

for the identification. 

The I/O signals are shown in the next figure: 

 Figure 7.2: Estimation data 
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The next matrix is used for the construction of the ARX transfer function model as well as for 

the consideration of the appropriate model order in order to minimize the error between the 

measured data and the output of the identified model: 

               (7.1) 

where  

    is the order of the polynomial A. In our case,    is a vector of values between 1 

and 10 

    is the order of the polynomial B. In our case,    is a vector of values between 1 

and 10 

    is the input-output delay expressed as fixed leading zeros of the B polynomial.  

The input-output delay for our input-output data is zero. This fact is confirmed by the use of 

delayest function in matlab. This command estimates the time delay in a system by estimating 

a low-order discrete-time ARX model and treating the delay as an unknown parameter. 

For validation purposes a completely new signal consisting also of random numbers of a mean 

value equal to 1 and a standard deviation of 1 is produced.  

The I/O validation data are shown in the Fig. 7. 3: 

 Figure 7.3: Validation data 

 

The Fig. 7.4 shows different ARX models with certain orders and delays. 
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 Figure 7.4: ARX model orders 

 The x-axis shows the total number of parameters in the respective models while the y-axis 

shows the part of the output variance which is not explained by the model. That is the ratio 

between the prediction error variance and the output variance in percent:  

                           
                                    

                  
  (7.3) 

 

From Fig. 7.4, the ARX transfer function that corresponds to      ,         and      

minimizes the following two criteria: 

 The Best Fit Criterion, which is the Normalized Root Square Mean Error (NRME) and 

is computed: 

: 

FIT =      
          

        )  (7.4) 

             where 

      is the output of the validation data 

      is the identified system output 

      is the mean value of the validation data 

 

 The Akaike Information Criterion (AIC), which is defined: 

         
  

 
  (7.5) 

 

where 

 

   V is the loss function and is defined by the following equation: 
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       (7.6) 

 and 

 

   d is the number of estimated parameters 

   N is the number of values in the estimation data set 

 

After simulations for sampling time varying from 0.01 sec to 0.125 sec, the optimum sampling 

time has been computed at 0.05 sec and the optimum order of the transfer function as it is 

mentioned above is [10 10 0]. 

The output of the system overlaid with the validation data and their respective Fitness is shown 

in the Fig. 7.5: 

 Figure 7.5: Comparison and Fitness between the output of the original and the ARX 

                transfer function model. 

 

 

7.3 Implementation of ARMAX Technique 

The implementation of ARMAX does not differ significantly from that of ARX technique. The 

only difference between these two methods is that ARMAX contains the moving average part 

C(q)e(t) which describes the equation error. Consequently, that transfer function model needs 

also the C(q) polynomial in order to be defined. 

The I/O signals for the estimation and validation of the ARMAX models that are going to be 

constructed are exactly the same with those that were used for ARX in order to compare and 

assess the efficiency of the two methods. 

The next matrix is used for the construction of the ARMAX transfer function model as well as 

for the consideration of the appropriate model order in order to minimize the error between the 

estimation data and the output of the identified model: 
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                  (7.7) 

where  

    is the order of the polynomial A. In our case,    is a vector of values between 1 

and 10. 

    is the order of the polynomial B. In our case,    is a vector of values between 1 

and 10. 

    is the order of the polynomial C In our case,    is a vector of values between 1 

and 10. 

    is the input-output delay expressed as fixed leading zeros of the B polynomial. In 

our case, it is equal to zero. 

Different sampling times varying from 0.01 sec to 0.125 sec are tested and models of all the 

aforementioned orders have been constructed in order to find the optimum table    that 

minimizes the Fitness Criterion. 

The next table displays the Fitness of the ten ARMAX models with the maximum Fit to 

validation data at sampling time equal to 0.05 sec: 

Model Order Fitness 

 
                            

 

                 99.9988 

                           
 

                 99.9988 

 
                             

 

                 99.9989 
  

 
                              

 

                 99.9990 
 

 
                             

 

                 99.9991 
  

 
                              

 

                 99.9993 
 

 
                               

 

                 99.9994 
  

 
                             

 

                 99.9994 
 

 
                            

 

                 99.9996 
 

                                             99.9996 
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 Table 7.1: Model orders and the respective Fitness 

From the Table 7.1 the optimum order can be set: 

                                (7.8) 

At that point it is worth mentioning that given that the difference in Fitness between these ten 

models is insignificant for simplicity purposes the minimum order could be chosen to describe 

the system even if it doesn't correspond to the maximum Fit. 

 

The output of the system overlaid with the validation data and their respective Fitness is shown 

in the next figure: 

 Figure 7. 6: Comparison and Fitness between the output of the original and the             

                      ARMAX transfer function model. 

 

7.4 Comparison of the efficiency of ARMAX and ARX models 

The next figure shows the eigenvalues of the original system, the armax and the arx transfer 

function models: 
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 Figure 7. 7: Comparison of the the eigenvalues between the original, the ARX and the 

         ARMAX transfer function models 

The bode plots for the three models are shown below: 

 Figure 7.8: Comparison of bode diagrams between the original, ARMAX and ARX           

          transfer function models 

7.5 Implementation of Eigensystem Realization Algorithm 

The system is excited by a Dirac input in order to extract the impulse response of the system 

(ringdown data), a mandatory requirement for the ERA. 
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The response of the system can be shown in the next figure: 

 Figure 7.9:  System's impulse response 

mode Nfreq(rad/s) freq(Hz) Damp residue energy 

1 2.6826 0.0000 1.0000 6.7648 0.9712 

2 1.1732 0.1130 0.7961 5.2504 0.9712 

3 1.1732 0.1130 0.7961 5.2504 0.2068 

4 6.8409 0.1418 0.9915 2.6448 0.2068 

5 6.8409 0.1418 0.9915 2.6448 4.0433 

6 3.3396 0.5314 0.0185 0.4772 4.0433 

7 3.3396 0.5314 0.0185 0.4772 0.0969 

8 16.8722 0.8688 0.9462 0.4676 0.0969 

9 16.8722 0.8688 0.9462 0.4676 0.5279 

10  6.0964 0.9669 0.0838 0.2867 0.5279 

11  6.0964 0.9669 0.0838 0.2867 0.5800 

12 29.4948 0.0000 1.0000 0.1354 0.5800 

13 6.2473 0.9916 0.0737 0.1196 0.1769 

14 6.2473 0.9916 0.0737 0.1196 0.1769 

15 26.2628 0.0000 1.0000 0.0057 0.2222 

16 0.0346 0.0000 -1.0000 0.0017 0.2222 

17 119.6835 0.0000 1.0000 0.0004 0.0500 

18 62.8835 10.0000 0.0405 0.0000 0.0528 

19 62.8835 10.0000 0.0405 0.0000 0.0539 

20 50.9031 8.0971 0.0329 0.0000 0.2125 

21 50.9031 8.0971 0.0329 0.0000 215.7821 

Table  7.2: Singular Values of the identified system 

The eigenvalues of the system are sorted according to their respective residue and, as it can 

be shown from the Table 7.2, the first 9 modes are selected for the representation of the 

system. 
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The impulse response of the continuous transfer function model that has been extracted by 

applying ERA is compared to the original response of the system in the figures below: 

 Figure 7.10: Comparison of original and identified system's impulse responses 

It can be concluded from the Fig 7.10 that there is a voltage magnitude between these two 

signals whereas their frequencies are similar. The voltage magnitude difference is going to be 

computed as a constant gain in the transfer function model of the identified system. 

After computations that will be described extensively in Chapter 8, the constant Gain    has 

been found: 

            (7.11) 

The constant gain has been contained in the identified transfer function and consequently the 

transfer function has been re-transformed into the state space representation. 

After all these calculations and transformations, the new state space model differs from the 

initial one only in constant gain. That can be confirmed also from the bode diagrams of the two 

identified systems: 
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 Figure 7.11:  Comparison between the identified transfer function with and without    

The phase bode are exactly the same while the magnitude bode differ only in magnitude with 

the difference been  equal to 24.92dB (          ) as expected. 

The new impulse response of the identified system comparing to the impulse response of the 

original one is shown below: 

 Figure 7.12: Comparison between the original and  the identified models 
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In order to evaluate the efficiency of ERA, a signal constructed by random values drawn from a 

normal distribution with a zero mean value and a standard deviation of 3 is applied as input 

signal for the two systems. The input and output of the system are going to be used  as 

validation data for the  identification and are shown in the Figure 7.12: 

 
 

 

 Figure 7.13: Validation data  

 
The next step of the validation process is to simulate and compare the response of the system 
that is identified using ERA to the response of the original system in order to evaluate the 
results of the identification procedure. 
The simulation results of the two systems can be shown in the next figure: 
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Figure 7.14: Comparison and Fitness between the output of the original and the identified  

        model. 

As an additional validation step and given that the state space representation of the original 

system is already known, it is feasible to compare the eigenvalues of the two systems as well 

as their respective bode diagram plots. 

Before comparing the eigenvalues of the two systems it would be easier for practical purposes 

to figure out if a mode truncation technique could be applied in the original system in order to 

compare systems with similar model orders. The HSVD method is selected and the criterion for 

the mode truncation is the magnitude of the HSVs and consequently the amplitude of the state 

energies as they have been described in section 4.4.3. 

The next figure displays the states with their respective contribution in the transfer function by 

using the State Energy indicator: 

 Figure 7.15: State contribution based on HSVs 
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As it can be seen, most of the energy is presented in the first 10 orders and consequently the 

higher model orders can be discarded. Proof of this is displayed below where the bode 

diagrams of the full order and the truncated system are overlaid at the same figure: 

 

 Figure 7.16: Comparison of bode diagrams between full and reduced order original 

          system.  

It can be safely deduced that the reduced order system describes the systems dynamics 

without losing too much information. This phase bode (blue and green) are exactly the same (a 

difference of 360°) while the magnitude bode of the identified naturally agrees with the 

magnitude bode of the full order up to 50 rad/s. After that frequency the slope of the full order 

system is steeper due to the existence of poles in higher frequencies. 

The Fig. 7.17 shows the eigenvalues of the original and the identified system: 
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 Figure 7.17: Comparison of the eigenvalues between original and identified models 

 

  

The respective bode diagrams: 

 

 Figure 7.18: Comparison of bode diagrams between the original and the identified 

          models 
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7.6 Conclusion 

From the Fig. 7.5-7.9 it can be concluded that ARX and especially ARMAX can produce 

adequate models that preserve both the time-domain and the frequency domain information of 

the original model. The eigenvalues of the ARMAX transfer function and their damping rations 

and frequencies exactly match those of the original system with the only exception of the 

original's system double pole at zero, while the modes of ARX are extremely close to the 

modes of the original system.  

On the other hand, the results of the ERA construct a model that captures the main system 

dynamics, and the overall fit for the estimation data as well as for the validation data is high. 

The eigenvalues of the two systems are very close and consequently the values of the 

damping ratios and frequencies of the modes are very close as well, a fact that is reverberated 

by the high fitness presented in Fig. 7.12 & Fig. 7.14. Finally the frequency response of the 

systems (Bode diagrams) confirms the aforementioned observations. 
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8. Identification of Wind Farm in IEEE 14 Bus Power System 

 

8.1 Description of IEEE-14 Bus Power System 

The system that is used for the implementation of the various identification processes is the 

IEEE 14-bus system which is a benchmark in power system analysis. This test case represents 

a portion of the American Electric Power System as of February, 1962. The 14 bus power 

system does not have line limits. Compared to recent power systems, it has low base voltages 

and overabundance of voltage control capability. It consists of 4 synchronous generators and a 

wind park of 30 DFIGs with a total capability of producing 600 MVA: 

 

 Figure 8.1: IEEE-14 Bus system with Wind Farm 
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8.2 Implementation of ARX Identification technique   

A first step in the identification of a dynamic model is the implementation of ARX method, the 

simplest among the three that are going to be used in the context of this thesis. The dynamic 

model under identification is the wind park which is considered an aggregated model of 30 

DFIG's. It is conceived as a Multi Input Multi Output (MIMO) system with two input and two 

output channels and ARX, which is an I/O identification technique, is going to be applied to the 

signals described below: 

 

Wind Farm Model

Bus Voltage

Vwind

Active Power

Reactive Power

 

 Figure 8.2: Wind Farm identification block 

 

Input Signals: 

 The signal that obviously is needed for the identification is the wind speed. Wind is the 

driving force of the Wind Turbine. For that reason, evidently, wind speed should be 

considered as an input signal for that system. 

 The second signal is not as obvious as an input as the wind speed. It is known that the 

active and reactive power injected into the grid by a DFIG, and consequently by a wind 

farm consisting of DFIGs, depends on the grid side currents of the converter. It has 

been also mentioned that the converter is modeled as an ideal current source     and  

is used for the control of the voltage, so one can deduce that the voltage of the bus 

that the wind farm is connected to can be used as an input which controls the amount 

of power that the wind turbines produce. 

 

Output Signals: 

 Active Power injected into the grid. 

 Reactive Power injected into the grid. 

 

The wind speed model that is used for this test case is the Weibull's distribution which is 

defined as follows: 

          
 

    
      

  
 

    (8.1) 

where 
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    is the wind speed 

    and   are constants as defined in the wind model data matrix. 

Time variations    of the wind speed are obtained by means of a Weibull's distribution, as 
follows. 

        
      

 
    (8.2) 

where     )is a generator of random numbers between zero and on (        . 

Finally, the wind speed is computed by setting the initial average speed   
  determined as the 

initialization step as mean speed: 

                 
       

    (8.3) 

where   
  is the mean value of   . 

The wind speed time evolution generated using the Weibull's distribution with a nominal wind 
speed value of 15 m/s is depicted in the next figure: 

 

 Figure 8.3: Wind speed timeseries 

 

In order to smooth the high frequency wind speed variations over the rotor surface, a low-pass 
filter with a time constant τ=4 sec is applied to the signal    . The output of the filter constitutes 
the input signal of the identification procedure: 
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 Figure 8.4: Filtering of wind time sequence 

 

 Figure 8.5: Filtered wind speed timeseries 

 

PSAT GUI is used for the power flow analysis as well as for the time domain of the system for 

60 seconds, and the injected active and reactive powers are measured in the Bus 01. Before 

applying ARX and ARMAX, the input and output signals need to be pre-processed: 

 Firstly, the data are detrended by computing and subtracting the mean of each 

measurement from each corresponding value of the bus voltage, wind speed active 

and reactive power. 

 Secondly, a data window that contains ambient data is selected. This window should 

be "large" enough in order to secure that the estimation will be based on enough data 

and consequently the identification results will be more reliable. It is important to 

mention at that point that the selection of the data window lies on the analyst's 
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0 10 20 30 40 50 60
1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45
Filtered Winds Speed

Time (sec)

V
w

 (
m

/s
)



75 
 

selection of a "proper" window. For that reason, different windows of data are tested for 

a specific data set in order to choose the one that produces good estimates.  

 Lastly, all the measurements are per unit. The power base is selected at    

    MVA, the bus voltage base is 69 kV (the voltage rating value at that Bus) and the 

base of wind speed is 15 m/s, equal to the nominal wind speed.  

Finally, the sampling interval has been set up to 0.05 seconds and the data window that 

produces the best estimates lies between 0.4 sec and 60 sec (          sec) consisting 

of 638 samples. 

The signals that are used for the identification are shown in the next figure: 

Input: 

 Figure 8.6: Detrended input signals 
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Output: 

 

 Figure 8.7: Detrended output signals 

  

  

 

It is of significant importance to mention that in order to estimate a model and validate it 

according to a data set, a typical way is to divide the series into two subgroups. The first 

subgroup is called estimation data group and is used to apply each identification procedure and 

construct the identified model. The second subgroup is called validation data group and is used 

to evaluate the performance of the model that was built according to the estimation data. 

In this chapter of the thesis as it has been already described, the PSAT simulation tool is used 

in order to extract the signals that compose the input and output of the wind farm. 

Consequently, given that simulation tools enable user to re-simulate the power grid under the 

same conditions (with the wind speed series as the only difference) and extract new data sets, 

it is decided to use the data of the first simulation as estimation data, and the data derived from 

the second and last simulation as validation data. For the last simulation, the power flow and 

the time domain simulation of the system run one more time additionally. 

The Wind Farm of the IEEE 14-Bus power system is a MIMO system and in order to compute 

the ARX function, the delay between input and output as well as the polynomials   and   are 

conceived as matrices instead of integers in case of a SISO model. The construction of the 

ARX function uses the table that is shown below: 

                                                            (8.4) 
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    is the order of the polynomial   (5.10) and it is specified as a   -by-   matrix 

where   is the number of outputs of the system. In our case, it is a 2-by-2 matrix. 

    is the order of the polynomial      and it is specified as a   -by-  matrix 

where   is the number of outputs and   the number of inputs of the system. In our 

case, it is a  -by-  matrix. 

    is the input-output delayed expressed as fixed leading zeros of the B polynomial 

and it is specified as a   -by-  matrix. In our case, it is a  -by-  matrix. 

 

The comparison between the validation data and the output of the identified model is realized 

with the use of the Fitness Criterion as is already described in eq. (7.4). 

 

It is already stated that the nominal sampling time from PSAT is set up to 0.05 sec. This 

sampling rate is being changed in each iteration of the program using anti-aliasing (lowpass) 

FIR filter to the signals. Furthermore,  the model orders that are tested are limited to six in order 

to secure that the identified system will retain its simplicity. Finally the following table 

summarizes the results of the experiments that maximize the Fit Criterion for the ARX method: 

 

na nb nk Sampling 
Time 

Fit Criterion for Active 
Power 

Fit Criterion for 
Reactive Power 

 
  
  

   
  
  

   
  
  

  0.1 sec 86.8924 
 

94.4224 

 
  
  

   
  
  

   
  
  

  0.056 sec 87.6629 97.2513 

 
  
  

   
  
  

   
  
  

  0.0833 sec 87.9016 96.4017 

 
  
  

   
  
  

   
  
  

  0.071 sec 88.2499 97.0945 

 
  
  

   
  
  

   
  
  

  0.1 sec 92.2852 99.2410 

 Table 8.1: Fit Criterion for different ARX model orders 

 

The grey shaded row reveals the optimum combination of order and sampling frequencies 

among the ones that have been tested. The graphs for the comparison between the validation 

data and the identified ARX output are the following:  
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 Figure 8.8: Comparison between the output of the original model and the ARX  

         transfer function model 

 

8.3 Implementation of ARMAX Identification technique  

 

The table that is used for the construction of the ARMAX transfer function is similar to the table 

defined in eq. (8.4): 

 

                                                                     

                       

where 

   ,   ,    have been described in the Chapter 8.3  

and  

   is the order of the polynomial     , specified as a column vector of nonnegative integers of 

length   . 

 

The model orders that are tested here are limited to six as they have been set in the ARX 

implementation in order to simplify the model. Finally, the next table summarizes the results of 

the experiments that maximize the Fit Criterion for the ARMAX method: 

 

 

na nb nc nk Sampling 
Time 

Fit Criterion for 
Active Power 

Fit Criterion for 
Reactive Power 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 92.2488 99.1362 
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  0.05 sec 92.4884 99.0476 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 92.6442 99.4545 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 94.8145 98.6062 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 95.2740 98.6837 

 Table 8.2: Fit Criterion for different ARMAX model orders 

 

The grey shaded row reveals the optimum combination of the order and the sampling 

frequency among the ones that have been tested. The graphs for the comparison between the 

validation data and the identified ARMAX output are the following: 

  

 

 

 Figure 8.9: Comparison between the output of the original model and the ARMAX  

       transfer function model 
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8.4 Implementation of ARX and ARMAX for Data with Measurement Noise 

White Gaussian noise is added to the output signals as measurement noise with a Signal to 

Noise Ratio equal to 15 dB. 

                                        
     (8.5) 

where 

                                       (8.6) 

The output signals with 15 dB SNR are shown in Fig.  

 Figure 8.10: Detrended Output Signals with Measurement Noise 

ARMAX and ARX are applied and the optimum combination of orders and sampling 

frequencies for ARX and ARMAX are summarized in Tables  and   respectively: 

na nb nk Sampling 
Time 

Fit Criterion for Active 
Power 

Fit Criterion for 
Reactive Power 

 
  
  

   
  
  

   
  
  

  0.056 sec 83.2588 82.5115 

 
  
  

   
  
  

   
  
  

  0.056 sec 83.1136 82.5115 

 
  
  

   
  
  

   
  
  

  0.05 sec 84.3401 82.1431 

 
  
  

   
  
  

   
  
  

  0.05 sec 84.0271 82.5755 

 
  
  

   
  
  

   
  
  

  0.056 sec 84.9843 83.2941 
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 Table 8.3: Fit Criterion for different ARX model orders with Measurement Noise 

 

na nb nc nk Sampling 
Time 

Fit Criterion for 
Active Power 

Fit Criterion for 
Reactive Power 

 
  
  

   
  
  

   
  
  

   
  
  

  0.056 sec 84.8426 89.8360 

 
  
  

   
  
  

   
  
  

   
  
  

  0.056 sec 84.9048 88.9627 

 
  
  

   
  
  

   
  
  

   
  
  

  0.056 sec 84.1069 90.4236 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 84.9240 89.7526 

 
  
  

   
  
  

   
  
  

   
  
  

  0.05 sec 85.7396 88.9619 

 Table 8.4: Fit Criterion for different ARMAX model orders with Measurement Noise 

 

 

The results of the experiments that maximized the Fit Criterion for ARX method are shown 

below: 

 Figure 8.11: Comparison between model with noise and the ARX transfer function  

          model 

The results of the experiments that maximized the Fit Criterion for ARMAX method are shown 

in Fig: 
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 Figure 8.12: Comparison between model with noise and the ARMAX transfer function 

          model 

 

Except for Fitness Criterion in that case an additional indicator of the model quality is going to 

be applied as a final step of validation process. This indicator is known as residual test. 

A residual i.e. prediction error is defined as the difference between measured data and the 

estimation of the identification algorithm: 

               (8.7) 

The residuals correspond to the portion of the measurement data that could not be explained 

by the identified model. According to the residual analysis [18], an identified model is 

characterized as good when: 

 The residuals are relatively small compared to the measurement data. 

 The residuals are close to white noise signal. At that point it is important to mention 

that the white noise has a flat power spectrum and therefore one possible way to 

check the "whiteness" of the residuals is to observe their power spectrum. 

The residuals for active and reactive powers overlaid with the measurements for both ARX and 

ARMAX methods are shown in the next Fig: 
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 Figure 8.13:Comparison between ARX, ARMAX residuals and Validation Data 

       

The power spectrum for residuals derived from the application of ARX and ARMAX methods 

are shown in Fig. (8.14): 

 

 Figure 8.14: Residuals of ARX and ARMAX methods for active and reactive powers 
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8.5 Implementation of Eigensystem Realization Algorithm 

 

8.5.1 Data without Measurement Noise 

As it has been mentioned in previous chapters, the ERA method is applicable on transient data, 

therefore in order to receive the suitable response, a three-phase fault is being introduced at 

13.8kV at the Bus 11. This fault occurs at      sec and is cleared at        sec. 

The injected active and reactive power at Bus 01 is being conceptualized as the impulse 

response of the MIMO Output Wind Farm system in order to extract the         matrices of 

the state space representation by using the markov parameters. 

The signals that are used as input for the identification process are shown below: 

 Figure 8.15: Injected Active and Reactive Power at Bus 01 

At that point, the output data are detrended and a proper data window that contains the 

transient part in order to apply ERA has to be selected.  The size of the data window that 

produces the best estimates is            sec and as a result the pre-processed data is 

shown in the next figure: 
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 Figure 8.16: Selected detrended data for system identification 

  

 

The output vector   that we use for the construction of the Hankel matrices is of size 67x2. 

 

               

            
            

  
            

   (8.8) 

 

The Hankel matrices       are of size 33x67 and they are computed: 

     
       

   
       

   
                               

   
                               

   (8.9) 

 

    
       

   
       

   
                               

   
                               

   (8.10) 

 

where 
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                    (8.11) 

  

                   

 

The markov parameters can be computed from the matrices             : 

Let the Markov parameters   
   

: 

         

        
   

 

         
   

                        (8.12) 

  

            
    

 

 

The computation of these parameters is really important given that they are used to form the 

Hankel matrices      . Besides that from the markov parameters and after performing the 

Singular Value Decomposition for   , the Controllability and Observability matrices can be 

obtained:  

 

           
             

    
                

      

 
 
 
 
 

 
  
   

 
     

 
 
 
 

                 

            (8.13) 

Finally, using eq. (8.10) and (5.60): 

               
    

       
   

     
     

 
    (8.14) 

Where, 
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Controllability matrix    

 
 
 
 
 

 
  
   

 
     

 
 
 
 

 

and  

 

Observability matrix                  

These two concepts are crucial in systems theory. Controllability is concerned with whether it is 

possible to design a control input to steer the state to arbitrarily values, while observability is 

concerned with whether it is feasible to determine the state of the system without knowing its 

initial state. 

By implementing the procedure described in Chapter 5.6 into Matlab, the matrices         

of the discrete time model (4.2) under identification are extracted.  

The modes of the system along with their natural frequency, frequency, damping ratio, residue 

and energy are shown in Table 8.5: 

mode Nfreq(rad/s) freq(Hz) Damp residue energy 

1 4.9806 0.7832 0.1543 1.2500 0.4189 

2 4.9806 0.7832 0.1543 1.2500 0.4189 

3 0.7980 0.0000 1.0000 0.6487 0.6911 

4 0.3132 0.0000 1.0000 0.5243 1.6509 

5 5.6833 0.9023 0.0706 0.3714 0.6976 

6 5.6833 0.9023 0.0706 0.3714 0.6976 

7 10.2087 1.6112 0. 1291 0.1783 0.2652 

8 10.2087 1.6112 0. 1291 0.1783 0.2652 

9 2.1902 0.3377 0. 2483 0.0577 0.6356 

10 2.1902 0.3377 0. 2483 0.0577 0.6356 

11 10.9516 1.7380 0. 0758 0.0361 0.3706 

12 10.9516 1.7380 0. 0758 0.0361 0.3706 

13 6.8182 1.0842 0. 0408 0.0302 0.9581 

14 6.8182 0.0000 0. 0408 0.0302 0.9581 

15 0.2548 2.3931 -1.0000 0.0191 133.7743 

16 15.1671 2.3931 0.1309 0.0191 0.1989 

17 15.1671 2.1454 0.1309 0.0128 0.1989 

18 13.5000 2.1454 0.0542 0.0128 0.4084 

19 13.5000 1.2775 0.0542 0.0034 0.4084 

20 8.0293 1.2775 0.0244 0.0034 1.2954 

21 8.0293 1.9571 0.0244 0.0032 1.2954 

22 12.3164 1.9571 0.0562 0.0032 0.4286 

23 12.3164 2.9422 0.0562 0.0026 0.4286 

24 18.5458 2.9422 0.0801 0.0026 0.2396 

25 18.5458 3.4419 0.0801 0.0006 0.2396 
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26 21.6684 3.4419 0.0627 0.0006 0.2675 

27 21.6684 3.4419 0.0627 0.0002 0.2675 

28 16.4028 2.6106 0.0013 0.0002 3.5604 

29 16.4028 2.6106 0.0013 0.0001 3.5604 

30 19.6525 3.1277 0.0069 0.0000 1.7225 

31 19.6525 3.1277 0.0069 0.0000 1.7225 

32 25.1349 4.0000 0.0132 0.0000 1.5690 

33 25.1349 4.0000 0.0132 0.0000 1.5690 

 Table 8.5: Singular Values of the Identified System 

This table is of great importance because it can help in determining the order of the identified 

system. The estimation results (modes of the state space representation) can be sorted either 

by their residue or by their respective energy. In the specific example we have sorted the 

modes by their residue so we can select the eight first modes with the highest residue.  

The impulse responses of the identified model compared with the output of the original system 

are shown in the next graphs: 

 

 Figure 8.17: Comparison between the original and identified discrete models  

The discrete time State-Space model is converted into a continuous model assuming a zero- 

order hold and the results are: 
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 Figure 8.18: Comparison between the original and identified continuous models  

From the graphs it is safe to conclude that after the conversion the new continuous identified 

model contains the same frequencies with the original model but obviously there is a 

magnitude difference between these two signals. This difference can be translated as constant 

Gain in the transfer function representation of the identified model. Consequently, in order to 

compute this gain and include it in the new continuous-time model, firstly the next steps should 

be followed: 

 Compute the magnitude difference from the responses of the original and identified 

systems. 

 Convert the state space identified model into a transfer function model. 

 "Insert" the difference as a constant gain in the transfer function representation. 

 Reconvert to state space model and plot the new responses. 

 

The new continuous state-space model containing the constant Gain is shown in Fig. (8.19): 
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 Figure 8.19: Comparison between the original and identified continuous models 

 

After several computation of the hankel matrices, it can be safely concluded that by selecting 

more modes from the table above the signals under comparison tend to fit better and better. 

That should be totally clear given that by selecting more dominant modes (modes that decay 

the slowest and are closer to the imaginary axis s=0) according to their residue and/or energy 

from the table above the system's behavior is captured more accurately: 

At this point it is important to remind that an extremely accurate model is not required in the 

case formulated in this thesis; instead a simplified transfer function is advisable for practical 

engineering purpose. A simplified transfer function renders the system easier to be understood 

and analyzed, and for that reason the order of the system has been chosen to be nine as a first 

step. 

In order to double-check if there are "margins" to decrease the model order without losing 

much of information, the Hankel Singular Value Decomposition (HSVD) is applied. 
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 Figure 8.20: State contribution based on HSVs 

In state coordinates, the hankel singular values (HSVs) measure the contribution of each state 

to the input/output behavior [10]. The magnitudes of the HSVs are shown above and, according 

to the graph, a reduction of the order of the model to six states is decided. The new plots of the 

output of the reduced order model comparing to the full order identified and the original model 

are: 

 Figure 8.21: Comparison between the original, the full order and the reduced order 

           identified continuous models. 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hankel Singular Values (State Contributions)

State

S
ta

te
 E

n
e
rg

y

 

 

Stable modes

2 3 4 5 6 7 8 9 10 11
-0.4

-0.2

0

0.2

0.4

Time (sec)

A
c
ti
v
e
 P

o
w

e
r 

(p
u
)

Plots for new continuous model

 

 

2 3 4 5 6 7 8 9 10 11
-0.1

-0.05

0

0.05

0.1

0.15

Time (sec)

R
e
a
c
ti
v
e
 P

o
w

e
r 

(p
u
)

Plots for new continuous model

 

 

Active power processed signal identified signal reduced order identified signal

Reactive power processed signal identified signal reduced order identified signal



92 
 

The bode diagrams of the full order and the reduced identified are shown below: 

 Figure 8.22: Comparison of magnitude bode diagrams between the full order identified 

          model and the reduced order identified model. 

 

 Figure 8.23: Comparison of phase bode diagrams between the full order identified  

         model and the reduced order identified model. 

An inspection on the figures regarding the system outputs as well as on the bode plot reveals 

that the reduction of the model did not cause significant loss of accuracy as it approximates the 

full order identified signal satisfactory. Therefore, the Hankel truncation can be applied to the 

model that is obtained from ERA. 
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8.5.2 Data with Measurement Noise 

For that case white Gaussian noise of an SNR equal to 15 dB is added to the injected active 

and reactive powers measured at Bus 01 after the occurrence of the three-phase fault. 

The new output signals are shown in Fig. (8.25): 

 Figure 8.24: Output Signals with Measurement Noise 

ERA is applied at the same way described for the case of data without noise and the new state-

space model is extracted. 

The same Validation data that used in ARX and ARMAX cases are going to be used for the 

evaluation of the efficiency of the method. The response of the identified system overlaid with 

the measurements present a Fitness of 66.6% for both active and reactive powers and is 

shown in Fig (8.25): 
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 Figure 8.25: Comparison between model with noise and the ERA state-space model

        

The residuals of ERA compared to measurement data is shown below: 

Figure 8.26: Comparison between ERA residuals and Validation Data 

8.6 Conclusions 

Fig. (8.8) and Fig. (8.9) reveal that the ARX and ARMAX methods capture the system 

dynamics very well, given that their responses to a completely new wind speed sequence 

present a  high Fitness criterion indicator. The overall performance of ARMAX model is 

preferable to the ARX model in terms of fitness ability in response measured data but both 

modes are accurate. 
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On the other hand, Fig. (8.19) and Fig. (8.21) show that both the ERA full order and the 

reduced order state-space models encapsulate the underlying dynamics of the system. 

For the case of data containing measurement noise Fig. (8.13) shows that ARMAX produces 

better estimates than ARX given that its residuals are smaller than those of ARX. However,  the 

residuals for both methods are relatively small compared to measurements which is a good 

indicator for the efficiency of the models . Fig. (8.14) confirms the previous observation; even 

though the spectrum of the residuals for both ARX and ARMAX cases is not constant, it is 

close to white given that is reasonably flat in the band between lowest frequency and the 

Nyquist frequency. 

Finally, from Fig. (8.26) it can be concluded that ERA produces residuals of magnitude that 

cannot be considered insignificant. This fact combined with the results shown in Fig. (8.25) 

regarding the Fit Criterion, leads to the conclusion that even though the systems main 

dynamics are captured, the method is not as efficient as ARX and ARMAX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

9 Conclusions and Future Work 

9.1 Conclusions 
Initially, a known state-space system was identified using ARX, ARMAX and ERA methods in 

order to illustrate in a simple and understandable way the different identification approaches 

and validate the efficiency of the models used. Afterwards,  a wind farm consisting of 30 DFIGs 

was conceptualized as a MIMO model with 2 input and 2 output channels and the three 

aforementioned techniques were used for its identification. The black-box system identification, 

especially in the cases of ARX and ARMAX which use known input signals, not only identified 

the dominant electromechanical modes but also estimated more accurately the transfer 

function representation.   

 

9.2 Future Work 
Future work on the era of system identification would involve the implementation of the 

techniques used in this thesis for measurements collected by Phasor Measurement Units 

(PMUs) placed in a power grid. Modal estimation of wind farms in real power grids is significant 

for various reasons. First of all, it can provide valuable information regarding system security 

and the determination of 'at risk' conditions. Measurements are going to be selected from 

PMUs placed at PCC and the results of the identification will help to determine if it is necessary 

to design a Power System Stabilizer (PSS) for the wind farm for the system to remain in a state 

of operating equilibrium under normal operating conditions [17]. 

Besides that, the identification based on PMUs measurements will be used for the validation, 

calibration and at some cases replacement of the existing small signal models that are used for 

system planning. Simulation results must be modified and adjusted in order to account 

important differences between measured and simulated behavior. 

 

9.3 Future Challenges 

The implementation of the various identification methods on actual field measurements is really 

challenging and great emphasis should be given to the pre-processing of the time domain data 

for the following reasons: 

 A PMU typically measures a signal at a rate of 50 samples per second (sps). In offline 

estimation of the models the signals have to be re-sampled at a lower rate in order to 

be feasible to be processed by the identification algorithms.  

 Real measurements contain noise, consequently low pass-filters have to be applied in 

the signals in order to cut-off the high frequency components and the aliasing effect. 

 Handling potential missing data. Depending on the duration of missing data, different 

processing methods should be applied. 

 Handling potential outliers. Outliers are data that deviate significantly from normal 

measurements and are commonly generated by a sensor failure. These abnormalities 
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are more complicated than the missing data due to the fact that they are not easily 

detected. Model prediction errors or residual analysis has to be conducted (i.e. the 

difference between an observed value and the estimated value) in order to detect and 

handle them. 

After pre-processing the measurements, the procedures can be applied in the same way as in 

synthetic data (data obtained from simulation software tools). Finally, MOR techniques can be  

used and reduced order models that represent the dynamics of interest of the renewable 

resources are expected to be extracted.  
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