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GLOSSARY

simulation time (ST) the time it takes for a program to translate, compile and perform

numerical integration on a Modelica model for a dynamic simulation.

execution time (ET) the elapsed time to complete the numerical integration process of

a compiled model. It also known as integration time. Note that execution time is

included as a part of simulation time (ST) in the context of this document.

normalized minimum execution time (NMT) performance metric taken as a function

of the execution time of each of the tools. It is defined as

NMT[solver] =
min(ETD,ETOM)

ETobserved

where ETD and ETOM are the execution times for Dymola and OpenModelica (OM),

respectively, and ETobserved is the corresponding integration time of each tool for a

given solver obtained from the simulation log. Note that execution time is included as

a part of ST in the context of this chapter.
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Colombia as a teaching assistant.

I do not have enough words to thank my co-authors for all their efforts, hard work, and

dedication to helping me complete each of the research articles in this document. Giuseppe

Laera, Marcelo de Castro Fernandes, Fernando Fachini, Manuel Navarro-Catalán, and Dr.

Tetiana Bogodorova are present in most of the papers of this thesis. Without your constant

support and collaboration, none of these articles would have passed the first review stage.

Shunyao Xu deserves a special mention for his hard work that led to the excellent results

in Chapter 7 and 8. Dr. Bhanu Vinzamuri was my mentor for the outstanding results in

Chapter 9. Thanks for being an incredible researcher and an even greater human being. To

Colleen Smith, thanks for your support and your encouragement to finish this chapter of my

life in the best possible way.

Finally, this work is 1000% dedicated to my beloved family. To my lovely and wise
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ABSTRACT

Driven by climate change, power system engineers are developing solutions to integrate

renewable energies. Such modernization of electrical networks requires novel technologies

to increase the efficiency of the electrical generation processes, making them greener and

more sustainable. Developing new algorithms and methods is not agnostic to the implosion

and success of data-driven strategies in science and engineering. This thesis collects different

innovations to facilitate the development of new data-driven algorithms by exploiting physics-

based modeling, simulation technologies, and modern computing technologies. The resulting

software tool uses models built with the Modelica language and the Python programming

language. First, a pipeline for synthetic data generation for electric power transmission

systems is described. Deep insight is given into the structure of the different modules

and the rationale behind their implementation. Next, the developed tool is used for the

implementation of data-driven algorithms. Two case studies corresponding to relevant

applications for power systems are presented: small-signal stability assessment and forced

oscillation detection. For applications that will require the execution of Machine Learning

algorithms at the edge, a low-cost hardware platform is introduced for oscillation detection,

which has promising potential for education and research. Finally, to better exploit the

embedded physics in electric power transmission systems, a novel recurrent neural network

architecture inspired by dynamical systems is presented. Such physics-aware solution

promises to play an important role in devising data-driven solutions required for the

operation, planning, and control of 21st-century power systems.
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CHAPTER 1

INTRODUCTION

Climate change is transforming the electricity generation landscape. The demand to drive

away from fossil fuels transforms how electricity is generated and consumed by incorporating

greener and sustainable generation. Likewise, consumers get a more active role in electricity

markets by turning into prosumers: selling the surplus of electricity they generate at certain

hours of the day. This ongoing “mutation” represents a paradigm shift from the hierarchical,

vertically-integrated power grid to a distributed smart grid.

Several new technical challenges have arisen in the planning and operation of modern

electrical systems [1]. To provide feasible and cost-effective solutions, the engineers of

the 21st-century must leverage concepts from optimization [2], controls [3], and data

science [4], while benefiting from the continuous advances in computing power and software

development. In this fashion, Machine Learning (Machine Learning (ML)) emerges as a

promising framework for developing data-driven solutions to assist power system operators.

The Modelica language is one of the most promising means for physics-based simulation

tasks for engineers in the 21st-century. Modelica leverages the power of equation-based

modeling and offers a natural way of representing dynamical systems while incorporating

state-of-the-art numerical solvers. Modelica-based tools are critical in sectors developing

cutting-edge technologies, such as the automotive and the aerospatial industries. In the

power systems domain, Modelica has been gaining popularity among industry and academic

stakeholders for phasor time-domain simulations thanks to the Open-Instance Power System

Library (OpenIPSL). OpenIPSL allows the user to benefit from the Modelica language while

preserving the structure existing in Power System Simulator for Engineering (PSS®E), the

industry standard for such kinds of dynamical studies [5].

The main contribution of this thesis is a pipeline to develop data-driven solutions

for modern power systems exploiting the Modelica language. In particular, a pipeline

for synthetic data generation based upon massive Modelica simulations is presented. The

resulting data is used to train ML-based algorithms for small-signal stability assessment.

A byproduct of this thesis is a Python-based tool for automated simulation-based data

1
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generation called ModelicaGridData , introduced in Chapter 6.

In addition, the results in Chapters 6 to 8 demonstrate the potential of ML techniques

for the solution of contemporary problems in power systems such as small-signal stability

assessment and forced oscillation detection. Finally, 9 presents a new recurrent neural

network (RNN) architecture, inspired by dynamical systems, with a promising potential

for time series-driven applications such as monitoring and forecasting.

The thesis summarizes the research outcomes of nine scientific publications first-

authored by the student, under the supervision of the thesis advisor and the extensive

collaboration of the associated research group. An overview of the thesis is as follows:

• Chapter 2 describes a comparison between different Modelica integrated development

environments (IDEs) tailored especially for power system applications. The full

materials of this chapter can be found in:

– S. A. Dorado-Rojas, M. Navarro Catalán, M. de Castro Fernandes, and L.

Vanfretti, “Performance Benchmark of Modelica Time-domain Power System

Automated Simulations using Python,” presented at the Proceedings of the

American Modelica Conference 2020 [6];

• Chapter 3 proposes a novel data structure to handle power flow variables required to

change the initial conditions of dynamic simulations. The associated publication of

this chapter is:

– S. A. Dorado-Rojas, G. Laera, M. de Castro Fernandes, T. Bogodorova, and L.

Vanfretti, “Power Flow Record Structures to Initialize OpenIPSL Phasor Time-

Domain Simulations with Python,” presented at the 14th International Modelica

Conference 2021 [7];

• Chapter 4 introduces an ad-hoc methodology for contingency generation to produce

generic but realistic scenarios for data generation. Likewise, this chapter shows a

case study related to the development of “classical” ML algorithms. The reference

publication for this section of the document is:

– S. A. Dorado-Rojas, M. de Castro Fernandes, and L. Vanfretti, “Synthetic

Training Data Generation for ML-based Small-Signal Stability Assessment,”

presented at the 2020 IEEE International Conference on Communications,

Control, and Computing Technologies for Smart Grids (SmartGridComm) [8];
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• Chapter 5 describes the software tool used to automate the power flow computation,

contingency generation, and simulation dispatch using Modelica and Python. The key

publication for this chapter is:

– S. A. Dorado-Rojas, F. Fachini, T. Bogodorova, G. Laera, M. de Castro Fernandes,

and L. Vanfretti, “ModelicaGridData: Massive Power System Simulation Data

Generation and Labeling Tool using Modelica and Python,” submitted to the

journal SoftwareX in June 2022 [9];

• Chapter 6 provides insight into a potential application of the synthetic data streams,

namely, in time series-based small-signal stability assessment for power systems using

Deep Learning (DL) methods. The main contributions of this chapter were presented

in:

– S. A. Dorado-Rojas, T. Bogodorova, and L. Vanfretti, “Time Series-Based Small-

Signal Stability Assessment using Deep Learning,” presented at the 2021 North

American Power Symposium [10];

• Chapter 7 describes the development of a low-cost hardware platform for evaluating

and validating ML prototypes used to detect forced oscillations in power systems.

These results were included in the article:

– S. A. Dorado-Rojas, S. Xu, L. Vanfretti, G. Olvera, M. I. I. Ayachi, and S. Ahmed,

“Low-Cost Hardware Platform for Testing ML-Based Edge Power Grid Oscillation

Detectors,” presented at the 2022 10th Workshop on Modelling and Simulation

of Cyber-Physical Energy Systems (MSCPES) [11];

• Chapter 8 elaborates on the algorithm selection for the forced oscillation detection

techniques evaluated with the platform in Chapter 7. The research of this chapter is

included in the following publication:

– S. A. Dorado-Rojas, S. Xu, L. Vanfretti, M. I. I. Ayachi, and S. Ahmed, “ML-

Based Edge Application for Detection of Forced Oscillations in Power Grids,”

presented at the 2022 IEEE Power & Energy Society General Meeting [12];

• Chapter 9 switches gears and veers toward a more theoretical contribution developing

a dynamical systems-inspired RNN architecture. The ideas in this chapter are part of

the article:
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– S. A. Dorado-Rojas, B. Vinzamuri, and L. Vanfretti, “Orthogonal Laguerre

Recurrent Neural Networks,” presented at the 34th Conference on Neural

Information Processing Systems (NeurIPS) [13];

• Finally, Chapter 10 concludes the work.

Each of the chapters in this document is an outcome of the research efforts made for this

thesis. All corresponding articles have been peer-reviewed for presentation at a conference

or publication in a journal. Besides, the results in Chapter 9 have been patented as part of

a collaboration between Rensselaer Polytechnic Institute and IBM. A guide for the reader

navigating the document is shown in Fig. 1.1.

Generation of Synthetic Data Data-driven Solutions
for Power Systems

Physics-aware Data-driven
Solutions

Chapter 5
ModelicaGridData: SOFTWARE 
TOOL FOR DATA GENERATION TO
DEVELOP MACHINE LEARNING 
SOLUTIONS

Chapter 2
BENCHMARK OF MODELICA 
TOOLS FOR POWER SYSTEM 
SIMULATION

Chapter 3
POWER FLOW RECORD 
STRUCTURE TO INITIALIZE 
MODELICA MODELS WITH
PYTHON

Chapter 4
SCENARIO GENERATION FOR SMALL-
SIGNAL STABILITY ASSESSMENT VIA 
MACHINE LEARNING

Chapter 6
TIME SERIES-BASED SMALL-
SIGNAL STABILITY ASSESSMENT
USING DEEP LEARNING

Chapter 7
LOW-COST HARDWARE PLATFORM FOR 
TESTING MACHINE LEARNING-BASED 
EDGE POWER GRID OSCILLATION 
DETECTORS

Chapter 8
MACHINE LEARNING-BASED EDGE 
APPLICATION FOR DETECTION OF 
FORCED OSCILLATIONS IN POWER 
GRIDS

Chapter 9
ORTHOGONAL LAGUERRE
AND LADDER RECURRENT 
NEURAL NETWORKS

Figure 1.1: Structure of the thesis document.



CHAPTER 2

BENCHMARK OF MODELICA TOOLS FOR POWER

SYSTEM SIMULATION

2.1 Introduction

Modeling and simulation of power systems have been a common practice in the

energy industry since the 1960s. The complexity of a power system is steadily increasing

to accommodate modern technologies into the existing grid. A more complex system

leads to more elaborated models. High-complexity models are directly correlated with

computationally expensive tasks [14]. In this context, the Modelica language represents

a modern equation-based, multi-domain solution modeling and simulation alternative.

Numerous initiatives such as OpenIPSL have been taken to bring to the power system

domain the benefits of the Modelica language [15].

On the other hand, the academic, scientific, and industrial communities have come

to acknowledge the intrinsic benefits of the Modelica language. An outcome of this trend

is that the user base has increased significantly during the last few years. This has led to

the development of many libraries with users coming from a very wide domain spectrum.

Nowadays, Modelica stakeholders include students, consulting firms, large laboratories, and

industrial institutions.

Cost-free tools such as OpenModelica (OM) are fundamental for learning the language

at little to no cost and to set a reference for the Modelica language [16]. Commercial tools

such as Dymola1, SystemModeler2, Modelon Impact3 or SimulationX4 provide advanced

functionalities that satisfy particular requirements from the industry. However, there is no

clear guidance for a user on how to select a particular tool and numerical solver based on its

simulation performance exclusively. Providing this guidance is the goal of this chapter.

We aim to compare the time-domain simulation performance of the solvers from both

Dymola and OpenModelica (OM) when subjected to different solver settings (see [17] for a

Portions of this chapter appear in S. A. Dorado-Rojas, M. Navarro Catalán, M. de Castro Fernandes,
and L. Vanfretti, “Performance Benchmark of Modelica Time-domain Power System Automated Simulations
using Python,” presented at the American Modelica Conference 2020 [6].

1Dymola: https://www.3ds.com/products-services/catia/products/dymola/.
2SystemModeler: https://www.wolfram.com/system-modeler/graphical-system-modeling/.
3Modelon Impact: https://www.modelon.com/modelon-impact/.
4SimulationX: https://www.esi-group.com/products/system-simulation.

5

https://www.3ds.com/products-services/catia/products/dymola/
https://www.wolfram.com/system-modeler/graphical-system-modeling/
https://www.modelon.com/modelon-impact/
https://www.esi-group.com/products/system-simulation
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detailed analysis of the potential of OM to solve large-scale models). Since these tools do not

have the same features and solvers, we have chosen some of the ones they have in common

for benchmarking purposes.

The contributions in this chapter are relevant to any user of the Modelica language,

especially for power system simulation practitioners. The tool performance analysis is based

on the simulation of a commonly used power system model (IEEE 14 bus system), that serves

as a representation of a dynamic nonlinear power system. We consider three simulation

scenarios: an initialization, a line-opening (one discrete event) and two bus faults (two

discrete events). We study the difference in performance within the tools and help users

make an educated choice about the tools to use. The main contributions of this chapter are

the following:

• quantitative evaluation of Dymola and OM simulation performance for time-domain

simulation of complex dynamic systems (power systems);

• benchmark of different solvers in a dynamic simulation with discrete events;

• implementation of simple Python routines to automate Dymola and OM time-domain

simulations.

This chapter is broken down in the following sections: Section 2.2 describes the test

system and the Modelica library employed to construct it. The experiment setup regarding

hardware characteristics and software setup is described in Section 2.3. In Sections 2.4 and

2.5, we discuss the experiment results of each of the tools with respect to each solver and

the corresponding performance metrics. Finally, Section 2.6 concludes the chapter.

2.2 Modelica Power System Model

The bus system5 represents a part of the Midwestern USA American Electric Power

System as of February of 1962. The single-line diagram of the system can be seen in

Figure 2.1a. This model was chosen because it is a widely used testing system for an

initial assessment in power system dynamical studies since it has a significant number of

variables and states (420 and 49, respectively) which makes it a common factor in such

simulation-based studies [14]. For this reason, its dynamic simulation poses a challenge to

the tools and the CPU.

5Different models of the IEEE 14 bus system can be found at https://icseg.iti.illinois.edu/ieee-14-bus-
system/.

https://icseg.iti.illinois.edu/ieee-14-bus-system/
https://icseg.iti.illinois.edu/ieee-14-bus-system/
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The test power system model (Figure 2.1b) is built using the components from the

open-source OpenIPSL library, a Modelica-based power system component library currently

developed and maintained by ALSETLab at Rensselaer Polytechnic Institute. The library

includes all the components to build a large power system model and perform dynamic

analysis in time- and phasor-domain. The version of the library used is release 1.5.06.

2.3 Experiment Specifications

To assure that the results are reproducible, this section details the conditions under

which the experiments were performed regarding hardware setup and software characteristics.

2.3.1 Hardware and Software Setup

The characteristics of the computer used for the simulations are shown in Table 2.1.

Table 2.1: Hardware characteristics and software specifications of the computer
used to run the performance assessment experiments.

Operating System Ubuntu Server 18.04 LTS
RAM 128 GB

Processor
Intel(R) Xeon(R) CPU E-1650 v4

12 Cores @ 3.60 GHz
15 MB Cache

Storage 1 TB SSD

Graphics Cards
4 x NVIDIA GTX 1080 Ti

(CUDA Capable)
11 GB GDDR5X (each)

Dymola Distribution Dymola 2020x
OM Distribution 1.14.0
Python Release 3.6.8

Dymola Compiler MinGW CC
OM Compiler MinGW CC

To assess solver performance correctly, numerical integration must run in only one

processor. While this is a default option in Dymola, we need to specify this option explicitly

in OM before starting any simulation since it defaults to multi-core execution. This is done

thanks to the flag setCommandLineOptions("-n=1") .

6The version of OpenIPSL used for these experiments is made available together with the main code of the
program on GitHub: https://github.com/ALSETLab/Time-Domain-Simulation-Performance-Benchmark.
For the latest release of OpenIPSL, see: https://github.com/OpenIPSL/OpenIPSL.

https://github.com/ALSETLab/Time-Domain-Simulation-Performance-Benchmark
https://github.com/OpenIPSL/OpenIPSL


8

<1><1>

<11><11>

<9><9>

<6><6>

<5><5> <4><4>

<3><3><2><2>

<7><7>

<13><13> <10><10>

<14><14>

<8><8>

<12><12>

L5L5

L3L3
L6L6

L8L8

L2L2

L10 L10 

L11 L11 

L12 L12 

L17 L17 

L14 L14 

L15 L15 
L16 L16 

L7L7

L1L1

pwLinepwLine

(a) IEEE 14 bus model.

(b) Implementation of the IEEE 14 bus model in Dymola
using OpenIPSL.

Figure 2.1: Single line diagram and Modelica implementation of the IEEE 14
bus system.
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2.3.2 Simulation Scenarios

To properly measure solver performance in diverse dynamic conditions, we will consider

the following three scenarios of the IEEE 14 bus model: system initialization, time-domain

simulation with one line opening, and system response with two faults.

IEEE 14 System Initialization

This scenario, labeled as S1, corresponds to a simulation with no disturbing events.

The power flow condition of the model is modified so that the numerical solver is exposed to

difficulties during initialization. The provided initial conditions are such that the dynamic

system is not initially at an equilibrium point, thus forcing the numerical solver to look for

an acceptable steady-state condition at the beginning of the integration process (what is

known as initialization). This increases the computational task and challenges the solver

since the integration does not start with all state derivatives at zero.

Line Opening

Besides the aforementioned “bad” initialization condition, we force a line opening to

disturb the system from steady-state and excite nonlinear dynamics (experiment S2). This

type of scenario is used to study system-wide stability when two sub-areas are disconnected

from each other. The line opening corresponds to the connection between buses 2 and 4 (B2

and B4). The line will open from both ends at time t = 60 s and will re-close at t = 61.5 s.

Bus Faults

In this case (S3), the system will face two three-phase to ground faults at different

times. This configuration is used to test the resiliency and stability of the system. By

having two faults, the numerical complexity of the simulation increases, creating a more

adverse scenario for the solvers to come up with a solution. Fault 1 occurs at bus 4 (B4)

starting at t = 20 s and being removed at t = 21.2 s. Fault 2 takes place at bus 14 (B14) at

t = 80 s, being cleared at t = 81.2 s. The parameters of the two faults are R = 0 pu and

X = 1× 10−5 pu.

2.3.3 Solver Selection

Performance of a time-domain simulation depends not only on the dynamic condition

to be analyzed but also on solver selection. In this regard, OM and Dymola contain a
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wide variety of different integration methods and three of them are going to be used and

thus briefly described in this study. The Differential Algebraic System Solver (dassl) is

an implicit, high-order, variable-step solver with time-step control. This solver is set as

default solver in both OM and Dymola. The Euler method is another solver available in

both software packages and it is an explicit (i.e., forward Euler), first-order, fixed time-step

solver. Finally, the last solver used in this study is the runge kutta. Dymola allows the

user to chose between second, third and fourth order Runge-Kutta methods but in this work,

only the fourth order is used because it is also available in OM. This solver is an explicit,

fourth-order, fixed time-step solver. We will benchmark the performance of the tools with

each of the mentioned solvers for the different scenarios of the test power system.

2.3.4 Time-step Selection

Since dassl is a variable-step solver with step-size control, there is no need to select

a specific time-step for the simulation. The selection of an adequate number of intervals

is necessary to plot and analyze the results. For both tools, 5,000 was found to be

a reasonable number of simulation intervals. This means that after the simulation is

complete, the program will interpolate the results to give an output with 5,000 points.

Moreover, to use the capabilities of a Differential Algebraic Equation (DAE) solver to

their full extent, we enable the newly incorporated DAEmode in Dymola by enabling the

flag Advanced.Define.DAEsolver = true [18]. In OM, to set similar settings we use the

command setCommandLineOptions("daeMode=true") .

On the other hand, it is important to select an adequate step size Ts for fixed-step

solvers in order to guarantee that the algorithm is operating in its region of numerical

stability. To get an upper bound for Ts, we performed a linear analysis of the system

in Dymola employing the library Modelica LinearSystems2. After determining the time

constant of the fastest mode (τ ≈ 1 ms), we found that Ts = 0.5 ms was a reasonable

value to capture the effects of the fastest mode, guaranteeing numerical convergence for

both solvers, Euler and Runge Kutta. The selected time-step size implies that 240,000

simulation intervals are going to be needed for a simulation time of 120 s.
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2.3.5 Benchmark Metrics

In order to understand and accurately compare the two tools, the experiments focus

on two simulation features to compare:

• simulation time (ST) corresponds to the time it takes for a program to complete all of

the routines for each scenario comprising model translation, compilation and execution.

The discussion of the results of ST are found in Section 2.4.1, with special remark on

execution time (ET).

• CPU Utilization is the percentage of CPU that is being used at any time during the

execution. Results for CPU utilization can be found in Section 2.4.2.

2.3.6 Code Structure

The complete code to perform the experiments and analyze the resulting data can be

found in GitHub7. The execution of the simulations is automated through Python using the

Python-Dymola Interface (PDI) and the OpenModelica-Python Interface (OMPython) [19].

The details of the Dymola routine can be seen in the file dymola simulation.py. Likewise,

the OM commands are included in the file om simulation.py.

The routine in the script measurement performance.py measures the computing

performance. It registers each of the performance metrics every 0.2 s while the code

is running in a different parallel process. The main program is contained in the file

01 modelica tool performance benchmark.py.

2.4 Performance Results

Before presenting the performance results, we validate the simulation outputs of the

three scenarios for Dymola and OM for all solvers. We employed the Normalized Absolute

Error (NAE) and the Mean Squared Error (MSE) defined in Equation (2.1) to quantify the

numerical difference between the outcomes of each tool:

NAE =
|xi − yi|

n

MSE =
n∑

i=1

(xi − yi)
2

n
.

(2.1)

7https://github.com/ALSETLab/Time-Domain-Simulation-Performance-Benchmark.

https://github.com/ALSETLab/Time-Domain-Simulation-Performance-Benchmark
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NAE shows how different the Dymola and OM results are throughout the simulation.

MSE outputs a quantitative validation of the results of both tools [20]. Full details can be

seen in Table 2.5.

The numerical behavior of the simulation during initialization (runge kutta solver)

can be observed in Figure 2.2 for the voltage magnitude signal at B2 and B4. An initial

transient behavior can be seen at the beginning of the integration time. This is not desired in

a dynamic simulation since numerical convergence to a steady-state solution is not guaranteed

given the fact that the solver starts from a guessing point with non-zero derivatives.

Figure 2.2: Comparison between Dymola and OM results for the initialization
scenario using the runge kutta solver.

The non-steady state behavior at the on-set of the simulation is due to the fact the

initial guess used in the model (the power flow condition) is not close enough to an equilibrium

for the initialization routine to solve for a more precise set of initial values. A more complex
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initialization problem will better benchmark the capabilities of the tools. Despite this,

Dymola and OM produce almost the same results, with an NAE in the order of 10−7.

Likewise, for the runge kutta solver, Figures 2.3a and 2.3b show the simulation results

for the line opening (voltage magnitude at B2 and B4) and the double bus fault (voltage at

affected buses B4 and B14) scenarios, respectively. Both figures reveal how there is a minimal

error between the results of both tools. Based on these results, it is concluded that fixed-step

solvers can be applied to reduce discrepancies between different Modelica tools.

2.4.1 Simulation Time

The information regarding simulation time is presented for all scenarios and solvers in

Table 2.4. We must underline that simulation time includes compilation, translation, and

the actual numerical integration (execution time). A clear conclusion from this information

is that the variable-step solver is the most convenient for an initial analysis of the conditions

of the system with an important amount of detail. Nevertheless, considering the information

about MSE, a fixed-step solver shows advantages to reduce the numerical discrepancy

between tools running the same model. The cost is an increase in simulation time.

2.4.2 CPU Utilization

Since each instance of Dymola/OM was constrained to run only on one core, we expect

exactly one processor to be responsible for numerical integration while a simulation is being

carried out. The CPU usage of the assigned execution core is 100% due to the heavy

numerical task of the simulation.

An interesting outcome of our experiments is that several CPUs are involved in the

execution process but just one is performing the simulation tasks at a given time. We can

detail this behavior in Figure 2.4a for a Dymola simulation using the runge kutta method

of the bus fault scenario. Simulation starts in Core 1 where the CPU usage is at a 100% at

the beginning of the running time. Afterward, it is delegated to Core 5. Finally, Core 10

completes the execution of the program. This behavior is due to a task scheduling routine

in the processor level that dispatches to different cores the compilation, translation, and

integration sub tasks. Similar behavior happens with another solver and OM (Figure 2.4b)

in which the simulation started in Core 2, then was briefly assigned to Core 5 and was

finished in Core 6. All the plots can be detailed in the GitHub repository inside the Jupyter

Notebook called 03 DataPostprocessing CPU Usage.ipynb.
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(a) Line opening scenario (S2).

(b) Bus fault (S3) scenario.

Figure 2.3: Comparison between Dymola and OM results for different
simulation scenarios using the runge kutta solver.
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(a) OM

(b) Dymola.

Figure 2.4: CPU utilization for Dymola and OM during line opening and bus
fault scenarios with the runge kutta solver.
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2.5 Performance Evaluation Metrics

A score was proposed to quantify the performance differences between the tools and

the solvers. The score is obtained from the data generated for all simulations and solvers.

This single metric makes it simpler to directly compare the performance of Dymola versus

OM. From Table 2 the ET for each scenario and solver were employed. These metrics were

obtained directly from the program logs and measured in Python. Notice that the time

registered using OMPython is slightly larger than the reported by the simulation log due to

the communication delay between Python and OM. The translation and compilation time

were not taken into account since this information was only available in the Dymola developer

version, not in the release version at the time of writing this document.

The normalized minimum execution time (NMT) score of each scenario per solver is

computed as

NMT[solver] =
min(ETD,ETOM)

ETobserved

(2.2)

where ETobserved is the ET for a particular solver in Dymola or OM, and min(ETD,ETOM)

is the minimum execution time between both tools for a specific solver. Clearly, NMT[solver]

lies between 0 and 1. The higher the NMT is, the faster the simulation will run for a

particular selected solver. At a first glance, this metric might be counter-intuitive since

a better solver/tool combination would reduce execution time. However, we propose an

increasing score metric due to the fact that users are more familiar to higher scores for

better performance. Therefore, the larger the NMT is, the faster a particular solver will run.

The NMT metric results are presented in Table 2.2. The performance of Dymola is

remarkably better using dassl. Nevertheless, OM shows a smaller execution time than

Dymola for fixed-step solvers (as can be seen from Table 2.4, the NMT scores and 2.3).

This conclusion can be further detailed in Table 2.3 where a direct comparison between the

execution time for the tools with the different solvers for each scenario is presented.

The NMT scores highlight that the performance of Dymola in terms of execution time

is remarkably better for variable-step solvers. The relative advantage of selecting one tool

with respect to the other can be computed from the NMT directly. For instance, Dymola

runs 47.3x faster than OM for the first scenario using dassl which can be computed by a

direct comparison of the ET listed in Table 2.3. The NMT score of OM for S1 is 0.0211
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Table 2.2: NMT scores.

Dymola OM

NMT[S1] NMT[S2] NMT[S3] NMT[S1] NMT[S2] NMT[S3]

dassl 1 1 1 0.0211 0.0254 0.0880
euler 0.148 0.168 0.208 1 1 1

runge kutta 0.177 0.296 0.293 1 1 1

which is 1/0.0211 = 47.3 times smaller than the corresponding Dymola metric reflecting the

relative difference in execution time.

For the variable-step solver, the discrepancy between the tools can be attributed

to the performance of the dassl solver in all simulations thanks to the aforementioned

improvements for DAEMode inside Dymola [18].

The execution time of OM is faster than the one of Dymola for all scenarios when a

fixed-step solver is used. The NMT scores show a relative advantage between 3.4 and 6.8

times favoring OM. We have contacted Dassault Systèmes about the performance of the

simulations of the IEEE 14 Bus System using runge kutta methods (including euler) as

integrator and GCC for compilation. Dassault reports that bug fixes have been made in the

GCC runtime libraries, leading to CPU times are about 3 – 4 times faster, on par with the

run times given when compiling with Visual Studio under Windows 10. Dassault informs

that the updated libraries were included in Dymola 2021.

We should point out that the scope on the potential optimization features

has been limited to the use of the flag Evaluate = true in Dymola and

-d=evaluateAllParameters in OM, which is standard practice when attempting to

improve simulation performance.

The detailed step-by-step computations of the scores can be found in GitHub in the

Notebook 05 BenchmarkMetrics.ipynb.

2.6 Conclusions

The chapter presented a concrete analysis of the time-domain simulation performance

of Modelica-based tools for different solvers in the context of large-scale nonlinear dynamic

systems. The presented results can help a user to choose a tool depending on the

final application, and lead to improvements in Modelica tools. The methodology of this



18

benchmark can be extended to virtually any platform or Modelica tool.

We benchmarked the time-domain simulation performance of two popular Modelica

tools, Dymola and OM, for a dynamic power system simulation using the IEEE 14 bus

system. We considered several scenarios that challenge numerical solvers differently. Thanks

to Python scripting, we were able to change automatically the simulation settings while

directly measuring the performance of the computer instead of relying on simulation logs.

Python functions also made it quicker to analyze straightforwardly the big set of data

regarding simulation results and computer performance.

For the proposed heuristic score, we found out that OM performs better than Dymola

in terms of execution time for fixed-step solvers while Dymola shows faster results when

using a variable-step solver (see Table 2.3). Despite this, we must warn the reader that

this conclusion is based upon only a particular system. Further research has to be done

to include more test systems. However, the given GitHub code can be used as a driver to

conduct testing on other power system models.

In Tables 2.4, 2.5, and 2.3, runge kutta is abbreviated as rk.

Table 2.3: Performance comparison between Dymola and OM.

Execution time (ET)

OM Dymola
Benchmark

Result
OM Dymola

Benchmark
Result

S
1

dassl 7.869 s 0.1664 s
D > OM
(47.3x)

S
3

dassl 163.48 s 14.40 s
D > OM
(11.3x)

euler 277.54 s 4420.01 s
OM > D
(6.8x)

euler 378.60 s 1820.01 s
OM > D
(4.8x)

rk 783.01 s 1880.01 s
OM > D
(5.6x)

rk 1344.68 s 4590.01 s
OM > D
(3.4x)

S
2

dassl 13.40 s 0.3408 s
D > OM
(39.3x)

euler 310.10 s 1850.01 s
OM > D
(6.0x)

rk 1086.39 s 4410.01 s
OM > D
(4.1x)
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Table 2.4: Execution time for Dymola and OM for each simulation scenario
using different solvers.

Simulation Time with OpenModelica (OM)
Translation Compilation Execution Total Time (OM log) OMPython

S
1

dassl 2.3204 s 6.6270 s 7.8690 s 16.8164 s 19.3451 s
euler 2.5432 s 6.5845 s 277.5495 s 286.6772 s 289.2878 s
rk 2.3495 s 6.6213 s 783.0159 s 791.9867 s 794.6805 s

S
2

dassl 2.6079 s 6.6411 s 13.4004 s 22.6494 s 25.2542 s
euler 2.4023 s 6.6437 s 310.1061 s 319.1521 s 321.7222 s
rk 2.3489 s 6.6591 s 1086.3958 s 1095.4040 s 1098.0253 s

S
3

dassl 2.1952 s 6.7301 s 163.4884 s 172.4137 s 175.2962 s
euler 2.3248 s 6.7801 s 378.6069 s 387.7118 s 390.3140 s
rk 2.3960 s 6.7332 s 1344.6808 s 1353.8100 s 1356.2994 s

Simulation Time with Dymola
Translation

+
Compilation

Execution
Measured
Python

Translation
+

Compilation
Execution

Measured
Python

S
1

dassl 20.186 s 0.1664 s 20.3524 s

S
3

dassl 20.2161 s 14.4098 s 34.6260 s
euler 24.7791 s 1880.0109 s 1904.7900 s euler 16.4581 s 1820.0119 s 1836.47 s
rk 21.2389 s 4420.0125 s 4441.2514 s rk 17.9956 s 4590.0129 s 4608.0085 s

S
2

dassl 20.2363 s 0.34082 s 20.5772 s
euler 19.6561 s 1850.0129 s 1869.6690 s
rk 24.6567 s 4410.0119 s 4434.6686 s

Table 2.5: MSE between voltage magnitude signals at different buses for each
simulation scenario.

Mean Squared Error (MSE)
B2 B4 B1 B4

S
1

dassl 3.0011× 10−11 4.6482× 10−11

S
3

dassl 0.0067 0.0002
euler 1.2894× 10−11 3.7950× 10−11 euler 0.0025 0.0002
rk 1.2853× 10−11 3.7828× 10−11 rk 0.0018 0.0002

S
2

dassl 1.1728× 10−8 1.1267× 10−7

euler 2.3598× 10−10 3.2470× 10−9

rk 2.3579× 10−10 3.2473× 10−9



CHAPTER 3

POWER FLOW RECORD STRUCTURE TO INITIALIZE

MODELICA MODELS WITH PYTHON

3.1 Introduction

The Open-Instance Power System Library (OpenIPSL) is an open-source library of

power system component models written entirely in Modelica [15]. Beyond the inherent

advantages of the Modelica language, OpenIPSL components are constantly cross-validated

against commercial packages such as PSS®E, producing practically the same results [5] and

exhibiting the same or even better simulation performance (see [18] and [6]).

Successful use cases of the library come from a broad range of applications such as

multi-domain simulation [21], damping [22] and parameter estimation [23] in power systems,

dynamic stability assessment [24], co-simulation for energy analysis [25], stability analysis of

hydro-power grids [26], wind turbine control [27], cyber-attack evaluation [28], power system

stability enhancement [29], extremum seeking control [30], and data generation for machine

learning applications [8].

Despite the library’s usefulness, the main caveat is the absence of a systematic approach

to link phasor time-domain simulations with static computations like power flows. Power flow

computations are ubiquitous in any power system analysis. A power flow problem involves

determining the system’s voltage profiles and electrical power transfer across a network given

the generator power injections and load consumption. Mathematically, it is a nonlinear vector

algebraic equation commonly solved using an iterative method such as a Newton-Raphson

(NR) algorithm. From the dynamical perspective, a power flow result represents an operating

condition for which may contain a potential equilibrium for the underlying dynamical system.

So, the power flow result represents the set of initial guesses to initialize a dynamic model and

analyze an electrical grid’s behavior subjected to a dynamical event. Observe that because

Portions of this chapter appear in S. A. Dorado-Rojas, G. Laera, M. de Castro Fernandes, T. Bogodorova,
and L. Vanfretti, “Power Flow Record Structures to Initialize OpenIPSL Phasor Time-Domain Simulations
with Python,” presented at the 14th International Modelica Conference 2021 [7].

20
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the simplified algebraic representation of the power grid in the power flow problem, many

of its solutions can result in operating conditions where an equilibrium may not exist when

the system’s dynamical model is considered.

OpenIPSL models contain a myriad of nonlinearities employed to represent dynamical

behaviors more accurately. So, varying the initial condition of a dynamical simulation

represents a critical step towards system assessment. So far, users have proposed ad-hoc

solutions to generate power flow results (e.g., using Matpower1 or PSS®E2 as in [31]).

However, despite valuable, these efforts do not completely fill the gap to easily provide

power flow solutions to OpenIPSL models. The former approach replaces the power flow

values in the *.mo file of the model directly, which is inconvenient from the user’s point of

view. The latter depends on proprietary software which might not be available to the base

users of OpenIPSL. The OpenIPSL community, and users of other Modelica-based power

system libraries (see [32]), will more than welcome a systematic power flow approach based on

open-source tools to integrate into their models quickly. Addressing this issue is the primary

purpose of this chapter. The main contribution is to bridge the gap between phasor time-

domain simulation and static computations for OpenIPSL utilizing an open-source-based

pipeline.

We propose a Modelica records structure to handle all power flow variables. Such

nested records data structure enables a user to replace a power flow condition, typically

composed of several algebraic variables, with a single click or one line of code. These records

are created automatically from the model’s *.mo file and populated using GridCal.

GridCal3 is an open-source Python library for power system computations such

as power flows. A remarkable characteristic of GridCal is its built-in PSS®E parser.

Consequently, users can parse *.raw files containing a grid static model’s information

to a GridCal internal grid representation. In our examples, we will use PSS®E files to

construct GridCal models. This enables us to benchmark the GridCal power flow results

against PSS®E outputs. By doing so, we bring confidence to Modelica tools in terms of the

quality of results, showing that Modelica-based power system models can be initialized and

1See https://github.com/dgusain1/InitialiseModelica
2See https://github.com/ALSETLab/Raw2Record
3GridCal is able to import and parse model description and parameter files from proprietary software

such as PSS®E and DigSilent, and also widespread open-source libraries for power system analysis like
Matpower. In contrast to many proprietary electrical grid software tools, GridCal runs on Windows, Linux,
and macOS natively. It can be downloaded from https://github.com/SanPen/GridCal.

https://github.com/dgusain1/InitialiseModelica
https://github.com/ALSETLab/Raw2Record
https://github.com/SanPen/GridCal
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result in the same initial condition and provide the same simulation results as proprietary

tools.

So far, we summarize the main contributions of our work as follows:

• we bridge the gap between Modelica-based tools and conventional domain-specific

power system tools;

• we automate the process of providing good initial guess values to solve the initialization

process of Modelica-based power system models with the OpenIPSL library;

• we make Modelica-based tools more attractive for dynamic power system simulation,

making it easier for users to use OpenIPSL models for analysis under multiple operating

conditions by a power flow record structure;

• with the contributions above, we facilitate the potential adoption of and transition to

Modelica-based tools by power system domain specialists.

This chapter is structured as follows: Section 3.2 gives a brief introduction to the

power flow problem in electrical networks. In Section 3.3, we introduce the records structure

proposed to handle power flow variables. We illustrate how this data container can be linked

to OpenIPSL models in Section 3.4, where we also benchmark the power flow values against

the results obtained with commercial tools. Finally, Section 3.5 concludes the work.

3.2 The Power Flow Problem

The power flow (historically referred to as load flow) problem is undoubtedly one

of the most performed calculations in power system applications [33]. For instance, these

calculations are carried out many times in operations and planning procedures for power

grids. An application of a particular interest to this chapter is that power flow solutions

provide a potential starting guess to solve the initialization problem at which a dynamic

simulation may start. Hence, a power flow can be considered one of the most critical problems

to be solved when studying a power system [34].

The problem, however, is not new, and neither are the techniques used to solve it. The

first practical solutions began to appear in the mid-1950s with the aid of digital computers

[35] and a breakthrough came about a decade later. The development of incredibly efficient

handling of sparse matrices [36] was paramount to the wide adoption of Newton-Raphson

(NR) algorithm. As new issues to solve the power flow problem have arisen, a myriad of
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new techniques and methods have been proposed; however, NR-based techniques are still

the most preeminent methods [33], [34].

From the mathematical perspective, a power flow problem is posed as a set of nonlinear

algebraic equations. Its solution will determine an operational point for a specified loading

and generation condition in the power system. This operational point is defined by the

voltage magnitude and angle in each bus of the system, together with the active and reactive

powers generated and consumed in generation and load buses respectively. In the current

chapter, we will give a brief introduction to its formulation.

In most power flow formulations, the power system is assumed to be perfectly balanced

and operating at a constant frequency (i.e. 50/60 Hz) which would allow it to be represented

in its positive sequence equivalent circuit [33]. If a system can be represented in its positive

sequence equivalent, it is then possible to assemble its nodal admittance matrix Y and to

write the nodal equation as follows:

Ī = YV̄, (3.1)

where Ī is the nodal injection current phasor vector, V̄ is the nodal voltage phasor vector

and Y is the admittance matrix, which is square and sparse.

We could use the nodal equation to compute the voltage at all nodes if all current

injection measurements were available. Unfortunately, this is not the case in an electric grid

where the known quantities differ from bus to bus. For instance, in a load node, active

and reactive power consumption (P,Q) are assumed to be known. Likewise, in a generation

bus, active power injection and voltage magnitude at the generator terminals are typically

known (P, V ). Then, the nodal equation has to be reformulated in terms of P,Q, and V .

Because the steady-state relationship between power and voltage/current is nonlinear (and

complex-valued), the linear nodal equation into a nonlinear set of complex-valued equations

on P,Q, V , and the voltage phasor angle θ.

The exact formulation in the power system jargon is the following. For the mth bus,

four variables are either specified or should be calculated in a power flow: active power

injected in the bus in per unit Pm, reactive power injected in the bus in per unit Qm, node

voltage phasor magnitude in per unit Vm and node voltage phasor angle in radians θm. In

load buses (identified as PQ buses) the variable that is known beforehand is the specified
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apparent power (Ssp
m = P sp

m +jQsp
m), while in generation buses (called PV buses) the specified

variables are the voltage magnitude (V̄m) and active power (P sp
m ). In addition to that, there

should be one slack bus which should have a specified voltage magnitude value and, most

importantly, it should be responsible for providing the angle reference used for all other

calculations [33].

The power flow solution is achieved when the computation of active and reactive power

via the nodal equation, using the solution values from the most recent iteration, matches

the given data for active and reactive power. In other words, the solution occurs when the

mismatch between specified and calculated power values is less than or equal to some given

tolerance. We can write such a mismatch as

∆Sm = Ssp
m − VmI

∗
m = P sp

m + jQsp
m − V̄m

∑
k∈Km

Y ∗
mkV̄

∗
k , (3.2)

where Km is the set of buses k which are directly connected to bus m and the superscript (∗)

denotes the complex conjugate. By using the fact that Ymk = Gmk + jBmk and expressing

the phasor V̄m as V̄m = Vm(cos θm + j sin θm), we can split Equation (3.2) into its real and

imaginary parts as:∆Pm = P sp
m − Vm

∑
k∈Km

(Gmk cos θmk +Bmk sin θmk)Vk,

∆Qm = Qsp
m − Vm

∑
k∈Km

(Gmk sin θmk −Bmk cos θmk)Vk,

where θmk = θm − θk. Note that, in this polar formulation, the unknown variables are the

nodal voltage phasor magnitudes (Vm) and angles (θm).

As said previously, a power flow problem is typically solved using an NR algorithm.

First, a nonlinear vector function f : R2n 7→ R2n is defined, where n is the total number of

nodes (buses). This function could be expressed as:

f(x) =

∆P

∆Q

 , (3.3)

where the ∆P and ∆Q are the n-row vectors [∆Pm] and [∆Qm], respectively. In addition,
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x ∈ R2n is given by

x =
[
V1 · · · Vm · · · Vn θ1 · · · θm · · · θn

]T
, (3.4)

where the superscript T stands for transpose. To find the power flow solution, we state the

following equation [34].

f(x) = 0 (3.5)

Due to the nonlinear nature of f , it is very difficult to find a closed-form solution for

such a problem. Therefore, it is necessary to use an iterative method such as a classical NR

algorithm. The i-th iteration of the NR method is written as [34]

∆xi = [J(xi)]
−1f(xi),

xi+1 = xi +∆xi,
(3.6)

where J(x) is the Jacobian matrix of function f . The iterative method will stop when f(x)

is sufficiently close to 0 or, in other words, when its norm is less than a tolerance set by the

user. Besides, there are many different ways to find x0, which is used to start the process

described in (3.6). Generally, robust techniques usually allow finding a solution when using

a flat start, i.e., when all voltage magnitudes are started as 1 per unit and all angles are

started as 0 radians, or one could use a previous power flow solution can be used for the

same system.

3.3 Power Flow Records Structure

One of the Modelica language’s main advantages is the object-oriented paradigm that

enables the user to create dynamic system models hierarchically. Such a structure allows the

user to manage model parameters systematically.

A Modelica record is a data container used to store a wide range of information

about a model, such as parameter values, simulation settings, or values of specific variables
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Figure 3.1: File structure of the power flow records inside the OpenIPSL model
directory.

for several analysis conditions. Records permit changing a significant number of variables of

a given model by modifying just one parameter that related hierarchically to many variables

inside the data representation.

Records are a perfect structure for handling power flow values in a dynamic simulation.

Suppose power flow results are handled using a record-based data structure. In that case, we

could modify the power flow condition of an OpenIPSL model by varying only one attribute

of the model, namely, the power flow record, rather than individually changing multiple

variables.

The proposed power flow record structure is presented in Figure 3.1. A Python script

called create pf records creates the Modelica files containing the record structure and

places them inside the model’s root folder in a directory called PF_Data . This function

reads the .mo file of the model ( <model_name>.mo ) as a plain text file and uses several

regular expressions to determine the number of buses, generators, loads, and transformers

in the network. Such a script becomes handy when a user has an existing OpenIPSL model

and would like to add a power flow records structure automatically.
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Figure 3.2: Class diagram for the proposed power flow record structure.

We define our power flow record structure in the class Power Flow shown in Figure

3.2. Power Flow is a record having a single attribute: a replaceable record PowerFlow .

A replaceable condition allows the user having many power flow results for the same model

(see Figure 3.4a).

The main idea behind the proposed nested structure is that, by setting the value of

PowerFlow, the user changes all the power flow variables at once. So, a model has a unique

Power Flow record whose power flow attribute is replaceable.

PowerFlow has four attributes, which are also records themselves: a record for bus

voltages and angles (Bus Data), another for transformer tap positions (Trafos Data), a

third one for active and reactive power consumption (Load Data), and a fourth record for

machine power dispatch (Machines Data). Naturally, the number of variables inside each

of these internal records depends on each particular power system model. For each record

type, the variables are specified by the partial record templates called Bus Template,

Trafos Template, Machines Template, and Loads Template, respectively.

The numerical results are written by a parser function that translates the power flow

result from a GridCal model computation into a format compatible with the Modelica record

structure. This function is called gridcal2rec. gridcal2rec creates a PowerFlow instance
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Source Code 3.1: Creation of the records structure.

1 from pf2rec import *

2 import os

3

4 # Current working directory

5 _wd = os.getcwd()

6 _model_package = 'SMIB'

7

8 # Path to the model package directory

9 data_path = os.path.join(_wd, _model_package)

10 data_path = os.path.abspath(data_path)

11

12 path_mo = os.path.join(data_path,

13 'SMIB_Base_case.mo')

14 path_mo = os.path.abspath(path_mo)

15

16 # Creating records structure

17 create_pf_records(_model_package, path_mo,

18 data_path,

19 openipsl_version = '2.0.0')

placed inside PF_Data , whose attributes are four record instances: Bus Data, Trafos Data,

Machines Data, and Loads Data.

3.4 Computing and Linking PF Records

This section describes how the records structure, illustrated previously, can be

successfully applied to grid models of different sizes.

3.4.1 Creation of Records Structure

A user can integrate our proposed power flow structure into any existing OpenIPSL

model using the code contained within the pf2rec library (available on GitHub). The

records structure is instantiated by the create_pf_records function. Listing 3.1 presents

a minimal example of creating a power flow record for the Single Machine Infinite Bus (SMIB)

system.
Note that the content of the Modelica model is saved within several *.mo files. This

practice is encouraged since it allows to increase the complexity of the data layer of the model.
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As supplementary material to this chapter, we provide a tutorial4 showing the step-by-step

construction of the SMIB system, the corresponding power flow records integration, and

computation using GridCal.

The four arguments that we pass to create pf records are the name of the containing

package ( _model_package ), the path to the *.mo file where the model is declared

( path_mo ), the path to the containing folder of the model package ( data_path ), and the

OpenIPSL library version on which the model has been developed ( _version ). Here, the

paths are constructed as absolute references thanks to the os library. Such a workaround is

recommended to avoid any path problems since the records instantiation involves file/folder

creation. The script places all the power flow record *.mo files inside a new directory called

PF_Data . PF_Data is also added to the package.order file of the root package. In this

way, the record structure is loaded with the model automatically. Once the power flow

is created, the data structure in Figure 3.1 is shown as a nested subpackage, illustrated in

Figure 3.3.

Figure 3.3: Power flow record structure as a nested subpackage in the model
structure.

3.4.2 Power Flow Computation with GridCal

GridCal is a Python-based object-oriented software for the computation of power flow

results. An example of using GridCal to compute power flow and Python to write the

power flow solution into record is shown in Listing 3.2. In this case, a PSS®E *.raw

file containing the static model information is translated into a GridCal object using the

built-in parser class FileOpen. The *.raw contains the static model of the network, which

is required for any power flow formulation. The *.raw parser allows us to benchmark the

performance of GridCal against PSS®E in terms of power flow result accuracy. Furthermore,

4https://github.com/ALSETLab/SMIB Tutorial/ and https://youtu.be/4qfKw9SAXFY.

https://github.com/ALSETLab/SMIB_Tutorial/
https://youtu.be/4qfKw9SAXFY
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this feature reduces the cost of migrating a model from PSS®E to OpenIPSL since the user

could initialize both models from the same *.raw file. However, the user can define their

own grid models from scratch. The reader is referred to the GridCal documentation for

network implementation examples.

After creating the grid object via the parser class, an instance of the PowerFlowDriver

is declared: pf. pf is responsible for carrying out the power flow computation following

user-specified settings (options). Recall from Equation (3.6) that the method for a power

flow computation is constrained by the grid topology (i.e., the matrix J (x)). Therefore,

the grid object must be passed to the PowerFlowDriver constructor method for any power

flow computation. The PSS®E *.raw file can store up to one power flow result. We

take advantage of this fact and use that power flow as an initialization value for a base-case

power flow computation in GridCal. The result of this base case should be the same power

flow (within the solver’s tolerance) as the one included in the PSS®E file. The power flow

calculation is commanded by invoking the function pf.run(). The results are stored as an

attribute of the PowerFlowDriver class.

Finally, the function gridcal2rec takes the grid information and the power flow driver

information and writes the results as Modelica records, following the structure described

in Section 3.3. The new files are placed within the PF_Data subfolder, housing the

power flow record structure. They are also written automatically inside the corresponding

package.order file to become available to the user right after the computation is completed.

The function gridcal2rec can be included in automation loops to perform a time series

power flow. The resulting output is shown in Figure 3.4a.

In Figure 3.4b one can notice how the power flow condition, defining several variables

in a model, can be set either from the graphical interface or by redeclaring a single parameter

in the text layer. To the authors’ best knowledge, such a feature is not typically available in

commercial power system software for dynamics. However, we can easily incorporate it into

OpenIPSL models by exploiting the flexibility of object-oriented structure of the Modelica

language.
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Source Code 3.2: Generation of power flow result using GridCal (PSS®E file
input).

1 _wd = os.getcwd() # working directory

2 _model_package = 'SMIB'

3

4 # Path to the model package directory

5 data_path = os.path.join(_wd, _model_package)

6 data_path = os.path.abspath(data_path)

7

8 # Path to the PSSE `.raw` file

9 psse_raw_path = os.path.join(data_path, "PSSE_Files",

10 "SMIB_Base_Case.raw")

11 psse_raw_path = os.path.abspath(psse_raw_path)

12

13 # Grid model in GridCal

14 file_handler = FileOpen(psse_raw_path)

15

16 # Creating grid object and setting options

17 grid = file_handler.open()

18 options = PowerFlowOptions(SolverType.NR,

19 verbose = True,

20 initialize_with_existing_solution = False,

21 multi_core = False,

22 tolerance = 1e-6,

23 max_iter = 99,

24 control_q = ReactivePowerControlMode.Direct)

25

26 pf = PowerFlowDriver(grid, options)

27 pf.run()

28

29 # Writing power flow results in records

30 gridcal2rec(grid = grid, pf = pf, model_name = 'SMIB',

31 data_path = data_path,

32 pf_num = 0,

33 export_pf_results = False)
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(a) Multiple power flows within an OpenIPSL
model.

(b) Informative annotations to assist the user link
the record attributes to the model correctly.

Figure 3.4: Graphical interface of the records structure in Dymola.

A possible difficulty of our power flow generation tool is that the user must connect

the power flow parameters in each device to the record manually. After several attempts,

we noticed that it depended on how the user constructed a particular model, which is

unpredictable. However, we included informative annotations in the record attributes to

link the initialization values (see Figure 3.4b) correctly.

Despite this caveat, referencing of the power flow variables to the record must be done

only once. Afterwards, the user must change the Powerflow attribute, not the record itself.

Since the references point to the record on the top layer, they remain unchanged. A detailed

example of this process in the tutorial5 accompanying this chapter.

5https://youtu.be/RMD8WEOi6r4.

https://youtu.be/RMD8WEOi6r4
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3.4.3 Scalability for Larger Models

We validated our approach in several systems of different number of buses (that

defines the scale of the power flow problem) and of state variables (that defines the size

of the complexity of dynamic simulation problem). Table 3.1 and Figure 3.5 summarize the

characteristics of the benchmarked systems and illustrate the tool’s performance in terms of

execution time for record generation and power flow computation. The results correspond to

the best scenario over 100 repetitions with 100 loops each. All models are available within

the Application Examples of OpenIPSL.

Table 3.1: Scalability results on different systems.

System
(Buses)

Number of Variables
Avg. Execution Time

(over 100 loops)

Algebraic State Record
Power Flow
Computation

SMIB
(4)

99 9
4.08 ms
± 255 µs

31.6 ms
± 1 ms

IEEE 9
(9)

241 29
7.29 ms
± 287 µs

35.5 ms
± 1.55 ms

Kundur
Two Areas

(11)
244 20

5.07 ms
± 194 µs

37.4 ms
± 1.01 ms

AVRI
(14)

16 233
5.77 ms
± 144 µs

35.9 ms
± 1.17 ms

Nordic 44
(44)

1294 6315
55.2ms
± 874 µs

349 ms
± 12.8 ms

The Record creation (RC) process is 5–7x faster than the power flow computation, as

expected6. Both procedures scale up with the number of algebraic variables, directly related

to the dimensionality of the power flow problem. Notice that increase in execution time to

generate the records shows an exponential trend with respect to the size of the power flow

problem (Figure 3.6), as expected.

6The experiments were performed on an Intel Core i5 Quad-Core (2.0 GHz) processor, with 16 GB RAM
DDR4 memory.
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Figure 3.5: Execution time for record creation and power flow computation.
Observe that the results for the N44 are presented on a different scale.

Figure 3.6: Exponential increase in execution time as a function of the number
of algebraic variables in the model for the RC.
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Table 3.2: Power Flow comparison between PSS®E and GridCal.

System Bus

Voltage Power

Magnitude [pu] Absolute
Error

Angle [deg] Absolute
Error

P [MW] Absolute
Error

Q [MVar] Absolute
ErrorPSS®E GridCal PSS®E GridCal PSS®E GridCal PSS®E GridCal

SMIB
1 1.0000 1.0000 -9.99×10−16 4.04628 4.04627 -2.24×10−6 40.000 40.000 0.00000 5.417 5.417 3.66×10−8

2 1.0000 1.0000 0.00000 0.00000 0.00000 0.00000 10.017 10.017 5.63×10−6 8.007 8.007 3.83×10−8

IEEE9
1 1.0400 1.0400 0.00000 0.00000 0.00000 0.00000 71.613 71.613 1.11×10−5 25.592 25.592 4.12×10−6

2 1.0300 1.0300 0.00000 9.18220 9.18219 -4.36×10−6 163.000 163.000 0.00000 8.925 8.925 -3.69×10−6

3 1.0250 1.0250 0.00000 4.64766 4.64766 -2.20×10−6 85.000 85.000 0.00000 -12.503 -12.503 -1.23×10−5

Two
Areas

1 1.0300 1.0300 0.00000 27.07087 27.07086 -7.19×10−6 700.000 700.000 0.00000 185.035 185.035 -2.56×10−5

2 1.0100 1.0100 0.00000 17.30648 17.30647 -7.33×10−6 700.000 700.000 0.00000 234.624 234.624 -2.10×10−5

3 1.0300 1.0300 0.00000 0.00000 0.00000 0.00000 719.095 719.095 -2.58×10−5 176.040 176.040 2.24×10−5

4 1.0100 1.0100 -9.99×10−15 -10.19216 -10.19215 1.09×10−5 700.000 700.000 0.00000 202.114 202.114 -4.49×10−5

AVRI
1 1.0500 1.0500 0.00000 0.00000 0.00000 0.00000 -100.000 -100.000 0.00000 41.391 41.391 -4.25×10−6

8 1.0500 1.0500 0.00000 47.01978 47.01976 -1.89×10−5 50.000 50.000 0.00000 19.795 19.795 -7.89×10−7

12 1.0500 1.0500 0.00000 43.26172 43.26170 -2.11×10−5 50.000 50.000 0.00000 21.916 21.916 -4.04×10−6

N44

3115 1.0000 1.0000 0.00000 -13.59220 -13.59220 1.12×10−6 1114.875 1114.875 0.00000 -395.702 -395.702 1.37×10−5

6000 1.0050 1.0050 0.00000 -18.37864 -18.37864 -2.86×10−6 1010.808 1010.808 0.00000 -400.800 -400.780 1.97×10−2

6500 1.0000 1.0000 0.00000 -25.88593 -25.88593 -3.62×10−6 1093.284 1093.284 0.00000 882.375 882.375 -1.36×10−4

8500 1.0200 1.0200 -9.99×10−15 -5.72443 -5.72443 5.95×10−7 1952.664 1952.664 0.00000 596.683 596.683 2.58×10−4

3.4.4 Result Validation with PSS®E

The validation against PSS®E of the power flow results obtained using GridCal has

been performed on several test systems. In Table 3.2, a list of the tested networks is given.

For each of the networks some buses have been selected indicating their voltage magnitude

and angle, the injected/absorbed active and reactive powers of the generating units connected

to the corresponding node. Those power flow results are compared with the corresponding

calculations obtained from PSS®E including evaluation of an absolute error between the

evaluated power flow and reference PSS®E power flow. The power flow values match with

low tolerance errors that in some cases hit the machine precision. This shows the validity of

the proposed approach of power flow calculation using GridCal.

3.5 Conclusions

This chapter presented an approach to form a record-based data structure to handle

power flow starting guesses for a dynamic simulation using the phasor-domain OpenIPSL

library. A power flow computation, performed before running a phasor-domain simulation,

specifies the starting equilibrium of the nonlinear system simulation. The record class

architecture benefits directly from the object-oriented paradigm of the Modelica language,

allowing management of all power flow variables from a single attribute in the model, a

feature not common in specialized proprietary power system tools. Such structure can be

extrapolated to other open-source Modelica-based power system libraries.

We provide a Python script to create the structure for any existing OpenIPSL model
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built on versions 1.5.0 or 2.0.0, in this way, naturally expanding capabilities of the library

to perform dynamic simulations for different power flow initial conditions. The power flow

record instances can be populated by an open-source Python library called GridCal, capable

of producing numerically the same results as PSS®E for power flow computations. We also

introduce a script to convert the GridCal power flow results to records directly.

From our perspective, the proposed methodology can be useful for users of existing

OpenIPSL models, especially for those who study the behavior of the models under different

power flow conditions. However, for large scale models the user would have to spend

significant time linking the power flow variables to the record. To avoid the aforementioned

issue, a model translation tool that translates the information from PSS®E *.dyr and

*.raw files into OpenIPSL *.mo models is currently under development. The tool will

include the proposed record structure in this chapter by default. In that case, the power

flow variables will point to the record automatically. This will be a key advantage in helping

power system analysts with the potential adoption and transition to Modelica-based tools.



CHAPTER 4

SCENARIO GENERATION FOR SMALL-SIGNAL STABILITY

ASSESSMENT VIA MACHINE LEARNING

4.1 Introduction

Simulation tools are broadly used to gain insight into current and future operating

conditions of the grid. Despite this, due to the vast number of variables and the ubiquitous

uncertainty of modern networks, the amount of scenarios that need to be considered by a

human operator in simulation-based studies is exponentially large. In this situation, a need

arises not only to automate the simulation procedure (to massively generate data) but also

to simplify data interpretation. For the former, Python-based solutions have been gaining

popularity in almost all engineering fields by providing simple automation solutions (see [38]

for an application example in power grids).

Regarding data interpretation, ML techniques are powerful statistical methods that

can be used, for example, to extract information from large sets of data [39]. In special,

DL is a particular family of ML techniques that employ Neural Networks (NNs) as building

blocks. Both ML and DL solutions have been recently applied in power systems for the

classification of events from Phasor Measurement Unit (PMU) data [40], [41], voltage

stability [42]–[44], and dynamic security assessment [45], among others. ML and DL solutions

have been recently applied in power systems for the enhancement and evaluation of small-

signal stability. For example, the work of [46] performs coordinated tuning of Power System

Stabilizer (PSS) parameters using heuristic optimization algorithms. Likewise, in [47] a

cuckoo search is employed to find optimal PSS parameters that guarantee small-signal

stability. Regarding NNs, in [48] the parameters of a unified power flow controller are tuned

via a NN whose weights are optimized using Levenberg-Marquardt optimization.

On the other hand, within several well-established stability techniques, small-signal

Portions of this chapter appear in S. A. Dorado-Rojas, M. de Castro Fernandes, and L. Vanfretti,
“Synthetic Training Data Generation for ML-based Small-Signal Stability Assessment,” presented at the
2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm) [8], and in the corresponding tutorial of the SmartGridComm conference [37].

37
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analysis quantifies the effects of small disturbances in a given power system. Such small-

scale perturbations can lead to large instabilities if specific modes of the system are excited.

Traditionally, oscillations are studied by obtaining a linear model of the power system around

a stable equilibrium point and evaluating the eigenvalues of this model. Alternatively,

eigenvalues can be determined from time-domain measurements or simulation data via

traditional signal processing and system identification algorithms [49].

Once the eigenvalues describing a particular small-signal scenario are available, its

classification in pre-established categories is straightforward. In fact, given the set of

dominant eigenvalues λi of the system in a particular contingency scenario, the operational

state may be assessed by computing the damping ratio ζi for each eigenvalue λi. Hence,

ζ represents a metric that can be used to define a 100%-accurate classifier to categorize

contingency scenarios (ζ-classifier).

Furthermore, the most challenging step from the computational point of view is the

state matrix computation rather than the damping ratio calculation, especially if the former

is done numerically instead of analytically [50]. Despite this, a system identification-based

method is preferred when working with measurements, as it will be more accurate at

evaluating the system’s condition. A valid question, however, would be if an alternative

ML solution could be used to bypass the system identification step while producing more

computationally efficient solutions. For this alternative to be practically significant, the ML

solution should be accurate enough at both learning the linear system representation and

evaluating the system condition from eigenvalues. This chapter focuses on the latter issue

and explores the small-signal stability assessment accuracy of several ML techniques.

This chapter takes the challenge to generate massively contingency data and to

automate small-signal stability computation by ML methods. The contribution of this work

is as follows:

• we propose a simple ad-hoc Monte Carlo sampling technique to generate numerous

contingency scenarios for a given power system model. Then, each scenario is simulated

in a Modelica-based environment to obtain labeled big data for ML training;

• we use the generated big data to train several conventional ML algorithms (logistic

and softmax regression, support vector machines, k-nearest Neighbors, Näıve Bayes

and decision trees), and a deep learning NN to classify the operating condition of a
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power system after a contingency (i.e., one or more line trips) based on a small-signal

stability metric;

• we propose an evaluation metric as a guideline for the selection of the best classifier in

terms of its performance.

We verify that once trained, the ML approaches produce results as accurate as the

damping ratio-based classifier, which is implemented in Python using NumPy in a vectorized

fashion (ζ classifier). Moreover, almost all ML solutions take a lower amount of prediction

time than the hard-coded domain-specific algorithm to classify operation scenarios. This

is desirable for deploying a trained solution inside an online or near real-time application.

In particular, the trained NN shows 120x faster prediction time than the damping ratio

classifier with an accuracy above 95%.

An important contribution of the chapter concerns the approach for massive data

generation. The information required for a linear analysis (that is, the A,B,C,D matrices

of a linear state-space representation) is obtained through a routine implemented in Dymola,

a Modelica-compliant modeling and simulation environment. We take advantage of this built-

in functionality to linearize a nonlinear dynamic power system model around an equilibrium

point. By doing so, it is possible to perform a small-signal analysis for a vast quantity of

scenarios in a power system using a model constructed using the OpenIPSL [15], a library for

phasor time-domain analysis in Modelica. Each scenario is generated by a two-stage Monte

Carlo sampling procedure that takes into account the topology of the system as described

in Section 4.3.

By automating Dymola linearization with Python [51], a vast amount of data is

generated for several grid conditions with different small disturbances in the form of

contingencies. Such an intensive simulation-based data generation approach has been

recently used in other power system studies such as transmission planning as well [52].

In this case, the data is employed to train an automatic classifier such as an ML algorithm

to evaluate small-signal condition of the system. The complete code used for this work is

available on GitHub1.

This chapter is organized as follows: in Section 4.2 we present a brief overview of

small-signal analysis and how eigenvalues can be classified. The test power system and the

1https://github.com/ALSETLab/Synthetic Data Generation ML Small Signal

https://github.com/ALSETLab/Synthetic_Data_Generation_ML_Small_Signal
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data generation procedure are outlined in Section 4.3. Section 4.4 describes and presents

the proposed Neural Network architecture, the results of its training procedure, and its

performance after being deployed. Finally, Section 4.6 concludes the work.

4.2 Foundations of Small-Signal Analysis

Consider a generic representation of a power system, ignoring discrete events such as

limiters or protections, with m inputs, p outputs and n states, whose state-space is described

by ẋ = f (x,u, t), and y = g (x,u, t) where x ∈ Rn×1 is the state vector, u ∈ Rm×1 is the

vector of m inputs to the system, and f ∈ Rn×1, g ∈ Rp×1 are two nonlinear C∞ functions.

If time dependence is implicit (i.e., time does not appear explicitly in the system equations),

we have

ẋ = f (x,u)

y = g (x,u) .
(4.1)

For the system in Eq. (4.1), an equilibrium exists whenever the state derivatives are

zero (ẋ = 0). At a given equilibrium point (x0,u0), we have f (x0,u0) = 0. Now, we

analyze the situation where the system is in equilibrium and a small disturbance occurs.

The disturbance brings the system to a new state. The dynamics at the new operating point

take the form

˙̃x = f (x̃, ũ) = f (x0 +∆x,u0 +∆u)

ỹ = g (x̃, ũ) = g (x0 +∆x,u0 +∆u) .
(4.2)

If the disturbance under consideration is small enough2, we can perform a Taylor

Series expansion around an equilibrium point for both functions f and g to obtain a linear

representation of the nonlinear system. This can be achieved by a first-order Taylor Series

truncation neglecting all terms of order larger than one, thus keeping only the matrix of

first-order derivatives (Jacobian linearization). An application of this formula to the system

in Eq. (4.1) leads us to

∆ẋ = A∆x+B∆u

∆y = C∆x+D∆u
(4.3)

2This means that the region of convergence of the Taylor Series corresponds to a non-empty set in the
neighborhood of the equilibrium point.
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Figure 4.1: Damping factor depending on different eigenvalue locations on the
complex plane.

where A := ∂f/∂x, B := ∂f/∂u, C := ∂g/∂x and D := ∂g/∂u. Note that the system

representation in Eq. (4.3) corresponds to a state-space realization of a Linear Time-Invariant

system that can be analyzed using linear methods.

Linear analysis techniques can be employed to quantify system behavior after a small

disturbance (hence the name small-signal) such as tripping of a given line. System modes

of a linear system are completely specified by the eigenvalues of the system matrix A. For

the ith eigenvalue λi with algebraic multiplicity ni, the associated ni modes are c̄it
keλit

for k = 0, 1, . . . , ni − 1, with c̄i ∈ C. The characteristic of the mode associated to a

single eigenvalue can be completely described by a single metric known as damping factor

or damping ratio ζ. As shown in Figure 4.13 , the damping factor determines uniquely the

characteristics of the system mode associated with a particular eigenvalue.
3Since we are using Lyapunov’s first method for the nonlinear system in Eq. (4.1), no conclusion regarding

equilibrium stability can be drawn if the A matrix is not Hurwitz (i.e., ζ ≤ 0).
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Table 4.1: Damping factor of an eigenvalue and associated response nature [53].

Damping Factor Response Nature

ζ < 0 System (might be) unstable
ζ = 0 System (might be) oscillatory

0 < ζ < 1 Underdamped Response
ζ = 1 Critically Damped Response
ζ > 1 Overdamped Response

Thanks to the characteristics of the damping factor as a discriminative scalar metric

(see Table 4.1), it is possible to categorize eigenvalues based on ζ such that each of the

classification groups represents a state of an electric grid if the corresponding eigenvalue is

linked to a dominant mode. This automatic labeling can help learn the stability condition

of a power system.

4.3 Scenario Sampling for Data Generation

The IEEE 14 bus network is used as a test bench to generate large-scale data for

NN training by systematically applying contingencies and collecting simulation data. This

system, which is shown again in Figure 4.2, counts with 5 generators, 16 lines and 4

transformers. In summary, there are 20 branch elements in the system, all of them having

an impedance in the corresponding power system model.

If the branch impedance value Xi of one of these element models is made large

enough, we would have emulated a line opening in the system without actually removing the

component. In fact, by letting Xi ≈ 1012 we do not alter the topology of the grid (and do

not change the number of states nor the size of the A matrix) but we effectively “apply” a

contingency to the system which is equal to disconnecting the branch.

Considering that each of the 20 branch elements can be tripped, there exist 20 possible

scenarios that can help to evaluate the disconnection of a single element. Likewise, if two

branches are opened simultaneously, 190 possible scenarios can be tested by selecting all

branches pairwise. In general, letting n being the total number of branches, and k the number

of simultaneous disconnections, the amount of possible scenarios with this contingency

configuration is given by

Sn,k =
n!

(n− k)!k!
. (4.4)
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Figure 4.2: IEEE 14 nodes test system.

For this study, there is no need to consider all lines being opened at the same time

since it is not physically significant. Hence, a maximum of kmax = n− 1 = 19 simultaneous

disconnections is considered. In addition, note that kmin = 1. Thus, it is possible to calculate

the total amount of possible scenarios as

T =
kmax∑
kmin

S20,k =
19∑
k=1

20!

(20− k)!k!
= 1, 048, 574. (4.5)

From the total amount of possible scenarios, T , it is necessary to select a subset of

events with physical significance. To address this issue, an ad-hoc Monte Carlo method,

consisting of a two-stage sampling procedure to select scenarios, is proposed. In the first

stage, the number of lines that will be opened is selected. Here, it is necessary to find

a probability distribution that reflects the fact that scenarios with a smaller number of

events are more likely to occur and, therefore, should be more likely to be selected. To

take this constraint into account, a modified Poisson distribution is proposed, giving larger

probabilities to smaller values of k. The Probability Density Function (PDF), is illustrated

in Figure 4.3 is defined as:
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Figure 4.3: Probability distribution function for the number of lines to be
opened for contingency generation.

p(k) =
1

k!
∑19

n=1
1
n!

≈ 1

k!(e− 1)
, (4.6)

where e is Euler’s number. Once the number of lines is fixed, the second stage starts, and

one scenario is selected from the pool of all possible combinations with the specified number

of contingencies. Thanks to this ad-hoc method, 20,000 different simulation scenarios are

generated.

Once a simulation scenario has been selected, the corresponding branches in the system

model in Dymola are disconnected. Dymola’s built-in function linearizeModel is used to

extract the state matrix and the eigenvalues for each scenario. This process is automated in

Python using the so-called PDI [51], that allows combining the simulation power of Dymola

with Python capabilities for a variety of purposes. The usage of PDI also allows several

robust ML development libraries, such as scikit-learn and TensorFlow, to be used to

train classifying ML/DL solutions from the significant amount of data produced by massive

simulations.
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Figure 4.4: Distribution of raw eigenvalues in the complex plane.

4.4 ML Algorithm Design, Training and Performance

In this section, we briefly describe the different steps carried out to design the ML/DL

algorithms employed to classify the different contingency scenarios into pre-established

categories.

– Step 1 - Data Generation: we use 20,000 scenarios of the IEEE 14 bus system

to generate eigenvalue data. Dymola succeeded in linearizing 19,815 of those scenarios.

Since each one is associated with 49 eigenvalues, a total number of 970,935 eigenvalues was

produced. An overview of the generated eigenvalues is shown in Figure 4.4.

– Step 2 - Data Preprocessing: the raw data obtained from simulations is organized

and labeled (i.e., by manually classifying the eigenvalues, computing the damping ratio and

tagging them according to the pre-defined categories below, what we refer to as hard-coded

classifier). Each eigenvalue is classified within one of six categories (Figure 4.5) that are

defined as follows:

1. Unstable (ζ < 0): if an eigenvalue lies on the right-half plane.

2. Stable but critical condition (0 ≤ ζ < 0.05): the eigenvalue is stable or it is

oscillatory (so no conclusion can be drawn about the stability of the system). This
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is a condition for which an action of the system controls is required since a small

disturbance can lead to instabilities and/or heavy oscillatory modes in the system.

3. Acceptable condition within operating limits (0.05 < ζ < 0.1): in this case, the

damping of the system is large enough to handle and tolerate a small-disturbance. As

a consequence, the operation of the system is labeled as acceptable.

4. Good operating condition (0.1 ≤ ζ < 1): for this scenario, the damping ratio is

larger than 10% and the response will show some oscillation due to the underdamped

nature of the corresponding eigenvalue.

5. Satisfactory operating condition (ζ > 1.1): this category gathers real eigenvalues

whose overdamped response is satisfactory in terms of oscillations. Normally, these

eigenvalues are not dominant. Hence, they do not impose its dynamics on system

response.

6. Irrelevant (eigenvalue at the origin or close to it): category that groups the

eigenvalues that are at the origin or close to it (within a neighborhood of radius 0.2).

They mostly represent integral relationships between state variables (e.g., between ω

and δ).

In the pre-processing stage, the eigenvalues whose magnitude is magnitude larger than

one are normalized (Figure 4.6). All λi-s lying inside the unit circle are not touched since

the information they convey regarding the stability boundary of the system would be lost.

– Step 3 - Model Design, Training and Evaluation: we evaluated both classical ML

techniques for classification as well as a fully-connected NN. The selected supervised ML

algorithms are multi-class logistic regression (LogReg), softmax regression (SoftmaxReg),

linear support vector machines (SVM), k-nearest neighbors (k-NN), Näıve Bayes and decision

trees.
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Figure 4.5: Regions of each classification category on the complex plane.

Figure 4.6: Distribution of normalized eigenvalues in the complex plane.

The reader is referred to [39] for an in-depth explanation of each ML algorithm. We

will put special attention to the NN design since it is the best performing method among all

ML/DL techniques considered in this study.
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The proposed NN architecture is presented in Figure 4.7. It consists of six fully-

connected layers, four of them with learning parameters. Two dropout layers are added to

reduce overfitting and improve generalization performance. The input layer and the two

hidden layers employ a rectified linear unit (ReLU) unit as an activation function. Since this

is a multi-class classification problem, a softmax function is suitable as an output activation.

Figure 4.7: NN architecture.

Let m be the number of training samples in a batch. The input feature matrix will be

Xm×2. Then,

H[1] = ReLU
(
XW[1] + b[1]

)
D[1] = dropout

(
H[1]

)
H[2] = ReLU

(
D[1]W[2] + b[2]

)
D[2] = dropout

(
H[2]

)
H[3] = ReLU

(
D[2]W[3] + b[3]

)
Y = σM

(
H[3]W[4] + b[4]

)
T = argmax (Y)

(4.7)

where the hidden states are described by the matrices H[1], H[2], H[3] ∈ Rm×100, σM
(
Z[4]
)
∈

Rm×5 with Z[4] := H[3]W[4] + b[4]. D[1] and D[2] are the outputs of the dropout layers (not

trainable). The weights and biases are W[1] ∈ R2×100, W[2] ∈ R100×100, W[3] ∈ R100×100,

W[4] ∈ R100×5, b[1], b[2], b[3] ∈ R100×1, and b[4] ∈ R5×1. Y ∈ Rm×5 is a matrix whose mth
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column contains the probability of each of the m inputs belonging to each category. Finally,

T is a matrix whose mth vector has a 1-entry at the position corresponding to the class with

the highest probability and zero everywhere else.

The loss function is a cross-entropy function defined minibatch-wise as ℓm =

− 1
m

∑5
i=1 log yi where yi is the ith component of the mth column of Y. Finally, the total loss

is computed by adding the individual losses per minibatch as L =
∑

<m> ℓm. The weights

and biases are learned by minimizing the loss function L. The solution of this complex

optimization problem is carried out by the specialized Python library TensorFlow. The

behavior of the loss function per learning epoch can be detailed in Figure 4.8, together with

the results of training and testing accuracy. The number of epochs is set to 50 to get the

final values of testing (97.79%) and training (98.60%) accuracies before deploying the NN.

Figure 4.8: Loss function value, training and testing accuracy per training
epoch.

Note that the damping ratio computation is required for creating the labels for each

category (what we call a hard-coded classifier) but not for the training process. In particular,

the NN may learn the damping ratio representation of the eigenvalues in some hidden layers

if it is useful for the classification task itself.
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Finally, after training the NN is evaluated on the validation set. The results of the

prediction for all methods can be found in the GitHub repository, together with more

visualization of the predictions. The accuracy on the validation stage for the NN was of

93.36%. In Figure 4.9, it can be seen that the NN learns effectively the highly nonlinear

decision boundaries that separate each classification group in the complex plane since the

predicted labels (right) are almost the same for all cases to the ground-truth (left). The

most pronounced discrepancy is the misclassification of few ’good’ instances as ’critical’

eigenvalues (close to Re{s} = −0.2).

Figure 4.9: Ground truth and prediction results for the trained NN.

To quantify the performance and benchmark the different algorithms against each

other, a simple numerical score was defined. Let tex be a vector containing the prediction

time for every algorithm. atrain and atest, ptrain and ptest, and rtrain and rtrain are vectors

containing the information about accuracy, precision and recall for the training and testing

set, respectively. Then, the score for the ith algorithm is given by:

s[i] = 0.4

(
min (tex)

t
(i)
ex

)

+ 0.2

[
1

3

(
atrain

max (atrain)
+

ptrain

max (ptrain)
+

rtrain
max (rtrain)

)]
+ 0.4

[
1

3

(
atest

max (atest)
+

ptest

max (ptest)
+

rtest
max (rtest)

)] (4.8)
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This score benefits the method with the minimum execution time which maximizes

training and testing accuracy. For this reason, k-NN has a poor score despite its high

accuracy, precision and recall performance. Testing has a higher weight than training on the

final score since the algorithm is exposed to new instances, and therefore this number is a

better indicator of generalization. The results for each method are presented in Table 4.2

where the accuracy, precision and recall are computed on the testing set.

Table 4.2: Performance metrics and score for ML/DL classifiers.

Method tpred Acc Prec Rcl Score

ζ classifier 5.477 s 100% 100% 100% 0.6032
LogReg 0.058 s 78.20% 64.09% 79.07% 0.7671

SoftmaxReg 0.054 s 78.10% 68.22% 83.02% 0.8067
Linear SVM 0.051 s 67.79% 41.61% 36.82% 0.6228

k-NN 33.027 s 99.83% 99.68% 99.92% 0.5997
Näıve Bayes 0.255 s 97.11% 86.42% 93.93% 0.6091
Decision Trees 0.057 s 98.93% 93.44% 96.19% 0.8933

NNs 0.045 s 98.53% 92.49% 95.90% 0.9750

4.5 Scalability

The proposed method to generate contingency scenarios can be scaled to deal with

larger systems both in terms of buses (BUS) and number of states (STA) and variables

(VAR). Note that for line openings, the maximum number of scenarios (SC) depends on the

number of branches in the model (either transmission lines or transformers, written as BR

in Table 4.3).

Systems with more than 30 branches (such as the Nordic 44) were constrained to have

a maximum of five simultaneous contingencies (i.e., so that N − 5 is considered) to avoid

sampling of unrealistic scenarios. Table 4.3 illustrates how the number of scenarios increases

for different systems along with the estimated contingency pool generation time or execution

time of the program (ET). This scalability benchmark was performed on a Ubuntu 18.04.5

LTS machine with a AMD Epyc 7601 32-core processor and 512 GB of RAM.
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Table 4.3: Scalability of scenario generation for several systems.

System BUS STA VAR BR SC ET

IEEE 9 9 24 203 9 510 0.0348 s
Seven Bus 7 132 678 18 262,142 0.0781 s
IEEE 14 14 49 426 20 1,048,574 0.3038 s
N44 44 1294 6315 79 24,122,225 5.5966 s

The effect of constraining the number of lines that can be simultaneously opened in

a scenario not only enhances the practical significance of the method but also increases

the computational efficiency when working with large systems for dynamical studies. In

Figure 4.10a we see that the execution time grows exponentially as the number of branches

increases requiring several minutes for a system with ≈ 30 branches. This number can

represent relatively low interconnected grid models. Thus, we see that the method requires

an adjustment for dealing with large-scale highly-interconnected systems.

By setting an upper bound on the number of maximum simultaneous contingencies,

the execution time diminishes (from minutes to seconds) since the number of possible

combinations is truncated. However, the number of scenarios is still significant: around

20 million for a system with ≈ 80 branches which can be obtained in less than 10 seconds.

This suggests that working with larger grids would need to limit further the number of

simultaneous trippings.

It must be stressed that the total amount of contingencies constitutes the sampling

pool for the second stage of the proposed algorithm. The larger the pool is, the faster the

method samples an arbitrary number of scenarios. It is clear that a larger scenario pool will

ease the search for feasible contingency conditions.
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(a) Without constraining the number of simultaneous outages.

(b) With an upper bound on the number of simultaneous line
trippings.

Figure 4.10: Scalability of the contingency generation algorithm.
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4.6 Conclusions

Through this chapter, we have seen how several ML methods can be employed to

classify eigenvalues representing the behavior of a power system after the occurrence of a

contingency. In particular, a decision tree and a NN have shown to be almost as accurate

as a conventional classifier solution which computes the damping ratio for each eigenvalue

while predicting faster. In this example, a considerable number of scenarios were studied by

automating Modelica-based power system simulations thanks to the PDI. The use of the PDI

enabled to integrate the development of the ML to the power system simulation. The trained

NN showed classification performance above 95% for the testing data. This promising result

highlights the potential of ML methods for deployment in real-time intelligent power system

solutions.



CHAPTER 5

MODELICA GRID DATA: SOFTWARE TOOL FOR DATA

GENERATION TO DEVELOP MACHINE LEARNING

SOLUTIONS

5.1 Introduction

This chapter introduces ModelicaGridData: a data generation tool relying on massive

phasor time-domain Modelica simulations employing the OpenIPSL. ModelicaGridData

provides a pipeline to tackle the need for big data generation describing a broad range

of operating conditions and potential contingencies experienced by a power system. This

need is induced by the necessity to develop ML solutions, which depend on data-rich with

power system dynamic behavior. Such solutions are required for the safe integration of

renewable energies and the modernization of the aging infrastructure of the electric systems.

Successful application examples include ML-based automatic oscillation detection, real-

time small-signal stability assessment, and action recommender system developed using

ModelicaGridData’s input.

ModelicaGridData implements algorithms to process different types of input data,

perform steady state computations, run dynamic simulations and linear analysis routines,

and label the data sets. It provides means for data scraping to use actual real-world load

profiles from the publicly available information of a power system operator (see Chapter 3).

The load profiles are used to compute different starting power flow conditions to use in the

dynamic simulation of the models. The simulations are performed on several contingency

scenarios to extend the generated cases beyond the normal operating conditions prevailing

in most recorded power system measurements. The tool uses built-in functions within two

different Modelica IDEs to generate small-signal stability labels for each scenario. As a

sample application, labeling for small-signal stability assessment is automated, where labels

Portions of this chapter appear in S. A. Dorado-Rojas, F. Fachini, T. Bogodorova, G. Laera, M. de Castro
Fernandes, and L. Vanfretti, “ModelicaGridData: Massive Power System Simulation Data Generation and
Labeling Tool using Modelica and Python,” submitted to the journal SoftwareX in June 2022 [9].
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that correspond to the stability of the system are provided from linear analysis and nonlinear

simulation time series analysis.

The tool has been developed entirely in Python 3 and is compatible with the Modelica

IDEs, Dymola1 and OM2. In addition, it has been designed to work with OpenIPSL models

developed in versions 1.5.0 and 2.0.0. Moreover, it has been conceived as a cross-platform

tool compatible with Windows and Linux operating systems.

5.2 Motivation and significance

Electrical grids are considered worldwide as critical infrastructure. Given its complexity

and the limited opportunities to perform real-world experiments, model-based analysis has

become an established approach to studying their behavior. In particular, phasor time-

domain simulation models are designed to evaluate the grid response after the occurrence

of a disturbance (such as a fault or a line outage), accounting for the effects of the system

dynamics and the associated control systems. Dynamic simulation has become a ubiquitous

tool in assessing power system stability, developing grid expansion plans and interconnection

studies, performing root-cause analysis, and carrying out controller design and parameter

re-tuning.

Several proprietary and commercial tools (e.g., PSS®E, PowerWorld) and alternative

open-source software (e.g., Power System Analysis Toolbox (PSAT), Power System Toolbox

(PST), Symbolic Power System Modeling and Numerical Analysis Library (ANDES)) are

available for dynamic studies, with PSS®E being the most widely employed by utilities in

the United States and used by 140 countries according to its developer, establishing itself as

the de facto industry standard. In particular, in recent years, the OpenIPSL has emerged as

an alternative to commercial tools, with promising potential in education and research [15].

OpenIPSL exploits the equation-based object-oriented paradigm of the Modelica language to

represent phasor time-domain models. In contrast to other modeling alternatives for power

systems, OpenIPSL does not require a discretization of differential equations for simulation;

instead, the exact equation is used directly for modeling. Furthermore, in OpenIPSL 2.0.0,

most dynamical components have been cross-validated, using several Modelica-compliant

tools, against their PSS®E counterparts, yielding consistent results [5]. This capability

1See Dymola’s website.
2See OM’s website.

https://www.3ds.com/products-services/catia/products/dymola/
https://www.openmodelica.org/
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gives confidence to power industry specialists on the validity of results when using Modelica-

compliant tools, thereby reducing users’ resistance to change [54].

Given the fidelity of the results compared with PSS®E, OpenIPSL can be

appropriately used as a powerful simulation tool to generate data representing dynamics

in the phasor timescale. Data generation in power systems is highly relevant nowadays

as an essential aspect for developing ML solutions, necessary for the safe accommodation

of renewable resources and new technologies into the existing electrical grid infrastructure.

Despite the proliferation of PMU, several barriers for utilizing their data exits. For example,

non-disclosure agreements (NDAs) restrict the access of the public to the measurement

data3 [55]. Therefore, synthetic data generation approaches offer a vital source of synthetic

measurements and system information for the “data hungry” ML-based development

pipelines producing the ML solutions for the future power grid.

In power systems synthetic data generation solutions can be classified into two main

groups: statistical and simulation-based methods. On the one hand, several solutions use

available samples of actual PMU data (e.g., [56], [57]). The new data instances are generated

by matching the statistical properties of the input data to a parametrized probability

distribution. However, these approaches are constrained by the availability of PMU data, a

vast amount of which is recorded during normal operating conditions due to the resiliency

and robustness of power systems. Using these data to train ML model can lead to skewed

distribution towards normal operation, where the instances related to abnormal operating

conditions are not well represented (e.g., US power grid [58]).

An alternative to generating realistic data containing significant abnormal operating

conditions is to use an existing simulation model to recreate different operating

conditions. Special attention has been paid to developing synthetic models by learning

the topological features of a network (i.e., the interconnection of buses and lines) [59], [60].

ModelicaGridData exploits the availability of an existing (synthetic) power system model to

produce large-scale data. ModelicaGridData simulates a wide range of operating condition

using a validated model of a power system. This approach has the main advantage of

setting the grid condition for dynamic simulation to a realistic contingency scenario. The

tool allows to simulate network conditions that are not likely to be seen in the real world,

3While it is possible to collect data for medium- to long-term timescales such as daily and hourly load
and generation profiles (see, for instance, Open Power System data), data concerning transient power system
dynamics is normally disclosed due to electricity market clauses.

https://data.open-power-system-data.org/
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albeit feasible, and where the system dynamics play a major role. To complement real

system measurement with rarely occurred conditions, the developed software facilitates data

generation describing abnormal operating conditions enriching the synthetic datasets with

features of excited dynamics and, therefore, enable, potentially, to train ML models more

accurately using complete data.

5.3 Software description

ModelicaGridData is designed to generate massive data using dynamic simulations

of a Modelica power system model. Different scenarios are created by a) changing the

starting steady state condition (e.g., power flow) of a power system and b) setting a scenario

following an ad-hoc contingency scenario selection rule [8]. Contingency scenarios can also

be generated using a graph theory-based technique using statistical characteristics of a real

electrical grid [61]. After completing the simulations, the user can extract selected signals

from the system simulations under all scenarios, getting “labels” for each simulated condition

to perform small-signal stability assessment of the system.

ModelicaGridData allows the user to run the simulations on two different Modelica

IDEs: Dymola (proprietary) and OM (open-source). Considerable efforts have been made to

guarantee compatibility with OM, whose Python application program interface (API) is not

extensively documented as Dymola’s. Regardless of the selected tool, it has been found that

performance for power system simulation is similar between the Dymola and OM [6] IDEs.

Given the significant changes between OpenIPSL version 1.5.0 and 2.0.0, compatibility with

standard settings of OM is guaranteed in ModelicaGridData for OpenIPSL version 1.5.0

only. For simulations using Dymola, OpenIPSL versions 1.5.0 and 2.0.0 are supported.

The complete pipeline of the tool has been tested in Dymola 2021 and OM 1.16.2 on both

Windows 10 and Linux (Ubuntu 20.04 LTS) operating systems.

5.3.1 Software Architecture

The program is structured into five modules fully integrated into the back-end

(illustrated in Fig. 5.1), and an additional functionality whose use is shown through a Jupyter

Notebook (see Section 5.3.2.6). The high-level idea of the application is as follows: using the

New York Independent System Operator (NYISO) data (see Chapter 3), the profiles of the

loads in a given system are varied using realistic profiles ( nyiso ). Then, multi-snapshot
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Figure 5.1: Architecture of ModelicaGridData.

power flows are computed ( run_pf ) and used to provide an initial guess from where the

initial conditions of the dynamic model can be determined. The power flow data is loaded

into the Modelica-based dynamic model and provided to a Modelica-solver (Dymola or OM),

which solve the initialization problem (i.e. find the initial conditions for all dynamic states

and perform the dynamic simulations. Because there is no guarantee that a power flow

solution will lead to an equilibrium point of the dynamic model, each power flow result is

validated to confirm whether the dynamic simulation with no events is initializing flat or not

( val_pf ) (see Chapter 3). As a result, only the physically meaningful power flows are kept.

Then, the system under study is simulated under different initial conditions and contingency

scenarios ( run_pf ) to generate synthetic data. The simulation results, stored in *.mat files,

one per simulation, are then post-processed and organized into a single *.hdf5 file ( export )

containing all the results for a specific simulation batch.

Each of the five modules that comprise the Python back-end is listed below:

1. Load data scrapping to generate power flow scenarios with realistic data ( nyiso );
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2. Power flow computation using the downloaded load profiles ( run_pf );

3. Power flow validation ( val_pf );

4. Massive time-domain simulation including analytic/symbolic linearization-based

labels4 ( run_sim );

5. Time-series data extraction ( extract ).

The user can select a power system model among the available in the OpenIPSL

library, or add a grid model of their own using the models of power system components

in the OpenIPSL library and appending a corresponding PSS®E power flow model (*.raw

file). The *.raw model for the corresponding system must be added in the PSSE Files

sub-directory inside the ./models folder of ModelicaGridData. The power system models

included as examples are the IEEE 14 bus system (IEEE14), the Single Machine Infinite Bus

(SMIB), the IEEE 9 bus system (IEEE9), the Kundur Two Area system (TwoAreas), and the

three-machine voltage regulator test system (AVRI)5.

Once the power flow inputs are set, the steady-state computation is carried out by using

the open-source Python-based library GridCal. GridCal is a powerful power system package

for static computations. One of the important features of GridCal is that it provides native

support to parse PSS®E data files (i.e., *.raw files for power system power flow models,

while producing very similar power flow solutions with results up to the nonlinear algebraic

equation solver’s tolerance [7]. Then, the power flow solutions are validated using ( val_pf ),

the validation checks if the dynamic model can be initialized and if a dynamic simulation

results in a “flat” trajectory. If the validation is successful, the validated power flows are

incorporated as attributes that define initial guess values used in the phasor-based Modelica

model of the system selected by the user.

When the power flow conditions used as the starting point for the time domain

simulation are set, the next step to generate the data is to run different contingency scenarios

under several power flow conditions. The tool is designed to perform the simulations using

Modelica power system model using either the Dymola or OM Modelica tools via their

4The Modelica language profits from the equation-based modeling including the analytically evaluation
of the derivatives in the system state equations. These results are used for computing analytic linearization
to get a linear model explicitly from the derivatives. The module run_sim employs such linearization at
initial and final conditions of the model simulation.

5The authors encourage the user to develop their own models following the structure in the examples.

https://www.gridcal.org/
https://www.gridcal.org/
https://www.gridcal.org/
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corresponding Python APIs. The results for each simulation of the system’s model are

stored in a single *.mat file, which is inconvenient for data extraction of massive simulation

batches (i.e., 20,000 simulations). Finally, the *.mat files are “unified” into a single *.hdf5

file.

Besides the five modules, the tool is provided with a Python implementation of well-

known power system operating state classification algorithms that are employed for the data

labeling in case of small-signal stability assessment [49].

The five modules included in the main back-end of the tool can be executed in a

command prompt by running a driver file called main.py . Detailed instructions to set

a virtual environment with the required dependencies are given in the GitHub repository

accompanying this chapter. The format of the command to run main.py is as follows:

main(function, [,kwargs])

where function corresponds to the name of the module to be executed (see Fig. 5.1), and

kwargs are the corresponding keyword arguments of the module (see Section 5.4).

It must be underlined that we prepared two VirtualBox virtual machines (Windows 10

and Ubuntu 20.04 LTS) that can be used for off-the-shelf testing of the tool. However, the

greatest advantage of ModelicaGridData is an ability to use the available computational

resources, e.g., exploiting multi-core capabilities for simulation and batch execution. A

step-by-step guideline on how to set up the tool in a standalone computer for each operating

system is also provided in the GitHub repository.

5.3.2 Software Functionalities

In this section, we will present the major functionalities of the software, including

a simple example with a corresponding command to run each module. We emphasize

that the documentation for each module and all the functions is available under

./docs/doc functions.md/ in the associated repository.

5.3.2.1 Load Data Scrapping: nyiso

This module, identified as nyiso , scraps the publicly-available data from the NYISO

website [62] and organizes it per load regions of the New York grid. The New York grid

has 11 load regions, identified by a particular keyword, namely, Capital ( CAPITL ), Central

https://github.com/ALSETLab/ModelicaGridData
https://www.dropbox.com/s/76hhso7bjkpix2z/ModelicaGridData_Win10.vdi?dl=0
https://www.dropbox.com/s/z1lbo1rimq7vjr2/ModelicaGridData_Ubuntu.vdi?dl=0
https://github.com/ALSETLab/ModelicaGridData/tree/master/docs/doc_functions.md
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( CENTRL ), Dunwoodie ( DUNWOOD ), Genesee ( GENESE ), Hudson Valley ( HUD VL ), Long

Island ( LONGIL ), Milwood ( MILLWD ), New York City ( N.Y.C. ), North ( North ), and

West ( WEST ). The data correspond to the day-ahead and the real-time scheduling used for

establishing the dispatch in the NY grid.

The data scrapping algorithm fetches the *.csv files published in the NYISO web

page [62] and creates a single spreadsheet for each of the load regions for a given date. It

classifies the registers into measurements and forecasts. The measurements correspond to the

real consumption for each region at each time stamp. The forecasts contain the short-term

predictions made for any given date. Two different instances named “best” and “worst”

forecasts are produced. The “best” forecast contains the latest forecast produced for a given

date. Likewise, the “worst” forecast has the information regarding the first predictions for

a given date (typically published four days in advance in NYISO). By working with the real

measurements and the forecasts, the user is able to analyze the impact of forecasting error

on the grid’s dynamic behavior. The nyiso module is called as follows:

python main.py nyiso [--date] [--path]

where --date and --path are two arguments that specify the starting date to extract

data and the path where the data will be stored, respectively (see Section 5.4 for a specific

example).

5.3.2.2 Power Flow Computation: run pf

The module run_pf in Fig. 5.1 takes the data scrapped from the NYISO website

(https://www.nyiso.com/) and uses it as patterns to vary the loads in a power system

model. For each snap shot of the load pattern, GridCal computes a power flow, that if

validated, it will later be used to start the dynamic simulations of the model. In other

words, the loading levels αℓ,area are varied according to the trend as seen in the corresponding

NYISO profile:

αℓ,area = parea/max(parea), (5.1)

where 0 ≤ αℓ,area ≤ 1 and parea is the corresponding load level for an area from the

NYISO data. Then, the load level used for the power flow computation is

https://www.nyiso.com/
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Figure 5.2: Power flow selection in the graphical interface of Dymola. Each
power flow result is generated after the execution of the run_pf module. The

power flow selection is automatic in the back-end.

pℓ,area = αareapbc (5.2)

where pbc is the base case load for the system under study at each zone.

The power flows are generated by varying some (or all) of the loads in a system. The

pairing between load regions and loads in the model is done through a random mapping (i.e.,

the area pattern used for varying the level of each load in the model is assigned randomly).

The power flow grid model is loaded from the corresponding PSS®E file (*.raw), and the

power flow solution is found using GridCal’s solvers [63]. The power flow results are parsed

into a Modelica Records file, following a data structure for OpenIPSL models as explained

in [7] (see Chapter 3). Such object-oriented data management approach allows to replace

the power flow results by modifying only one attribute at a time, that is directly connected

to the several variables that are related to the power flow computation result (see Fig. 5.2,

however, note that such change does not need to be applied graphically/manually, but is

instead applied automatically by ModelicaGridData).

The module run_pf is invoked using the command:

python main.py run_pf [--model] [--version] [--window] [--date]

[--loads] [--delete] [-seed]

A detailed discussion of each parameter in the command is provided in the
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documentation shared on GitHub.

5.3.2.3 Power Flow Validation: val pf

The val_pf module evaluates whether a power flow result is correct, in terms of

compliance with the grid model constraints, when initializing the model at steady-state.

This is done using a short-duration dynamic simulation (i.e., spanning 5 s or less) and

evaluating the deviation between the initial and final values of the dynamic states. Such

short-spanned, event-free simulations do not represent a significant computational burden

in the Modelica-compliant IDEs if the dassl solver is used [6] (see Chapter 2). Then, the

val_pf module relies on automated time-domain simulations to carry out the validation

procedure. The call of this module is done as follows:

python main.py val_pf [--model] [--version] [--tool]

[--proc] [--cores] [--pc]

--pc indicates whether a virtual machine ( --pc vm ) or a physical computer ( --pc pc ,

default) is used. Then, the simulation parameters in the file val_parameters_pc.yaml

or val_parameters_vm.yaml are loaded. The user can modify the simulation settings in

either of these two files if desired. Moreover, --proc and --cores relate to the fact

that the val_pf function implements a combined parallel-sequential6 approach to dynamic

simulations. In other words, the power flow results can be divided between several processes

( --proc ) to speed up computation. Each process will use a number of --cores physical

cores to parallelize the internal computations, i.e., it parallelizes a simulation execution

among many cores. The reader is referred to the GitHub documentation for gaining more

insight into the arguments of the module’s main function. An example is provided in Section

5.4.

5.3.2.4 Massive Dynamic Simulation: run sim

Once the validated power flow solutions for a given model are available (see Section

5.3.2.3), the user can dispatch massive phasor time-domain simulations using the run_sim

module (Fig. 5.1). The function starts a set of dynamic simulations with distinct operating

6A parallel-sequential approach is understood as the simultaneous execution of multiple processes each
of which uses a single physical core of the host machine. Each process is assigned with a mini batch of the
complete simulation scenarios.
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conditions (power flows) under several contingency scenarios. The function and its arguments

to perform massive simulations are as follows:

python main.py run_sim [--model] [--version] [--tool]

[--proc] [--cores] [--pc] [--n_pf] [--n_sc] [--n_sim]

The user selects the power system model ( --model ) and the OpenIPSL version

( --version ) to use in the execution process. Furthermore, to run the simulations the

Modelica tool can also be chosen between Dymola ( --tool dymola , default) and OM

( --tool om ). All the execution flags to speed up the simulations using the DAE solvers

on both tools have been implemented according to [17], [18]. However, OM simulations are

only supported with OpenIPSL version 1.5.0.

Regardless of the environment that has been selected for the simulations, the user can

also specify the number of power flows ( --n_pf ), contingency scenarios ( --n_sc ), and the

maximum number of dynamic simulations ( --n_sim ) to be executed. Furthermore, the

code allows for parallelized simulations via assigning the arguments --proc and --cores

similar to the val_pf module (see Section 5.3.2.3).

5.3.2.5 Data Extraction: extract

The extract module (see Fig. 5.1) is designed to work in interactive mode with

the user being requested inputs on which signals to extract. First, the user is suggested to

select a component within the model to extract dynamical signals from. The implemented

options of choice that are related to the basic OpenIPSL models are bus, line, and generator.

However, this can be easily modified and expanded by the user to include a choice of other

devices such as STATCOMs [64], advanced converters [65], and renewable sources [66].

Each simulated scenario generates three *.mat files containing 1) the time series data,

2) the initial-condition linearization output, and 3) the final-condition linearization results.

With this data structure results are well organized, however, dealing with a case where,

for instance, 20,000 scenarios are available, would be cumbersome. The main goal of the

extract module is to help the end-user organize the output of run_sim into a single file

such that the data can be distributed and read easily, while at the same time, giving well

organized results for other post-processing purposes or applications that can run without the

need of user interaction from the files themselves. The command to call this function is as
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follows:

python main.py extract [--model] [--tool] [--version]

[--mu] [--sigma] [--pc]

where --model is a name of the system model employed for simulations, --tool is the

Modelica-compatible IDE used with run_sim module (more details are in Section 5.3.2.4),

and --version is the OpenIPSL version on which the model has been built. Note that

these parameters are shared with both val_pf and run_sim modules.

To make the resultant time series resemble real measurements better, the user has

the option to introduce additive Gaussian noise to the results of interest. The mean and

the standard deviation of the normally-distributed noise are controlled by the arguments

--mu and --sigma . More information about the default values is found in the GitHub

documentation of the tool.

5.3.2.6 Small-Signal Stability Synthetic Data Labeling: sssi

The labeling module of the tool aims to assess the small-signal stability condition of

the power system. For this purpose, the classical Prony’s method is implemented in Python

as the prony function. This classical method requires data preprocessing, therefore, the

filtering_data function is added to the labeling module. The result of Prony method

is processed by sssi function that generates stability indices for small-signal stability

assessment. Thus, the module has three functions filtering_data, prony, sssi [49],

[67].

The pre-processing function filtering_data defines a process that extracts the data

after a contingency from the synthetic measurement data. This is needed because the non-

stationarity of the studied signal during a contingency may lead to inconsistent results from

Prony’s method, which assumes a linear model. Thus, the function removes a portion of

the input data that is related to the contingency process, thus providing only the oscillation

content that corresponds largely to the linear system’s response. The signal is then detrended

in order to get the oscillatory behaviour of the data set. To perform detrending, an average

detrending is used. Also, to filter out noise and the trend, another option is proposed that

is based on the highest energy content: Intrinsic Mode Function (IMF).

The Prony function takes as input the detrended data set and estimates the eigenvalues



67

of the signal after passing through a frequency screening process that excludes frequencies

outside an inter-area mode range.

The sssi function uses the detrended and frequency filtered data and generates three

stability indices based on the damping ratio of the eigenvalues from the Prony function:

Single Mode Index (SMI), All-Mode Index (AMI), and Global Mode Index (GMI) [49].

5.4 Illustrative Examples

An illustrative example concerns data generation using the IEEE 14 bus system. The

reader can replicate each of the steps described in this section in either of the two virtual

machines provided with the code. Note that running the code in the Dymola IDE requires

a license (successful execution with the trial version included in the virtual machines is not

guaranteed). The reader is referred to the YouTube playlist accompanying this chapter for

a hands-on example demonstration [68].

First, the nyiso module (see Section 5.3.2.1) is executed. This is done by running

the following command, while located in the parent directory of ModelicaGridData :

python main.py nyiso --year 2020 --path data

The tool will download all the available data from the NYISO website [62], starting

from January 1st, 2020, up to the day before today, as indicated by the optional argument

--year . The data is saved under a sub-folder relative to the current directory named data.

By default, the tool fetches the data from the year in course (e.g., starting January 1st 2022

if the code is run in 2022). Therefore, care should be taken with the value of --year passed

when calling this module. The data from the NYISO website are available starting from

2001. Moreover, NYISO updates their current registers at 12:00 PM EST each day. So, if

the most recent information is required, the scrapping module should be run after this hour.

Next, the scrapped data is used to compute several power flows with GridCal. The

following command is employed to run power flows varying three loads in IEEE 14 bus model

(built in OpenIPSL version 2.0.0) at a time:

python main.py run_pf --model IEEE14 --version 2.0.0 --loads 3

When the power flow results are available, the next step is to carry out the

validation process via the val_pf module. The command to run this step is shown

https://www.youtube.com/watch?v=9KvV3BtDZuk&list=PLQSmZRKvTZtH940Oaw5yybX3RQaHNXpmZ
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below. The validation will be executed according to the simulation settings specified in

val_parameters_pc.yaml . By default, it spans a five-second simulation with no events.

With the settings below, two processes running each instance of Dymola are created. Each

process will use one physical core to complete the validation of the results.

python main.py val_pf --tool dymola --model IEEE14

--proc 2 --cores 1

Once the power flows that do not result to initialization in an equilibrium point are

removed (if any), the user can proceed with running run_sim module (see Section 5.3.2.4).

An example command is presented below:

python main.py run_sim --tool dymola --model IEEE14

--proc 4 --cores 2 --n_pf 2 --n_sc 10 --n_sim 16

The program will create four processes, each using two cores. Two power flow results

will be used for each contingency scenario. So, in parallel the maximum possible scenarios

that could be run is 2× 10 = 20. However, the user specifies a maximum of 16 simulations

by the argument --n_sim . So, instead of the 20 potential scenarios that potentially could

be run, only 16 will be completed among the four processes created, for a total of 4 per

process.

Finally, we employ the extract function to collect all simulation results for a

simulation batch. This function will organize all the signals of interest from the available

*.mat files in the working directory into a single *.hdf5 file. The example of call to the

extract module is:

python main.py extract --tool dymola --model IEEE14

The extract module requires the input of the user to navigate through the *.mat

files and get the desired results. Then, there will be several user prompts throughout the

execution of the function. A complete example is available in the GitHub repository of the

tool. The plot of the signals obtained from the *.hdf5 file [69] is shown in Fig. 5.3.
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Figure 5.3: Visualization of the extracted data using the extract module.

5.5 Impact

The proposed tool represents a pipeline for massive labeled power system simulation

data generation using Modelica model. In addition, the Modelica models developed using

OpenIPSL library [15] are initialized with power flow solutions using records that was not

available before. Given that data generation and pre-processing represent a significant

resource-consuming stage for developing ML solutions7, the tool introduces a degree of

automation that spares much of the cost and effort in creating such applications. Potential

applications include (but are not limited to) the development of edge modules for oscillation

detection [12] and time series-based small-signal stability algorithms [10] (see Chapter 6).

To the authors’ best knowledge, other model-based simulation frameworks employ

dynamic simulation as a grid emulation method and not as a data generation mechanism8,

so, our approach represents the first milestone toward high-fidelity simulation-based data

generation for the production of machine learning data-driven algorithms to assist power

7Former IBM’s senior vice president Arvind Krishna (currently CEO) claimed approximately 80% of the
work in developing a novel ML solution is related to data collection and preparation [70].

8See, for instance, GridSTAGE

https://github.com/pnnl/GridSTAGE
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system engineers in the operation of 21st-century electric grids.

5.6 Conclusions

ModelicaGridData is a data generation pipeline capable of producing synthetic power

system time series measurements upon phasor time-domain simulation of power systems

using Modelica under several contingency scenarios. The tool exploits the automation

capabilities of Python to download and create power flow results that work as initial

conditions for a dynamic simulation using Modelica-based IDEs. The user can start

simulation along multiple processes using two different Modelica IDEs in either Windows

or Linux operating system. After the simulations are completed, the generated data can

be extracted in a compact convenient form at the user’s will by an interactive module that

returns the synthetic measurements for all simulated scenarios in a single *.hdf5 file.

In addition, this tool allows to make the best use of the available offline resources (e.g.,

deployed computing servers in utility companies or research institutions) to speed up the

data generation processes. Through a simple example, we have demonstrated the usability

of the application and its user-friendliness. Since the tool relies on the open-source power

system library OpenIPSL, experienced users can tailor their models to their particular needs,

including expansion of the models with other components within larger system models.



CHAPTER 6

TIME SERIES-BASED SMALL-SIGNAL STABILITY

ASSESSMENT USING DEEP LEARNING

6.1 Introduction

The standard approach of small-signal stability analysis (SSA) [50] is to quantify the

effects of the small disturbances, such as a line trip, by analyzing the stability properties of

the linearized power system model. The obtained model is usually presented in the form of a

state-space representation (A,B,C,D). Then, linear system analysis is applied to assess the

small-signal stability condition by evaluating the system’s eigenvalues, thereby obtaining the

damping ratio of the dominant modes [50]. When the model is not available, a measurement-

based mode identification technique, such as Prony [71], is applied. Prony requires recording

of several swing oscillations to get acceptable accuracy in mode identification.

Despite the usefulness of the linear analysis and measurement-based mode estimation

techniques to evaluate SSA, their implementation for a real-time analysis poses several

challenges. Such drawbacks arise from the complexity of the required computations

for a large-scale system (e.g., maintaining a validated model) or the measurement data

requirements to obtain acceptable accuracy (e.g., filtering).

DL is a family of ML algorithms that are based on artificial NNs with feature learning

capability [72]. In other words, these algorithms allow extracting essential elements of the

data that define an output that has to be learned by the DL algorithm.

Some ML algorithms have been recently applied in power systems to enhance and

evaluate small-signal stability. For example, the work of [46] performs coordinated tuning of

PSS parameters using heuristic optimization algorithms. Likewise, in [47], a cuckoo search

is employed to find optimal PSS parameters that guarantee small-signal stability. Moreover,

in [48], the parameters of a unified power flow controller are tuned via an NN whose weights

Portions of this chapter appear in S. A. Dorado-Rojas, T. Bogodorova, and L. Vanfretti, “Time Series-
Based Small-Signal Stability Assessment using Deep Learning,” presented at the 2021 North American Power
Symposium [10].

71



72

are optimized using the Levenberg-Marquardt algorithm. Despite some efforts to study SSA

with conventional ML techniques, there is no research on the small-signal stability assessment

using deep learning methods to the authors’ best knowledge.

DL algorithms can be trained using collected measurements and data generated by

performing offline power system simulations (see Chapter 5). The trained algorithm has

to be deployed for inference on real-time data to provide fast identification of the state in

which the system operates. However, in this new approach, the main challenges are: (i) to

choose the effective DL algorithm, (ii) to select the best data and appropriate amount of data

to train the algorithm with sufficient accuracy while (iii) ensuring an acceptable real-time

performance. This chapter aims to provide insight into these challenges.

This chapter’s main contribution is a proposal to use and a comparison of the training

results of state-of-the-art DL algorithms for small-signal stability assessment using time

series input power system data (either synthetic (simulated) or the measurements from a real

power system). Special attention is paid to the case studies on the measurement selection

(voltage or current measurements) and data preparation for the algorithms’ training. For

this purpose, case studies are performed for voltage and current measurements with 1%

Gaussian noise (added in the preprocessing) and without noise of a simulated model to

assess small-signal stability. The performance of studied architectures is discussed and

compared using the performance evaluation metrics such as accuracy, precision and recall.

The architectures are: a Multi-Layer Perceptron, a fully CNN, a time convolutional neural

network (t-CNN), an inception network, and a multi-channel deep convolutional neural

network (MCDCNN). Hyperparameters of the algorithms, such as the effective number of

epochs, are also reported. Furthermore, the trained algorithms’ prediction/classification

time per data sample is presented to analyze which model is most suitable for a real-time

application.

This chapter expands the work in [8] (see Chapter 4) by considering a time-series data as

input directly, rather than the set of eigenvalues describing a particular operating condition.

In [8], we used the output from several dynamic simulations to compute the eigenvalues

characterizing a particular condition. Eigenvalues had to be further preprocessed before

classifying the operational condition of the system using the decision boundaries learned

during training. In this work, the pre-processing task of identifying the system eigenvalues is

a feature learning task performed by the particular layers of the proposed NN architectures.
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Figure 6.1: Approaches to SSA by conventional ML and DL.

Since unstable operating conditions are rare, they are created via model-based

simulation. To this end, we follow the automated phasor time-domain simulation approach

that is based on realistic selection of a set of contingencies for power systems described in

[61] to produce training data. The procedure in [8] follows a different contingency generation

algorithm.

In contrast to our previous work, using time series data as input expands the

applicability of the methodology and enables the potential inclusion of PMU data for

training. Both approaches require a time series pre-processing stage, but the approach

of this paper does not require any eigenvalue computation. We emphasize that the feature

engineering task (i.e., computing eigenvalues from time-series data) is carried out in the

forward-pass of the NN. This is not possible with the classic ML methods applied in [8] where

the pre-processing had to be done beforehand. The difference between both approaches is

underlined in Figure 6.1.

This chapter is structured as follows: Section 6.2 presents an overview of SSA from

time-series data and a description of the studied DL architectures. Section 6.3 describes

the data generation and pre-processing stages. In Section 6.4, we show the results of each

case study and discuss NN performance for SSA. Finally, Section 6.5 elaborates on common

challenges of the proposed deep learning application and Section 6.6 concludes the work.
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6.2 Small-Signal Stability and Deep Learning

6.2.1 Time Series-Based Small-Signal Stability Assessment

The proposed approach (Fig. 6.2) to perform SSA consists of an offline and an online

step. The former includes data preparation (time series preprocessing and labeling) and the

deep NN training; the latter refers to exploitation with the trained NN on non-labeled data

to carry out SSA.

Figure 6.2: Convolutional neural network structure for time series classification.

6.2.2 Deep Learning for Time-Series Classification

Since this is a supervised learning problem, we need to provide a set of examples

for the DL algorithms to learn how to categorize the data. These examples are the time

series traces with labels. The labels indicate whether a trace corresponds to either of the

classification categories. Labeling is performed using symbolic linearization of the grid model

to get a system matrix. Then, the dominant eigenvalue is used to compute a damping ratio

that defines the corresponding label (stable/unstable) for a given scenario. Thus, in our

experiments a training instance is composed of a phasor time-domain profile of a generator

bus voltage or line current (see Fig. 6.3) and a binary label calculated offline via model

linearization.
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Figure 6.3: An example of synthetic current and voltage magnitude
measurements for stable and marginally stable scenarios (the disturbance

occurs at t = 1.0 s).

During training, the NN learns to identify the characteristic patterns of each

category by updating its parameter values iteratively. After training, a deployed NN can

classify/define the label for the operating condition by feeding voltage or current data

directly. In this way, the NN performs feature engineering to internally find a representation

of the time-series data that will allow it to discriminate the input directly. So, system

identification is left as a task for the NN.

DL stands from a NN architecture with (deep) numerous interconnected layers of

reduced number of neurons in each layer without loss in performance. In general, DL

algorithms consist of three main components: a NN architecture, a cost/loss function, and

an optimization method. The architecture is related to the NN structure, which includes the

number of neurons in each layer, the number of layers, and the type of layers. The cost/loss
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function represents the criterion based on which the NN improves its performance while

learning from the given examples. Finally, the optimization method provides the mechanism

to update the NN parameters, such as weights in the functions that represent the neurons.

The goal of training process is to find the optimal set of weights wi using the training

set’s information so that the NN’s output will maximize a performance criterion or minimize

a loss function.

The fundamental building block of an NN is an artificial neuron, a black-box model

inspired by biological synapses. Given an input x ∈ RN×1 with N features x =

[x1 x2 . . . xN ]
T , a neuron performs a weighted sum of the components of x and returns

an output y after composing the weighted sum with a simple function, mostly nonlinear,

referred to as activation function σ. The output is given by:

y = σ

(
N∑
i=1

wixi

)
.

The output y is fed to another neuron in a deeper layer. In this way, an NN represents

a continuous composition of weighted nonlinear functions.

A case of particular interest is when the input is a time-series (i.e., a sequence

showing temporal dependency through its components). In this case, the vector x ∈
RN = [x1 x2 x3 . . . xN−1 xN ]

T is composed by N measurements/observations. The problem

of classifying a given time-series x into a pre-specified category is known as time series

classification (TSC). In this section, we briefly describe the CNN architectures for TSC

employed in this paper. All hyperparameters for training were taken from [73].

6.2.2.1 Multi-layer Perceptron

A multi-layer perceptron (MLP) [74], or a deep feedforward network, computes an

output by the weighted sum of every input signal component, followed by a pointwise

nonlinear activation. When deployed for TSC, an MLP’s performance may downgrade due

to its architectural properties. The temporal interdependence in the input is not captured

because all components are weighted individually before being passed to each layer. Despite

this drawback, an MLP [74] is used as a base case to compare with more sophisticated NNs

for TSC since it represents a lower performance bound.

The baseline MLP has four fully-connected layers. The first input layer corresponds
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to the size of the input data. The three hidden layers have 500 neurons per each layer with

a ReLU activation function for each neuron. To avoid overfitting, Dropout regularization

layers are added prior to each hidden layer correspondingly. The dropout rates are 0.1, 0.2

and 0.2, respectively, Finally, the output layer is a dense layer of size that is equal to number

of classes with a softmax activation function and a prior dropout rate equal to 0.3.

6.2.2.2 Convolutional Neural Networks

CNNs are architectures inspired by the structure of the human eye with great success

in the field of image processing. The convolution aims to filter the input signal’s content

to learn the most relevant features effectively. The training objective is to learn the filters

that help extract the most from the filtered signal. This network type is suitable for data

showing a grid-like structure, such as images (2D grid of pixels) and univariate time-series

(1D grid of samples).

CNNs use convolution as a mapping operator in at least one of their layers. The

convolution1 of xN with a filter w ∗N is

(xN ∗ wN) [n] =

(
N∑
i=1

xiwi+n

)
. (6.1)

Table 6.1: DL model characteristics for SSA.

Model
Parameters

Optimizer
Layers

Trainable (T)
Non-

trainable (NT)
Layer

Number
Type

(activation)
Hyperparameters

fcn 265,986 1,024 Adam 8 (4T + 4NT)
3x conv1d (ReLU)
1x dense (softmax)

nfilters = (128, 256, 218)
kernel size = (8, 5, 3)

padding = same

inception 422,850 2,048 Adam 64 (17T + 47NT)
16x conv1D (ReLU)
1x dense (softmax)

nfilters = 32
kernel size = 41
padding = same

mcdcnn 1,443,526 0 SGD 15 (8T + 7NT)
7x conv1D (ReLU)
1x dense (softmax)

nfilters = 8
kernel size = 5
padding = same

cnn 1880 0 Adam 7 (3T + 4NT)
2x conv1D (sigmoid)
1x dense (softmax)

nfilters = (6, 12)
kernel size = (7, 7)
padding = valid

mlp 1,007,502 0 Adadelta 8 (4T+ 4NT)
3x dense (ReLU)
1x dense (softmax)

nneurons = 500

A CNN has several advantages: sparse interactions, parameter sharing, equivariant

1In the context of DL, convolution corresponds to cross-correlation, not to the convolution operator in
the context of linear time-invariant systems.
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representations, and ability to work with inputs of variable size. Sparse interactions mean

that the output does not interact with every input unit, allowing memory reduction (fewer

parameters) and efficiency boost (fewer operations). Likewise, parameter sharing indicates

that the same parameter is used on several layers, which improves computational efficiency.

The equivariance property for dealing with time series data means that when different

features appear in the input, and a particular event is time-shifted, the same signal will

appear in the output, shifted equally [72]. This means that if the input changes, the output

changes in the same way.

A typical layer of a CNN includes three stages: convolution, detector, pooling. In the

convolution stage, the layer performs convolutions on the input to get a set of outputs that

run through a nonlinear activation function (e.g., ReLU) in the detector step. Finally,

a pooling function replaces the output at a certain location with a summary statistic

of the nearby outputs (e.g., max pooling returns the maximum value of the particular

neighborhood). Thus, the output is invariant to noise.

In this work, four CNN architectures –fully convolutional neural networks (FCNs),

inception, MCDCNNs, and t-CNNs are studied. The general structure of the CNNs is

shown in Fig. 6.2. The CNN is composed of n convolutional layers (layers 1 − n in Fig.

6.2) that followed by a fully-connected layer (purple in Fig. 6.2) and a softmax activation

in the output layer (orange in Fig. 6.2). Let z be the vector of values at the last NN layer.

A softmax activation σ for the binary case (i.e., z ∈ R2) is computed and the category

predicted as follows):

y = argmax

σ
 z1

z2

 = argmax

 ez1

ez1 + ez2
ez2

ez1 + ez2

 (6.2)

A FCN (fcn in Table 6.1) has three convolutional layers followed by a batch

normalization stage and a ReLU activation function each. The training is performed to

minimize a cross-entropy loss function. The third convolutional layer’s output is averaged

over time dimension (global average pooling) before being fed into an output softmax layer.

A t-CNN (cnn in Table 6.1) [75] has two convolutional layers followed by softmax

activation and average pooling operation each. The loss function is a mean squared error.

An inception network (inception in Table 6.1) [76] consists of 6 inception blocks

–concatenated outputs of 4 convolution layers and one max pooling connected in parallel-
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followed with batch normalization operation and activation function, a global average pooling

layer, and a fully-connected output layer. Thus, it takes a previous input and passes it to

the parallel convolutional layers concatenating the outputs together with the output of max

pooling operation over the input. So, a bigger variety of filters can be chosen in each layer.

An MCDCNN (mcdcnn in Table 6.1) [77] consists of typical CNN layers where the

convolutions are performed in parallel on each dimension of the time series data. Each

two convolutional layers have 8 output filters of length 5 with a ReLU activation function,

followed by a max-pooling operation. The convolutional layers’ output is flattened before

entering a fully-connected layer with a ReLU activation function. Finally, the output layer

is fully-connected of the size that corresponds to number of classes with a softmax activation

function (see Eq. (6.2)).

6.3 Case Study

6.3.1 Data Generation

We have generated trajectories using the IEEE 9 bus system (24 state variables; 203

algebraic variables) initialized for a vast array of operating conditions (i.e. power flows) and

subjected to realistic contingencies that are generated using the algorithm in [61]. Once

the contingency scenario is applied, a dynamic simulation is carried out for 4 s to generate

trajectories (see Fig. 6.3). A total of 1805 simulations were generated, from where ntraining =

1083, ntesting = 602, and nvalidation = 120.

6.3.1.1 Data Preparation

The voltage signals at generator buses contain system dynamics that, in practice, can

be measured by PMUs. Thus, the real and imaginary parts of voltage at some generator

buses and selected line current signals are used to construct training and testing datasets.

Normalization is not required since all waveforms are per-unitized.
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Figure 6.4: Training results for 5-fold cross-validation (full length data set).

Also, 1% Gaussian noise, typical for PMU measurements, is added to the voltage

signals. In summary, three datasets that include pairs of real and imaginary parts of each

signal (voltage, noisy voltage, and current) were generated.

The labeling of the datasets for training of the CNNs is performed using the classic SSA.

Small-signal stability is analyzed either by linearizing a nonlinear grid model or identifying

the excited dynamics from measurements (e.g., PMU data).
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For ease of interpretation, we limit the NN task (Fig. 6.2) to the binary (two classes)

problem of stable (when damping ratio of the system ζ > 5%) and marginally stable (0% <

ζ < 5%) classification.

To train and validate the models on the more complex learning problem, the resulting

data sets are further preprocessed. Thus, to expedite SSA, the measurement length has

been reduced to 75% of the original simulation time. The resulting length corresponds to a

measurement window of 3 s. This would require less information to be passed to the NN.

Likewise, the number of training instances is reduced by a factor of 3 (ntraining ≈ 300) to

account for data scarcity.

For all experiments, the input tensors’ shape is (nscenarios, T, 2), where T is the number

of points in the time-series. The last element of the tuple, ‘2’, indicates that real and

imaginary parts are input data features.

6.4 Results

Results for the experiments with full and reduced length time series, with all and fewer

instances, are presented in Figs. 6.4 and 6.5. Conventional splitting results are shown in

Fig. 6.6.

6.4.1 Analysis

The number of samples for the presented case studies could be considered small when

applying DL. Thus, k-fold cross-validation (k = 5) was performed to validate the performance

of each DL model.

In Fig. 6.4, we observe that the CNN architectures with the tuned hyperparameters

(fcn and cnn) can achieve 100% performance on the data generated for the experiment.

This does not mean that the NN will be fully accurate when deployed but rather that the

performance will be very high. Thus, in our setup, CNNs successfully detect the oscillation

patterns allowing for distinguishing a stable operating condition from a marginally stable

one.
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Figure 6.5: Training results for 5-fold cross-validation (reduced length data set).

Fig. 6.5 shows that performance is not significantly downgraded after reducing the time

series length. Some architectures can relate the oscillating behavior with a category better

than in the previous case.

Nevertheless, we observe that assessing the system’s condition from current

measurements could be more challenging than for voltage inputs. This is due to presence

of more prominent oscillations in voltage measurements in comparison to the current traces
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from the training data.

Purely convolutional architectures (fcn, mcdcnn, and cnn) show metrics beyond 99%

regardless of noise for both voltage and current inputs. In fact, the performance of all

models is above 99% for noiseless voltage. However, the inception model lost its classification

capability when exposed to noisy measurements (accuracy: 0.6761; precision: 0.3380; recall:

0.5000). For current data inputs (Fig. 6.6), the performance of the MLP degrades which

is expected due to the limitations of this architecture for identifying patterns in time series

data.

Figure 6.6: Prediction results for line current input (reduced training data set).

In the reviewed cases, the oscillatory pattern is easily learned by the convolutional

layers since it contains the excited dynamics of the small system.

For the presence of more complex dynamics in the large systems, achieving high

performance would require finer hyperparameter tuning such as bigger number of neurons

and larger data sets for learning, which would be more computationally expensive. Despite

this, we conclude that DL methods are powerful to learn classifying patterns that are typical

for SSA.

6.4.2 Computational Performance Analysis

To measure the computational performance of the NN models in production, the

prediction time per sample and the number of epochs to train the best model (see Table
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6.2) were computed. The prediction time per sample indicates how fast the NN computes a

prediction of the system stability given a time series input. The number of epochs is a relative

measure of the training effort required to optimally tune the model. For all architectures,

prediction time is in the order of milliseconds which favors the deployment in real-time

pipelines.

MLP is the fastest architecture in terms of prediction, but also the one requiring a

larger number of epochs to achieve its best performance. Moreover, there is a tradeoff

between production performance and training effort for all models. The MCDCNN (Table

6.2) is optimal in both senses.

Table 6.2: Prediction time and number of epochs for best model.

Model
Voltage Noisy Voltage Current

Pred.
Time

Eph
Best

Pred.
Time

Eph
Best

Pred.
Time

Eph
Best

fcn 1.20 ms 58 1.21 ms 209 1.21 ms 133
inception 2.50 ms 8 2.43 ms 11 2.48 ms 8
mcdcnn 0.477 ms 59 0.478 ms 59 0.491 ms 45
mlp 0.234 ms 2226 0.225 ms 1760 0.235 ms 211
cnn 2.75 ms 248 0.282 ms 235 0.261 ms 165

6.5 Discussion

The presented training pipeline of classical state-of-the-art deep learning architectures

is very common in the computer science community. However, when solving specific field

engineering tasks such as small-signal stability assessment, several issues arise and must be

addressed. The first issue is which data to use as an input to train the models and process

these data. In this case, when PMUs are widespread in the power grid, we chose to use

voltage or current data, either noisy or noiseless, to validate the selected NN architectures’

ability to catch the patterns that define the system’s state (stable or marginally stable).

The second issue is to elicit the data enriched with such distinctive patterns, meaning

to find the measured values after a contingency or create the big enough dataset of such

synthetic measurements to achieve a good performance of the models. This challenge has

been addressed in [61] whose algorithm has been adopted in this work to generate the data.

Another issue that is left open is a transfer learning possibility that can be applied
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to the best performance model. Transfer learning is characterized as a possibility to use

the trained model for measurements collected from other power systems without significant

degradation of the model performance. This point requires special attention and is left

as future work. The next issue connected with the NN architecture’s performance is how

much data is enough to get an acceptable performance of the trained model. In this work,

we gradually enlarged the amount of data until at least one model of the compared deep

learning algorithms showed a good performance. But generally speaking, the larger the

model, the more extensive dataset is required for training. In particular, if the power system

is characterized by the significant number of eigenvalues that define the system’s state, more

combinations of the excited modes can be present after a contingency is applied. Therefore,

more data is needed to train a deep neural network.

Eventually, the issue of the computational performance is significant if the trained

model is applied in any control center. In Table 6.2 the prediction time per data sample

is presented for each studied model. We consider that the trained model is used in a plug-

and-play manner. This means that the presented time is enough to perform the small-signal

assessment if the input data chunk is available. But one has to be aware that this chunk

is of the length of 3 seconds. This is the time series length to capture enough patterns to

classify the state of the system. Comparing the trained models to the classic Prony method

performance, the deep learning models give a significant speedup in performance since the

Prony method is effective only after the oscillations caused by contingency are fade out [71],

[78]. Thus, for the Prony method to achieve a good performance, the needed time series

length is of approximately 10 seconds in comparison to the 3 seconds that have been used

in the presented case studies.

6.6 Conclusions

This work proposed a novel methodology for time series-based power system small-

signal stability assessment using deep learning. The models are tested using the labeled

current and voltage measurements generated using massive dynamic simulations after

realistic contingency scenarios were applied. The accuracy, precision, and recall show a good

performance of the trained models with the selected hyperparameters and for the generated

data. Prediction time and performance show the potential of NNs to be deployed in real-time

control center tools for operator decision support.



CHAPTER 7

LOW-COST HARDWARE PLATFORM FOR TESTING

MACHINE LEARNING-BASED EDGE POWER GRID

OSCILLATION DETECTORS

7.1 Introduction

Power system oscillations can be roughly categorized into free and forced [79]. Free

oscillations occur permanently in the system around a stable equilibrium point and are

naturally damped out by the system. On the other hand, forced oscillations, such as interarea

modes, emerge when a power system is perturbed by external disturbances that excite its

modes’ natural frequencies [80]. A forced oscillation may cause incipient instabilities or

severe equipment damage by inducing negative impacts on the power system. In extreme

cases, it may even result in system breakup, power outages, and equipment damage if not

detected at the right time. Consequently, it is vital to develop a method for detecting and

locating forced oscillations on time to reduce their negative impact [81].

A myriad of methods for detection and mitigation has been proposed to address forced

oscillations in electrical grids. In [82], two non-parametric methods are presented to estimate

an oscillating mode. The authors emphasize the importance of monitoring power system

modes in real-time and propose a technique to determine the existence and persistence of

forced oscillations. Likewise, in [83] a Phasor Measurement Unit (PMU)-based real-time sub-

synchronous oscillation detection pipeline is discussed. The experiment results are quantified

via simple metrics to assess the performance of the involved hardware and software systems

[84].

Such techniques rely mostly upon signal processing stages to ensure proper and timely

event distinction. However, the computational complexity of such methods is usually

Portions of this chapter appear in S. A. Dorado-Rojas, S. Xu, L. Vanfretti, G. Olvera, M. I. I. Ayachi, and
S. Ahmed, “Low-Cost Hardware Platform for Testing ML-Based Edge Power Grid Oscillation Detectors,”
presented at the 2022 10th Workshop on Modelling and Simulation of Cyber-Physical Energy Systems
(MSCPES) [11].
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significant. The online performance of such techniques has been recently assessed. The

detection method in [85], for example, takes 1.7 s to process and label a forced oscillation.

Similarly, the detection time in [86] is around 350 ms. These two samples of algorithmic time

execution unveil the question of whether signal processing-based solutions are also feasible

for real-time deployment. In particular, it is unclear if edge devices, such as those in future

information exchange schemes such as the Internet of Things (IoT) [87], would have the

capabilities to execute efficiently such heavy signal processing workflows.

Machine Learning (ML) emerges as an alternative data-driven paradigm to develop

solutions because ML models are computationally efficient and nowadays simple to create.

Beyond forced oscillation detection, ML has proven successful for other problems such as

stability assessment [8], [10] and dynamic contingency management [88]. However, in power

systems, a caveat is that measurement data describe mostly normal operating conditions.

Several authors have started generating data via computer-based offline (e.g., [8]), and real-

time simulations (e.g., [89]).

Either by conventional or by ML methods, the development of detection algorithms

capable of real-time inference requires algorithmic efficiency and a suitable testing platform

to generate or stream the oscillation data in real-time. A typical hardware platform for

real-time experimentation is Hardware-in-the-Loop (HIL) simulation, in which the user can

replicate the conditions of a particular engineering system with high accuracy. HIL has

gained popularity not only in power systems but also in other domains (e.g., see [90] for an

example of autonomous vehicles). In the context of oscillation detection, a HIL testbed has

been used to validate the accuracy and feasibility of a fast PMU-based proposal [91].

While real-time simulation represents the most accurate way to produce training data

and stream measurements during validation of real-time algorithms for oscillation detection,

such simulators are not easily accessible because of their high price tag. Then, there is a need

for a low-cost experimental platform to synthesize training datasets and validate detection

algorithms in real-time. This chapter aims to bridge this gap.

We introduce a low-cost platform (see Fig. 7.1) for end-to-end validation of an ML

solution using a low-voltage signal generator, namely an Analog Discovery 2. Such boards

are commonly used in a first electronics class in most universities. Synthetic signals are

generated thanks to the WaveForms Software Development Kit (SDK) programmatically.

The waveform is streamed using an Analog-to-Digital Converter (ADC) to an NVIDIA Jetson
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TX2 device. Such specialized hardware counts with a Graphics Processing Unit (GPU), and

it is capable of executing ML models in real-time. A trained Convolutional Neural Network

(CNN) model is downloaded in the Jetson board and used for real-time inference: given a

user-defined waveform, the CNN predicts whether a forced oscillation is occurring or not

based on the available information window. A discussion of the training process of the CNN

is beyond the scope of the chapter. The reader is referred to [12] for more insight in this

regard.

Figure 7.1: Proposed low-cost test platform.

In summary, the main contributions of this chapter are as follows:

1. we introduce a low-cost test framework that can be applied in the design phase for an

ML-based oscillation detection algorithm before a full real-time simulator-based HIL

test;

2. we develop a methodology for real-time signal emulation controlling an Analog

Discovery 2 board using the WaveForms SDK;

3. we compare the inference performance when two different ADC are deployed;

4. finally, we present a way to automate the experiments using socket Application

Programming Interface (API) in Python when the experiment process is time-

consuming and laborious.
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The reminder of this chapter is structured as follows: Section 7.2 introduces the

mechanism to generate signals using the Analog Discover 2 board. Section 7.3 presents

the two different ADC methods for benchmark. Experiment automation is described in

Section 7.4. Results are discussed in Section 7.5. Lastly, Section 7.6 concludes the work.

7.2 Real-Time Signal Emulation

It is necessary to generate a synthetic signal to emulate a sub-synchronous oscillation,

similar to those observed in PMU measurements [83], so that we can assess the performance

of a CNN in real-time. Such a task is possible with the Analog Discovery 2 board thanks

to the WaveForms SDK. The WaveForms SDK is a public API available in programming

languages such as Python and C++. It allows users to interact with the Analog Discovery 2

board and automate testing via simple applications. The scope of this section is to describe

at a high level how a signal with different patterns was generated using the SDK. Then, we

briefly mentioned how noise is added to the generated signal to emulate measurement and

process randomness.

7.2.1 Characteristics of Forced Oscillation Waveforms

In a steady-state, a power system dynamical state x is said to operate at a stable

equilibrium condition xeq when ẋ|x=xeq = f (xeq) = 0. The continuous stochastic nature

of loads makes the state x oscillate around xeq. In practice, observables of power grids

(e.g. measurements such as current and voltage phasors) show “small-amplitude oscillations”

around an equilibrium condition. A forced oscillation is characterized by an abrupt change

in the amplitude of a signal in a power grid lasting a specific time. If the oscillation is stable,

the power system should return to equilibrium after the event fades out. However, stable

forced oscillations could lead to cascading events that can lead to a massive event such as a

blackout. Detecting forced oscillations is critical to take remedial actions that guarantee a

reliable operation of any electrical system [92].
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Figure 7.2: Example waveform describing a forced oscillation. The signal was
produced with the Analog Discovery 2 board.

Assume an event leading to a forced oscillation has occurred in the grid. Before the

contingency, measurements will show a stationary behavior characterized by the excursions

of the system state around xeq. During the event, the amplitude of the signal will change

significantly. The system will return to equilibrium if the proper remedial actions are taken,

e.g. ramp-down of a wind farm’s power output [83]. An example waveform characterizing a

conceptual forced oscillation event is shown in Fig. 7.2.

7.2.2 Generation of Signals using the WaveForms SDK

Based on the previous discussion, the most simple signal that characterizes a forced

oscillation consists of three parts: an oscillating behavior around a steady-state value; a high-

amplitude oscillating waveform during the event; a final noisy-like segment that describes

the return to the equilibrium condition. Such signal is generated straightforwardly using

the WaveForms Python API. The API allows the user to modify each part of the signal

by varying frequency, amplitude, and offset parameters for different shapes. The particular

form in Fig. 2 was generated by a random signal (sampled from a uniform distribution) with

a pre-specified 1.5 V offset. After 5 s, the output of the signal generator is changed to a

sinusoidal signal to mimic a forced oscillation event lasting for 5 s. Lastly, the output is

switched again to a noisy signal. Several test signals with different characteristics can be

easily generated by amplitude and/or frequency sweeps by following this simple workflow.
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To increase the “complexity” of the generated waveform, noise is superimposed also on the

oscillation part as shown in Fig. 7.3.

Figure 7.3: Example waveform with noise superimposed on the forced
oscillation sinusoid.

7.3 Data Acquisition Methods

After generating a signal waveform for testing real-time inference in an ML-based

oscillation detector, the next step is to send the signal to the NVIDIA Jetson TX2. This

requires a data acquisition or conversion stage. The core of this step is the ADC. ADCs are

a mature technology whose main advantages are fast conversion and low cost, so their use

in the context of the proposed platform is justified.

Following the ADC conversion, the data is transmitted to the Jetson via I2C.

Therefore, in this section we explain how the ADC and the I2C communication stages are

implemented. For benchmarking purposes, two different ADCs were tested, namely an 8-

bit ADC (PCF8591) and a 12-bit ADC (ADS7823). A comparison between the inference

performance of both ADCs is presented at the end of this section.

7.3.1 General Aspects of ADC Conversion

Roughly speaking, an ADC takes the analog signal at its input and produces a value

by determining how far the input voltage is between the low and high reference voltages.

The more discrete levels an ADC has, the more accurate the digital representation of the
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analog signal is. An ADC with a larger number of “levels” (i.e., bits) will provide better

accuracy and larger resolution than an ADC with fewer bits.

The first ADC employed in the platform is 8-bit ADC (PCF8591). The corresponding

circuit schematic is shown in Fig. 7.4. The analog signal is output from the Analog Discovery

2 board using channel 1, connected to the analog input AIN0 of the PCF8591. The SDA

and the SCL pins of PCF8591 are connected to the Jetson board’s corresponding pins (I2C

bus 0). By doing so, data can be received in the NVIDIA device from the ADC via I2C.

Note that the grounds of all devices (i.e., Jetson TX2, Analog Discovery 2, and PCF8591)

are connected to guarantee the same low reference voltage.

Figure 7.4: Circuit schematic using the PCF8591 ADC.

An example of inference using the PCF8591 is presented in Fig. 7.5. The CNN can

detect whether an oscillation is occurring or not with relatively good accuracy1 (namely,

99.86% in average).

The second ADC variant used in the platform project is a 12-bit ADC: an ADS7823.

Logically, the ADS7823 has a better resolution and a higher accuracy than the PCF8591.

1It is worth mentioning that physical forced oscillation signals do not have a clear pattern as the sinusoid
signal in Fig. 7.5. The accuracy of the CNN downgrades when facing real measurements. However, the
method maintains a remarkable inference performance using short data windows and reduced computational
time. For further discussion, the reader is referred to [12].
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Figure 7.5: Inference result for the implementation of PCF8591 in data
acquisition.

The circuit schematic for the ADS7823 is similar to the one in Fig. 7.4 and, therefore, will be

omitted. The ADS7823 also uses I2C communication to transmit the signal to the NVIDIA

Jetson TX2 board.

7.3.2 A Simple ADC Comparison

We assessed the effect of the ADC resolution by performing 10,000 inferences with the

trained CNN model. Results are presented in Table 7.1, where average accuracy is obtained

after averaging the accuracy of all inferences over 10,000 experiments. The ADS7823 achieves

better performance since the converted signal has a better resolution, and it is easier for the

CNN to identify the oscillation patterns and classify the oscillation condition correctly. A

more detailed comparison between both ADCs can be seen in Section 7.5.

Table 7.1: Inference accuracy using different ADCs.

ADC Average Accuracy

ADS7823 0.9986
PCF8591 0.9513
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7.4 Experiment Automation

The previous experimental conditions are insufficient to draw significant conclusions

about the effect of the ADC selection on inference. By varying other parameters of the test

signal, such as frequency and noise level variation, different scenarios can be crafted where

we can extract more insight concerning the actual performance differences.

Performing a relevant parameter sweep manually is a time-consuming effort. However,

one of the advantages of the WaveForms SDK is the possibility of automating several tests

using the Python API. This section discusses setting up a simple automation approach by

establishing a communications network between the signal generator, the host computer,

and the NVIDIA device.

The setup is shown in Fig. 7.6. The communication between the host computer and the

Jetson TX2 takes place through TCP/IP socket API. The laptop is configured as the client

and the Jetson TX2 as the server. The WaveForms SDK, running on the computer, controls

the Analog Discovery 2 board, connected via USB. The output of the signal generator passes

through the ADC converter and is read by the TX2 board using I2C.

Figure 7.6: Communication map in the proposed experimental setup.

The importance of automation for both testing and communication is illustrated with a

simple example. Consider an experiment that consists of a frequency sweep over 100 values.

Such variation can be easily created using a loop in the WaveForms SDK. Then, the Analog

board outputs the signal to the ADC. However, the host computer must trigger the Jetson
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TX2 to start acquiring data. Moreover, the following experiment should begin only once

the Jetson TX2 completes inference with the current signal. To achieve this, the laptop and

the Jetson are set in a two-way communication link over TCP/IP. The host computer is the

client, and the Jetson is the server. The complete workflow is presented in Fig. 7.7.

7.5 Results

A frequency variation experiment is now described after portraying the communication

map and the hardware connection. We perform 300 experiments varying the frequency

from 1 to 300 Hz, keeping constant the sinusoidal amplitude during the oscillation event.

CNN inference is performed on 1000 windows of the produced signal. Half of the windows

correspond to normal conditions, and the other half is a sustained oscillation. After the TX2

computes 1000 inferences, a message is sent to the client (host computer) to start the next

experiment by varying the signal frequency.

The results of the frequency variation experiment are shown in Fig. 7.8a. The x-axis

indicates the frequency value, and the y-axis represents the average accuracy over the 1000

inferences during an experiment. We observe that for low frequencies, the performance of

both ADCs is close to each other. Nevertheless, as the frequency increases, the effectiveness

of the PCF8591 ADC downgrades rapidly. Despite this, both ADCs are found to be effective

in the context of subsynchronous oscillations, where oscillations of concern are below 60 Hz.

Fig. 7.8a is replotted in a logarithmic scale in Fig. 7.8b, which is equivalent to having

carried out a logarithmic sweep. We aim to identify the critical frequency in which the

performance of the PCF8591 downgrades. We observe that the 8-bit ADC is not effective

after ≈ 100 Hz. However, even the ADS7823 exhibits a significant reduction in accuracy

when the frequency exceeds ≈ 200 Hz. Recall that both experiments are using the same

CNN model. Therefore, our experiments emphasize the importance of appropriate hardware

selection in every stage when an ML solution is deployed on a practical application.
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Figure 7.7: Experiment automation workflow. The solid blue lines indicate
information sent between server and client, & dashed lines indicate (uncertain)

receipt of message.
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(a) Linear sweep.

(b) Log sweep.

Figure 7.8: Frequency variation experiment results.

Furthermore, we plot the inference results for all the time windows in a histogram

(Fig. 7.9). The x-axis corresponds to the accuracy levels and the y-axis to how many

times the CNN achieved the corresponding accuracy. Note that both histograms are skewed

towards the 1.0 accuracy, meaning that both ADCs are effective at detecting the oscillation

in the particular experiment. However, the PCF8591 bins are distributed horizontally,

indicating the accuracy is more sensitive to the resolution of the ADC. In general, we can

conclude that the higher the resolution of the ADC, the easier it is for the CNN to detect

the oscillation patterns and classify the oscillation condition correctly. The results in Table
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7.2 quantify these observations. The reader is referred to [12] for performance analysis of

the CNN when subjected to real-world data.

Figure 7.9: Accuracy histogram.

Table 7.2: Statistical results of the frequency variation experiments.

ADC
Average Accuracy

Mean Standard Deviation

PCF8591 0.97498 0.0213
ADS7823 0.99940 0.00170

7.6 Conclusions

This chapter has presented a low-cost platform for evaluating the real-time performance

of CNN models in the detection of sub-synchronous forced oscillation in power grids.

Potential applications of such a platform beyond teaching and demonstration are also related

to the cheap and fast prototyping of ML-based edge embedded solutions with real-time

constraints, such as protective relays.

In our setup, a synthetic signal was generated using a generator (Analog Discovery 2),

employed throughout several introductory electronics courses. The signal is converted to a

digital representation thanks to an ADC and then transmitted to an NVIDIA Jetson TX2

device. This ML-edge device is capable of executing in real-time a pre-trained CNN model.
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Thus, automation on the signal generation and the communication between the Jetson device

and the host computer allows simple testing and validation of the accuracy of the proposed

solution for oscillation detection.

We also validated the performance impact of ADC selection through simple

experiments. Better accuracy is achieved with a high-resolution ADC for the same CNN

model. This aspect is not regularly considered in ML training. Still, it is crucial when the

CNN is deployed on hardware as part of an IoT solution for monitoring and diagnostics in

cyber-physical systems such as the power grid.



CHAPTER 8

MACHINE LEARNING-BASED EDGE APPLICATION FOR

DETECTION OF FORCED OSCILLATIONS IN POWER

GRIDS

8.1 Introduction

Power system oscillations are generally classified as free and forced. Free oscillations

appear as the system’s response, for instance, to accommodate a change of loads. Free

oscillations are structural to the system dynamics. In contrast, forced oscillations occur

when exogenous stimuli with a rich enough spectral component (e.g., cycle-limited control

actuation [93], or periodic disturbances [94]) excite the system, thus producing oscillating

modes [95]. While different control systems such as the PSS aim at attenuating the effects

of free oscillations, forced oscillations could lead to system-wide cascading outages if the

excited modes are unstable [96]. The only remedial action is to disconnect the equipment

that causes the oscillation or drastically reduce its output power, as in the case of wind

farms [83].

Several detection methods have been proposed given the adverse potential of forced

oscillations on the grid (e.g., [97]). In [98], a novel multi-delay self-coherence method using

data measured by PMUs is designed not only to detect but also to locate the source of a

forced oscillation. The reader is referred to [79] for a comprehensive review of such techniques.

Meanwhile, [99] provides a suppression control method that can automatically induce a power

injection into the power grid to compensate for the impact of the forced oscillation.

Most oscillation detection proposals consist of a chain of signal processing stages such as

noise removal and filtering (e.g., [83]). While some of these techniques have proven effective,

their computational efficiency is constrained by the complexity of intermediate calculations.

Overcoming this time requirement is crucial if such algorithms are deployed as real-time

Portions of this chapter appear in S. A. Dorado-Rojas, S. Xu, L. Vanfretti, M. I. I. Ayachi, and S.
Ahmed, “ML-Based Edge Application for Detection of Forced Oscillations in Power Grids,” presented at the
2022 IEEE Power & Energy Society General Meeting [12].
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detection pipelines. Even more importantly, if they are to be deployed at the edge. Some

recent contributions have addressed the online performance of detection methods (e.g., [100],

[101]). For instance, the detection algorithm in [85] takes 1.7 s to process and label a forced

oscillation. In, [86], the detection time is about 350 ms. From the commercial point of view,

[102] presents a set of detection methods including patented solutions now implemented in

commercial relays. In summary, it is natural to question if most signal processing-based

solutions are also feasible for real-time deployment.

ML algorithms show promising potential as data-driven methods for oscillation

detection (see [103], [104]) and efficient real-time deployment while harnessing Graphical

Processing Unit (GPU) power. Nowadays, ML models can be easily optimized offline using

existing data, which is known as training. The trained model can be deployed in IoT devices

at the edge to process measurements directly. IoT devices are equipped with a GPU. GPUs

allow ML models to be executed in real-time efficiently [105]. Like the NVIDIA Jetson

TX2, IoT devices have been proven effective for real-time ML-based solutions. Successful

case studies arise from applications such as depth reconstruction from images [106], and face

recognition [107] among others. That being said, the purpose of this work is to make the

case that ML-based models are feasible solutions for real-time pipelines for forced oscillation

detection at the edge, e.g., as part of a new type of protective relay.

Previous works regarding ML for oscillation detection have focused on developing

and deploying the algorithm on a computer, either for offline or real-time detection. Such

“server-centered service” adds the requirement of a communication network for ambient data

collection. An example of this is shown in [100] where an oscillation detection method based

on an improved XGboost algorithm and random power system measurements is introduced.

The trained model is applied to online oscillation detection of a power system, with the

algorithm running on a computer. So, if the algorithm were to be deployed for real-time

detection, data must be streamed through a communication network. Likewise, in [101],

an ML algorithm based on regularized exponential forgetting is proposed. The solution is

suitable for non-stationary data analysis. The model is deployed on a conventional computer,

so measurements such as currents, voltages, and angle differences must be transmitted

through a communication network to apply it to real-time ambient data.

Data transmission from client to server introduces further delays into the overall

detection process, and consequently, practically reduces the computational efficiency of any
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algorithm. Therefore, deploying ML-based oscillation detection algorithms on edge devices

becomes more relevant. As an advantage, it bypasses the communication stages directly and

can work with measurement data on sites near potential sources (e.g., wind farms [102]).

To fill this gap, this chapter introduces a method and presents an ML-based approach

for oscillation detection at the edge deployed on an NVIDIA Jetson TX2. The proposed

method can detect forced oscillations accurately using real-time measurements directly while

efficiently processing the data with the built-in GPU. We must underline that the core of

the contribution is proving the potential of edge devices as means for real-time inference.

The chapter is organized as follows: Section 8.2 describes the procedure to train 1D- and

2D-CNNs. In Section 8.3, we present how the trained models are downloaded to an NVIDIA

Jetson TX2 for real-time execution using TensorRT. The inference results on ambient data

from a wind farm streamed in real-time are discussed in Section 8.4. Finally, Section 8.5

concludes the work.

8.2 CNN Model Description and Training

8.2.1 Foundations of CNN

CNNs are models inspired by the human eye’s mechanism to extract visual details.

CNNs mimic the structure of receptive fields by allocating specialized neurons to detect

features in specific parts of an image. So, a CNN swipes an image looking for local similarities

and then filters out the high-level or global features [39]. Feature extraction allows CNNs to

discriminate raw data into several categories (i.e., similar images have similar characteristics).

Therefore, they exhibit outstanding performance on image classification tasks.

We seek to assess the potential of CNNs for forced oscillation detection in two flavors:

one-dimensional (1D) and two-dimensional (2D) CNNs. The former architecture uses the

measurement data as an input time series. At the same time, the latter sees the ambient

data as images.

Both CNN models are developed in Python using the TensorFlow framework and the

Keras API. As we will see in Section 8.3, TensorFlow offers a direct path to deploy trained

models in hardware using the Software Development Kit (SDK) TensorRT.

8.2.2 Training and Validation Data Set Construction

To build training and testing data sets, we used measurements from a wind farm

in Oklahoma [83]. The information comes from PMU recordings of voltage, current, and
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Figure 8.1: Sample of training PMU data (dotted vertical lines indicate the
event inset and offset).

frequency during various oscillation episodes, which utility workers classified. In Fig. 8.1,

an example event spanning ≊ 12.5 min = 750 s and features a forced oscillation is shown.

We divide the signal into 1 s windows, each window containing exactly 31 samples (there

is a one-sample overlap between consecutive windows). By doing so, we generate ≊ 750

instances from each recording at a particular location, where an instance corresponds to a

1 s window. Examples of training instances can be seen in the 1 s frames in Fig. 8.1.

8.2.3 1D-CNN Model

A 1D-CNN performs a temporal convolution on the input data through several kernels.

Besides the dimensionality of the input, the principles behind the operation of a 1D-CNN

are the same as conventional 2D-CNNs. This model is included since it is more intuitive to

the power engineer because the underlying data set is a one-dimensional time series. Table

8.1 presents a summary of the CNN architecture. All kernels used have a size of 3.

The input is first processed by two convolutional layers (layers 1 and 2), each carrying

out a weighted convolution operation with 64 filters. A ReLU function is employed as

activation in both layers. After the first two activations, a maxpooling1D (layer 3) improves

the robustness of the network to noise by effectively decreasing the number of features and

selecting the most prominent ones. A dropout layer (layer 4) is added right after the pooling
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Table 8.1: 1D-CNN model summary.

nlayer Layer Type Output Shape nparameters

1 conv1d (None, 29, 64) 256

2 conv1d (None, 27, 64) 12352

3 max_pooling1D (None, 13, 64) 0

4 dropout (None, 13, 64) 0

5 flatten (None, 832) 0

6 dense (None, 100) 83300

7 dense (None, 2) 202

Trainable Parameters: 96110

layer to prevent further overfitting (i.e., it restricts the network from “memorizing” patterns

seen in the training instances). The flatten layer (layer 5) converts the multi-dimensional

tensor to a one-dimensional vector. This vector is passed to a fully connected layer ( dense ,

layer 6) with 100 neurons and a ReLU activation. Finally, another fully connected layer

(layer 7) with a softmax activation σ is used to give a probabilistic interpretation to the

network output y. Let z = [z1 z2]
T be the input to the last layer, then

y = argmax

σ
 z1

z2

 = argmax

 ez1

ez1 + ez2
ez2

ez1 + ez2

 (8.1)

The output encoding is as follows: 1 means an oscillation detected from the input

data. At the same time, 0 represents that no oscillation is identified from the passed time

window, and thus the power system is safe. The loss function for parameter optimization

corresponds to a categorical cross-entropy, as commonly done in classification problems. A

visual illustration of the 1D-CNN model is presented in Fig. 8.2. Training and validation

results are shown in Fig. 8.3.
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Figure 8.2: Illustration of the 1D-CNN model.

Figure 8.3: Training and validation results for 1D-CNN.

8.2.4 2D-CNN Model

In contrast with the 1D-CNN model, the 2D-CNN model takes images as inputs. The

operation, however, is similar to the one of the 1D-CNN network, and thus, a detailed

explanation is therefore omitted.

The plots (as RGB images) of the time series data are used as training and validation

inputs, such as the one-second windows in Fig. 8.1. The architecture is shown in Fig. 8.4.
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Figure 8.4: Architecture of 2D CNN Model.

By inspection, it is straightforward to notice that the 2D-CNN model is more complex

than the 1D-CNN, having a significantly larger number of parameters (cf., n2D-CNN
parameters =

2222690 and n1D-CNN
parameters = 96110) and more layers (cf., n2D-CNN

layers = 19 and n1D-CNN
layers = 7).

For this reason, the number of training instances has to be considerably larger to achieve

significant performance.

Fortunately, the image-based approach of the 2D-CNN allows performing data

augmentation. In this case, random transformations of the images (such as rotations

and noising) are carried out to expand the number of training and validation instances,

important for this problem due to the low number of training instances and a large number of

training parameters. Augmentation is performed automatically by the TensorFlow function

ImageDataGenerator .

Training and validation results can be seen in Fig. 8.5. Notice that, since the number of

parameters is larger, the model needs to be trained for more epochs. For either architecture,

given the low number of data instances for this problem, a large number of epochs would

be initially thought of as ideal to maximize data utilization. The number of epochs is such

that the network finds a “sweet spot” where inference performance is not constrained by

overfitting. So, the number of epochs is set to be a maximum of ≈ 300. The resulting model

will therefore be used for inference.
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Figure 8.5: Training and validation results for 2D-CNN.

8.3 CNN Models Optimized by TensorRT

Once the CNN models have been trained offline (i.e., on a computer or server), the

next step is to prepare them for deployment in a target for real-time inference. The library

TensorRT is used to convert the model from frameworks such as TensorFlow/Keras and

PyTorch to CUDA-compatible code, to be deployed to the target device. The target for our

study is the NVIDIA Jetson TX2. For this work, the CNNs were developed in TensorFlow,

so the trained models can be exported either as *.hdf5 files or *.h5 files. The former

format is preferred since fewer intermediate steps are required to import the model within

the TensorRT library.

The conversion and code optimization process is outlined in Fig. 8.6. As mentioned

before, the first step is to save the trained models in a suitable format such as .hdf5 (for

the model weights; so the model would have to be rebuilt and saved) or .h5 (for the full

model). The trained model is then saved to the TensorRT-compatible format .pb . Once in

TensorRT, the model could be deployed directly to the target, but an additional optimization

process can be carried out to improve real-time performance.

TensorRT counts with a set of optimization routines to improve inference performance

(i.e., the time it takes to complete inference provided inputs to the model). As part of the

actions, while optimizing the code, layers with unused outputs are removed, operations with

similar parameters are combined, and subsequent layers are blended into one (for instance,
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Figure 8.6: Outline of CNN model development for deployment on NVIDIA
Jetson TX2 to perform real-time inference.

a convolution operation and an activation function are merged into a single computational

layer). Altogether, the optimization routine yields a model with a less computational burden

on the target and faster real-time inference.

Table 8.2 shows a comparison of the inference time when the model is deployed on

an offline computer and the NVIDIA Jetson device with and without the code optimization

routines of TensorRT. We observe that, without optimization, the average inference time per

sample is within the same order of magnitude for both the Jetson TX2 edge device and the

offline computer. However, the edge device infers ≈ 10x faster thanks to the optimized code.

This result speaks highly of the feasibility of the NVIDIA Jetson TX2 for edge deployment

of a real-time oscillation detection tool: the CNNs detect a forced oscillation using 1 s.

windows within 10 ms, approximately 3x faster than the algorithm in [86]. Also, note that

the inference time for the 2D-CNN is faster than that of the 1D-CNN. This is due to the

most extensive use of optimized linear algebra routines in image convolution operations.
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Table 8.2: Average inference time using different hardware devices.

Hardware/Model 1D-CNN 2D-CNN

Windows PC
Intel i7-7700HQ 2.80 GHz

NVIDIA GeForce GTX 1060
(TensorFlow/Keras Model)

96.931 ms 67.312 ms

NVIDIA Jetson TX2
Non-optimized by TensorRT

74.290 ms 38.379 ms

NVIDIA Jetson TX2
Optimized by TensorRT

9.787 ms 3.410 ms

8.4 Detection of Forced Oscillations

The performance of the CNN-based forced oscillation detection method on the NVIDIA

Jetson TX2 is evaluated with two different experiments (see Fig. 8.7). On the one hand,

ambient data never seen neither during training nor validation are used as inputs. On the

other hand, synthetic waveforms emulating oscillations created by a signal generator are

fed to the NVIDIA Jetson’s I2C input ports through a bespoke analog to digital conversion

board. Note that the time series require additional preprocessing (for instance, generating

the plots from the time series data for the 2D-CNN) in the Jetson’s CPU before performing

inference in the device’s GPU.

From Figs. 8.7a and 8.7b, we observe that the CNNs succeed at detecting the oscillation

and keep providing correct predictions while the event is active. However, accuracy is not

100%, as expected. A simple running window algorithm can be used to discard false positives

by keeping track of the CNN recent predictions (e.g., if most of the inferences in the last 2 s

are 0 , then the CNN’s 1 output should be discarded). Both the 1D- and 2D-CNN detect

the oscillations using measurements at different grid locations where they could be deployed.
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(a) 1D-CNN output to ambient data.

(b) 2D-CNN output to ambient data.

(c) 2D-CNN output to synthetic
generator.

Figure 8.7: Real-time inference results from ambient data and synthetic signal
generation.
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Fig. 8.7c illustrates how oscillations are detected when an external signal is applied to

the Jetson TX2 board using a signal generator. The forced change results from superimposing

a sinusoid on a noisy signal. Accuracy improves compared to the ambient data experiment

since the signal is not as “challenging” as those from the grid. The result shows that CNNs

can learn the patterns of an oscillation using data from one system and then identify such

events in another (i.e., transfer learning [39]).

8.5 Conclusions

We introduced an ML-based approach for detecting forced oscillations in power grids

using an IoT edge device, an NVIDIA Jetson TX2. Two NN models, 1D- and 2D-

CNNs, respectively, were trained using the TensorFlow/Keras framework. Then, the trained

model code was optimized using the TensorRT library for real-time execution at the edge.

Optimized code has proven to be faster than offline execution on the hardware. We evaluated

the performance of the proposed CNNs on two different experiments: using real-world

ambient data and feeding the NN input with oscillation signals created from a signal

generator. The pipeline has proven to be a practical and feasible solution for oscillation

detection in IoT-based monitoring systems based on the observed results.



CHAPTER 9

ORTHOGONAL LAGUERRE AND LADDER RECURRENT

NEURAL NETWORKS

Preliminaries

Discrete-Time Systems

A discrete-time (DT) system is one whose input and output signals are defined at

discrete intervals of time. In this context, a DT system constitutes a mapping between

sequences represented mathematically by a system of difference equations (DEs).

Let y ∈ Rny×1 be the vector of ny outputs, u ∈ Rnu×1 the vector of nu inputs, then a

DT system is represented by max(m,n)-th order system of difference equations:

yk+n = h̄ (k,yk+n−1,yk+n−2, . . . ,yk,

uk+m,uk+m−1,uk+m−2, . . . ,uk) .
(9.1)

It is possible to rewrite the system in (9.1) as a set of DEs, which is known as a

state-space representation. This is founded on the concept of state. The state of a system

at time k = k0 is “the information that, together with the input u for k ≥ k0 determines

uniquely the output y for k ≥ k0” [108]. A state-space representation for a DT system is

given by

xk+1 = f̄ (k,xk,uk) (State Equation)

yk = ḡ (k,xk,uk) (Output Equation).
(9.2)

The function f̄ represents an updating policy since it moves the states one step forward

in time. ḡ is a static nonlinear operator. The state vector of a system gives insight into

the internal operation of the system. Therefore, state-space descriptions are called grey-box

models.

Portions of this chapter appear in S. A. Dorado-Rojas, B. Vinzamuri, and L. Vanfretti, “Orthogonal
Laguerre Recurrent Neural Networks,” presented at the 34th Conference on Neural Information Processing
Systems (NeurIPS) [13].

112
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In particular, the case where the forward mapping is linear can be represented by linear

transformations. Furthermore, if time does not appear explicitly in the equations, we have

a discrete-time linear time invariant (DTLTI) system

xk+1 = Axk +Buk (State Equation)

yk = Cxk (Output Equation).
(9.3)

Note that the output is not directly connected to the input. This is a reasonable

assumption for most practical DT systems.

9.1 Introduction

RNNs are special structures employed to deal with structured data such as sequences

and time series. RNNs have been successful in tasks such as natural language processing,

forecasting, and speech-to-text recognition. By definition, the output of an RNN at time k

(yk) depends not only on the current input uk but also on past values of the output yk−1.

The current output is generally computed as

hk = σ (uk,yk,hk−1)

yk = γ (hk)
(9.4)

where σ and γ are activation functions. For a vanilla RNN, the hidden state is computed

as hk = σ (Wuuk +Wyyk−1) with output yk = hk. This structure has been shown to have

training difficulties such as unstable gradients and long-term memory vanishing [39].

Long Short-Term Memory (LSTM) cells and Gated Recurrent Unitss (GRUs) have

been developed to overcome the main drawbacks of vanilla RNNs. However, they have

been shown to suffer long-term memory issues when faced with sequences with more than

1000 samples [109], [110]. For this reason, several novel architectures have been recently

formulated as an attempt to address the caveats of LSTMs and GRUs. Most of these

proposals have been constructed following either the LSTM approach (i.e., by decoupling

the state in two vectors) or the Legendre Memory Unit (LMU) structure (i.e., by performing

gating operations to preserve only one hidden state).

The introduction of LMUs represents a deep connection between RNNs and dynamical

systems from the design point-of-view, despite some previous efforts to analyze the structure

from the dynamical systems perspective [111], [112]. The memory update policy of LMUs is
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the state equation of a DTLTI system described by

xk+1 = Axk +Buk (9.5)

where x ∈ Rn×1 is the memory (state of the cell), uk is the input to the memory gate,

and the pair (A,B) corresponds to a discretized state-space representation of shifted

Legendre polynomials, portrayed by n coupled ordinary differential equations (ODEs). The

orthogonal time-domain projection inside LMUs improves memory capabilities, reduces the

number of trainable parameters, and makes the network capable of achieving state-of-the-

art performance on challenging benchmark tasks for sequential data classification such as

psMNIST [113].

Nevertheless, LMUs only make use of the state equation. The output equation (i.e.,

yk = Cxk) does not appear within their structure. The use of this equation inside a RNN

becomes even more relevant if the (A,B) pair represents an orthogonal family of functions,

like shifted Legendre polynomials.

With an embedded full state-space representation based on orthogonal functions, a

RNN would be able to learn any stable DTLTI dynamics [114]. In other words, the use of

the output equation would enable the RNN to steer the behavior of some internal signal

towards any energy-limited signal, encoded inside the DTLTI system represented by the

state equation and the output equation. Thus, the generalization capabilities of the network

would be increased by including an orthonormal basis in the state equation, and the explicit

use of the output equation.

9.1.1 Problem Specification

The most general framework to model physical dynamical systems is that of hybrid

systems. A hybrid system is one that shows both continuous-time (CT) behavior, described

by a system of ODEs, and DT behavior, modeled by a system of DEs. In spite of proposals

to understand RNNs from a hybrid [115] or a CT system [116] viewpoint, a DT system

framework is still a more familiar fashion to treat RNNs as dynamical systems.

The representation of DT dynamical systems has a close connection to RNNs.

According to (9.4), the output of an RNN depends not only on the current input but also

on past values of the output and the hidden state. A direct comparison between (9.4) and

(9.2), with the state-equation delayed by one sample, shows the hidden state layer can be
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thought of as the state equation of a nonlinear dynamical system:

xk = f̄ (k,xk−1,uk−1) ←→ hk = σ (uk,yk,hk−1)

yk = ḡ (k,xk,uk) ←→ yk = γ (hk) .
(9.6)

This work uses this connection as a starting point to design a memory updating policy

for a RNN architecture inspired by the state-space representation of a DTLTI system (Eq.

(9.3)). The linear time invariant (LTI) dynamics are encoded using Laguerre polynomials, an

orthonormal basis for stable LTI systems. By setting up such a basis in the state equation, the

RNN can steer the internal behavior of the embedded DT system to any stable LTI dynamics

by learning the corresponding coordinate vector. In particular, for the Ladder network the

input-output behavior is selected to match discrete-time delays which help improve the

memory capabilities of the RNN constraining its operation by a dynamical system. In other

words, Laguerre polynomials are used because of their orthonormal constructive properties

rather than by its geometrical implementations.

The contributions of this chapter are the following:

• we propose a novel RNN architecture inspired by DTLTI dynamical systems, called an

orthogonal Laguerre RNN.

• we introduce two variants based on the proposed network architecture: a general

orthogonal Laguerre network, and a Ladder network which takes advantage of a special

case of Laguerre functions that correspond to delay networks;

• we validate the performance of the proposed architecture and its two variants with

a system identification and a response prediction benchmark against state-of-the-art

RNN architectures.

The architecture (Fig. 9.1) consists of three main pipelines: a state flow x, a memory

flow m, and a hidden output flow h. Trainable weights are wf , Wy,h, Wy,x and Wy,f . C

might be trainable or not depending on the architecture: for Laguerre, it is trainable whereas

for Ladder it is fixed.
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Figure 9.1: Orthogonal Laguerre RNN architecture.

This model has an embedded state-space representation of LTI dynamics based on

Laguerre functions. The state equation dictates the policy update of the state x. The

memorym is computed as a linear transformation of the state x through the output equation.

The output of the cell is computed by the projection of the previous output, actual input,

and updated memory through a nonlinear static layer, in a similar fashion to Non-saturating

Recurrent Units (NRUs) [117].

The Laguerre network uses a fixed Laguerre representation (A,B) to perform an

orthogonal state update. The output equation is used so that the network can determine

what dynamics are most convenient to compute the memory m by learning the coordinate

matrix C. On the other hand, the Ladder network a specific case of a Laguerre network. It

is founded on the relationship between discrete-time Laguerre networks and Kronecker-delta

impulses. In this case, the state-space representation is fixed (i.e., the coordinate matrix

is not learned) so that the discrete-time behavior inside the RNN structure is imposed by

design. By doing so, the RNN becomes able to retain memory information for arbitrary

periods of time thanks to the implicit internal delay dynamics.

This chapter is structured as follows: Section 9.2 resumes the most recent contributions
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in terms of RNN architectures regarding orthogonality and dynamical systems-inspired

design. In Section 9.3, the theory underlying the architecture is presented and the design

is explained. Experiments are discussed in Section 9.4, Finally, the work is concluded in

Section 9.5 with a discussion of the experimental results.

9.2 Related Work

Gated Orthogonal Recurrent Units (GORUs) can be considered as an example of a

GRU-inspired solution to the major RNN drawbacks. GORUs are based on the projection

of the previous hidden state through an orthogonal matrix together with a modified non-

saturated activation to compute the unit output [118]. The orthogonality approach was first

introduced in Unitary Evolution Neural Networks, where the hidden output weight matrix is

constrained to be a unitary matrix with normal eigenvalues (i.e., magnitude one) to tackle the

vanishing gradient problem directly [109]. Another proposal is the scaled Cayley orthogonal

recurrent neural network (scoRNN) [119] which reduces the number of trainable parameters

by a skew-symmetric matrix parametrization of the weight matrices and avoids complex

values during training. Moreover, Light-GRUs (Li-GRUs) are founded on the removal of the

reset gate of the standard LMU architecture with a modified ReLU activation [120].

Another GRU-inspired architecture that incorporates some concepts of dynamical

systems is the bistable recurrent cell family which has been introduced in two variants:

Bistable Recurrent Cell (BRC) and Neuromodulated Bistable Recurrent Cell (nBRC) [121].

In this case, the hidden state is updated according to a nonlinearity that forces two stable

states on the underlying dynamical system. For BRCs, the hidden state is updated using

local information only (i.e., of each cell), whereas, for nBRCs, the state is updated using the

information of all cells in a layer.

In contrast with approaches with a single hidden state, JANET is derived from the

LSTM structure to result in an architecture that enhances the role of the forget gate by

removing the input and output gates [122]. Likewise, NRUs decompose the state into a

memory and a cell state. The memory is updated through vector operations on the previous

cell by writing and erasing content in specific directions [117]. The output is computed using

a nonlinear layer using the previous output, the updated memory, and the cell input. This

output layer configuration is also seen in LMUs. For LMUs, in [113], a memory update

is proposed using an orthogonal decomposition using shifted Legendre polynomials, an L2
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orthogonal basis.

Unlike LMUs, our Laguerre and Ladder architectures use a complete state-space

representation to embed LTI dynamics inside an RNN. This guarantees that any stable

LTI system can be represented by the appropriate coordinate vector inside the network.

Moreover, shifted Legendre polynomials, the orthonormal basis used in LMUs, is obtained

from Legendre polynomials after time scaling and time shifting operations. The

implementation of LMUs has shown that the time scaling must be set during network

construction depending on the sequence to be processed by the RNN. Laguerre functions

are orthonormal in [0,∞). So, no further scaling or shift must be done to implement them

when constructing the RNN.

We can see that the Laguerre functions are selected because of their capability to span

a vector space (i.e., the space of stable LTI systems). This contrasts with the motivation

of GORUs where orthonormal matrices were used to preserve information under a linear

transformation between spaces. Hence, orthonormality is used in the algebraic rather than

in the geometrical sense.

9.3 Ladder and Laguerre Orthogonal Architecture

This section discusses the theory behind Laguerre functions from the dynamical systems

viewpoint before detailing the proposed RNN architecture and its two variants. Special

emphasis is made in the state-space representations of Laguerre polynomials in CT and DT.

It is shown that the DT transfer function representation of the Laguerre networks leads to

a special relationship between Laguerre functions and shifted unit impulses. Due to this, it

is possible to embed delay dynamics inside an RNN. This latter relationship is the basis for

the formulation of the Ladder architecture.

9.3.1 Laguerre Functions

Laguerre functions are a family of Eigen functions arising from the Sturm-Liouville

problem characterized by their orthonormality. The set of Laguerre functions ℓ(i)(t) (i =

1, 2, 3, . . . ) is defined as
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Figure 9.2: CT Laguerre polynomials.
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(9.7)

where p is a parameter called time scaling factor.

Laguerre functions are a complete set over [0,∞). Thus, they can be used to reconstruct

any L2 function f (t) by means of a Generalized Fourier Series expansion

f (t) =
∞∑
i=0

ciℓ
(i) (t) (9.8)

with ci being the ith coefficient of f on the ith element of the Laguerre basis. Moreover,

under mild assumptions on the function f ∈ L2, a Generalized Fourier Series expansion

with N Laguerre functions can be used to define an arbitrarily close approximation to the

function f
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∫ ∞

0

(
f (t)−

N∑
i=1

ciℓ
(i) (t)

)
dt < ε (9.9)

for any ε > 0 [123]. This characteristic means that it is possible to represent dynamics

whose characteristics are conveniently captured by an absolutely integrable signal using a

finite number of Laguerre functions [124]. Systems completely characterized by an absolute

integrable signal correspond to stable LTI systems. Then, it is possible to represent LTI

dynamics by Laguerre polynomials.

Laguerre polynomials have a convenient mathematical representation in state-space

[123]. Let l be the vector containing the first N Laguerre polynomials as functions of time

l =
[
ℓ1 (t) ℓ2 (t) . . . ℓN (t)

]T
.. In particular, we are interested in the values at t = 0,

that is, l (0) =
[
ℓ1 (0) ℓ2 (0) . . . ℓN (0)

]T
. Then, the Laguerre polynomials can be

generated by

l = eAℓtl (0) (9.10)

where the matrix Aℓ, referred to as Laguerre matrix, is parametrized in terms of the scaling

factor p as follows:

Aℓ =


−p 0 . . . 0

−2p −p . . . 0
... . . .

. . .
...

−2p −2p . . . −p

 . (9.11)

The Laguerre matrix is lower triangular. Moreover, it is parametrized in terms of p only.

This mathematical convenience supports its application in areas such as Model Predictive

Control [123], [125].

The vector of initial conditions together with the Laguerre matrix can be used to

constitute a state-space representation for any stable CTLTI system [123]. For simplicity,

consider the single-input single-output case

ẋ = Aℓx+Bℓu

y = Cℓx
(9.12)
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with Aℓ ∈ Rn×n, Bℓ = l (0), and Cℓ = [c1 c2 . . . cn]. c is a coefficient matrix that depends

on the system being considered. This equation can be extended to multiple inputs by

concatenating the initial condition vector along the columns, and computing the coefficient

vector for each of the output channels. Either way, the matrices Aℓ and Bℓ are fixed for

all stable CTLTI systems. The coefficient matrix, which changes from system to system,

represents the coefficients of specific dynamics on the Laguerre basis.

9.3.2 Discrete Laguerre Functions and Unit Delays

A DT Laguerre network ℓ(i)(z) is generated from the discretization of a CT Laguerre

network, which in turn can be defined as the Laplace transform of the corresponding Laguerre

polynomial ℓ(i) (s) = L
{
ℓ(i) (t)

}
.

Let ℓ
(i)
k = Z−1

{
ℓ(i) (z)

}
be the inverse z-transform of ℓ(i)(z) (i.e., the time-domain

representation of the ith Laguerre network). DT Laguerre sequences are orthonormal over

k ∈ [0,∞), so they can be employed as a basis to reconstruct any absolutely summable

sequence (i.e., any stable linear time-invariant system or finite-energy deterministic signal).

The transfer functions of the DT Laguerre networks are given by

ℓ(1) (z) =

√
1− a2

1− az−1

ℓ(2) (z) =

√
1− a2

1− az−1

(
z−1 − a

1− az−1

)
...

ℓ(N) (z) =

√
1− a2

1− az−1

(
z−1 − a

1− az−1

)N−1

...

(9.13)

where a is a parameter known as scaling factor that represents the location of the Laguerre

network pole [123]. Consequently, stability and non-alternating behavior requires 0 ≤ a < 1.

While RNN design from DT Laguerre networks would need special tuning to

avoid numerical implementation issues, they have a particular representation which is of

fundamental importance for the formulation of the Ladder network in Section 9.3.3. The

Ladder network is founded upon a special case of Laguerre functions: discrete-time delays.

The dynamic behavior of delays has received particular attention by the deep learning

community given their inherent long-term memory characteristics [126]. However, a practical
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implementation of a CT delay requires a rational function approximation, usually through

Padé approximants as done in [126]. In contrast, DT delays have a simple transfer function

representation and a finite-dimensional state-space representation which makes them suitable

for an RNN implementation.

To illustrate the connection between Laguerre functions and delay systems, consider

the Nth Laguerre network given by

ℓ(N) (z) =

√
1− a2

1− az−1

(
z−1 − a

1− az−1

)N−1

.

Let a = 0. The corresponding Laguerre Nth-order network transfer function is written

as ℓ̄(N) (z). It can be easily shown that ℓ̄(N) (z) has the form

ℓ̄(N) (z) =
(
z−1
)N−1

=
1

zN−1
(9.14)

which corresponds to the transfer function of a delay of N−1 samples. This transfer function

is rational and strictly proper. As a consequence, it has a finite-dimensional state-space

realization which contrasts with the infinite dimensionality of its CT counterpart. This

makes a DT delay suitable for practical implementation.

The inverse z-transform of ℓ̄(N) (z) corresponds to the shifted Kronecker-delta impulse

ℓ̄
(N)
k = δ [k − (N − 1)] = Z−1

{
ℓ̄(N) (z)

}
. (9.15)

Thanks to this simple equivalence, it is evident that Kronecker-delta impulses can

be represented using Laguerre sequences. This is important since shifted Kronecker-delta

impulses are the time-domain representation of ideal DT delays. Thus, the use of Laguerre

networks inside an RNN can lead to the inclusion of delay dynamics inside an RNN.

The Ladder network is founded on the Laguerre representation of a multiple-input

multiple-output system which delays each channel of an input signal by an arbitrary number

of samples at each time. For the sake of simplicity, consider a discrete-time system having

nu inputs and ny = nu outputs. The transfer function of this squared delay system with

nu = ny, G (z) ∈ Cnu×nu , is given by
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G (z) =


1

zn1
0 . . . 0

0 1
zn2

. . . 0
... . . .

. . .
...

0 0 . . . 1
znu

 (9.16)

where n1, n2, . . . , nu ∈ N are the delay samples of each channel. A particular case of this

squared delay system is one in which the delays increase unitwise per channel:

G (z) =


1
z

0 . . . 0

0 1
z2

. . . 0
... . . .

. . .
...

0 0 . . . 1
znu

 . (9.17)

9.3.3 Architecture Design

The proposed orthogonal architecture is detailed in Fig. 9.3. The blocks with trainable

weights are colored in blue (output equation, memory filtering and nonlinear output layer).

Note that the memory is constrained to have the same dimensions as the input so that it

can be used as means to store input information in the output of the dynamical system.

The design is interpreted as follows: consider an input with nu features (uk ∈ Rnu×1).

The state the output equation constitute a DTLTI system that processes the past memory

mk−1, state xk−1, and the current input uk to update the state xk by

xk = Axk−1 +B (uk +mk−1) (9.18)

where A ∈ Rn×n and B ∈ Rn×nu are discrete Laguerre matrices obtained after discretization

of the continuous Laguerre matrices in (9.12). n is the order of the network that corresponds

to the number of Laguerre polynomials used to encode the DTLTI dynamics into the RNN.

Once the state is updated, it is fed into the output equation to compute the memory

update mk through the learnable coordinate matrix C. The memory is filtered elementwise

by the local weight vector wf to produce fk which is fed into the nonlinear output layer.

The nonlinear output layer has been adapted from the one proposed by [117]. It

produces ny hidden outputs through hk = yk ∈ Rny×1. The logits are computed by the

linear combination of the previous hidden output hk−1, the updated state xk and memory
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Figure 9.3: Detailed orthogonal Laguerre RNN architecture.

mk through the weights Wy,h ∈ Rny×ny , Wy,x ∈ Rny×n and Wy,f ∈ Rny×nu . The logits are

passed through a nonlinear activation function σ that counts with a bias term not shown in

the diagram.

9.3.3.1 Laguerre Network

The Laguerre network uses a fixed pair (A,B) where A = Aℓ and B = Bℓ. In other

words, the RNN has to determine during training the coordinate matrix C that results most

optimal to the task under consideration.

For this architecture, the order n (i.e., the number of Laguerre polynomials) is left as

a design hyperparameter. Further hyperparameters are the scaling factor p (default, p = 1),

the sampling time ∆T used for discretization (default, ∆T = 1 s), and the sampling method

(default, zero-order hold).
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9.3.3.2 Ladder Network

The Ladder network employs discrete Laguerre networks with a = 0 (Eq. (9.14)) to

introduce DT delay dynamics inside the RNN. For this reason, the matrices (A,B,C) are

non-trainable (i.e., the coefficient matrix C is fixed). In fact, (A,B,C) correspond to a

state-space realization for the Ladder system G (z) ∈ Cnu×nu

G (z) =


1

zm1
0 . . . 0

0 1
zm2

. . . 0
...

...
. . .

...

0 0 . . . 1
zmd

 (9.19)

where m1, m2, . . . , mnu−1, mnu are the delays of each channel, fulfilling m1 < m2 < · · · <
mnu . Note thatmnu = md, the maximum delay, is specified by the user. Using this input, the

algorithm to construct the Ladder network in transfer function form distributes the delays

m1,m2, . . . ,mnu−1 equally among all the input channels. For example, for a system with 100

inputs and a maximum delay of 100, G(z) has the form:

G (z) =


1
z

0 . . . 0

0 1
z2

... 0
... . . .

. . .
...

0 0
... 1

z100

 . (9.20)

Likewise, for a system with three inputs and mnu = 100, we have

G (z) =


1
z

0 0

0 1
z50

0

0 0 1
z100

 (9.21)

where the signal on the first, second and third channels will be delayed by one, 50 and 100

samples, respectively.

Once the matrix G (z) is constructed, a state-space representation is computed in

controllable-canonical form. The resulting matrices (A,B,C) are set inside the RNN

architecture (Fig. 9.3) to construct the Ladder variant. The implementation of the system

G (z) inside the RNN structure relies on the library python-control1.

1https://github.com/python-control/python-control.

https://github.com/python-control/python-control


126

Finally, it must be underlined that all experiments in Section 9.4 use the length of the

TS (in number of samples) as the maximum delay md.

9.4 Experiments

The performance of the proposed architecture and their variants is evaluated

experimentally in two benchmarks in which the RNN is challenged to learn dynamical

behavior from data.

To generate the training data, the system of differential equations representing the

continuous-time dynamics is integrated by an ODE solver instead of discretizing the CT

dynamics and computing the outputs from the resulting DEs. Two different systems are

studied: a pendulum and a fluid flow.

9.4.1 Time-Series Prediction from Dynamical Systems

For time-series prediction benchmark, the goal is to predict the behavior of a nonlinear

system from a set of available measurements [127]. The experiments are performed for a

pendulum with no friction, and a fluid flow system.

In contrast to the approach in [127], the problem is formulated in a supervised

framework where the training data batches are generated by the keras functionality

TimeseriesGenerator . Nevertheless, the splitting between training and testing data is

maintained (35.29% for training, and 64.71% for testing). Results are reported for five

different seeds.

The forecasting error is defined as the relative difference between the ground truth and

the prediction at the final step:

e =
∥ŷp − y∥2
∥y∥2

(9.22)

where ŷp is the forecasted output and y is the ground truth. The experiments are performed

in noiseless and noisy conditions (Gaussian noise) for two different systems: a pendulum and

a fluid flow model.

Pendulum

The pendulum dynamics are represented as:
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d2θ

dt2
+

g

ℓ
sin θ = 0 (9.23)

with g = 9.8 and ℓ = 1 [127]. In this case, the initial condition was changed so that the

system will switch between linear (θ0 = 0.8) and nonlinear operation (θ0 = 2.4). Notice that

this pendulum equation considers no friction. A state-space representation with x1 := θ and

x2 = θ̇ is given by

ẋ1 = x2

ẋ2 = −
g

ℓ
sinx1.

(9.24)

The data is generated by integrating the pendulum equations directly using a numerical

method in the interval [0, 170] s with ∆t = 0.1 s.

Fluid Flow System

This benchmark represents a nonlinear fluid flow past a circular cylinder at Reynolds

number 100 [128]. The system of ODEs employed to generate the data is expressed as

ẋ1 = µx1 − ωx2 + Ax1x3 + u

ẋ2 = ωx1 + µx2 + Ax2x3

ẋ3 = − λ
(
x3 − x2

1 − x2
2

) (9.25)

with µ = 0.1, ω = 1, A = −0.1 and λ = 10. The initial condition is taken randomly. Data

is generated for the range [0, 2] s with ∆t = 0.001 s.

9.4.2 System Identification

For this experiment, the learning problem aims at determining the state-space

representation of a system from data as a regression task. This problem has been previously

tackled with supervised [129] and unsupervised learning approaches [127].

Either way, the main difficulty of state-space identification is that it requires measuring

the state of the system x, which is typically not available. Usually, the state is estimated using

measurements from the inputs and the outputs of the system which are usually measurable

in practice. This information can be used to determine a black-box model of the system

which does not reveal anything about its internal structure. This approach is widely used
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by dynamical systems practitioners, and has a direct connection to the black-box nature of

an RNN.

For the experiments below, we consider that the input to the system and the initial state

are available, which is a reasonable assumption in a practical environment. Furthermore,

we take all states as outputs. By doing so, our benchmark is constrained to the dynamical

system

ẋ = f (x, u)

y = x
(9.26)

where u is the external input. This is a gray-box problem since we get access to the states

which can describe the internal mechanisms of the system. Moreover, given the fact that

the output of the RNN is the state of the system, the learning task can be understood as a

state estimation problem. The discrete version of the dynamics in (9.26) is given by

xk+1 = f̄ (xk, uk)

yk = xk.
(9.27)

Eq. (9.27), despite its generality, is not into RNN form. To do so, a unit delay is

applied to the state equation to get

xk = f̄ (xk−1, uk−1) . (9.28)

In this way, we see that the previous state and the previous output are required to

update the state. This resembles more the RNN form hk = σ (uk,hk−1). Considering

sequences with nsteps time steps and a system with n ∈ N states, the state and the output

of the discrete-time system are concatenated to construct the input uRNN ∈ Rnsteps×n as

follows2:

2For more details regarding the data generation and preprocessing for the system identification
benchmark, see: https://github.com/AleksandarHaber/Machine-Learning-of-Dynamical-Systems-using-
Recurrent-Neural-Networks.

https://github.com/AleksandarHaber/Machine-Learning-of-Dynamical-Systems-using-Recurrent-Neural-Networks
https://github.com/AleksandarHaber/Machine-Learning-of-Dynamical-Systems-using-Recurrent-Neural-Networks
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uRNN =



x
(1)
0 x

(2)
0 . . . x

(n)
0

u0 0 . . . 0

u1 0
... 0

...
...

. . .
...

uk−1 0 . . . 0


. (9.29)

Note that the first row of the input matrix is the transposed initial state vector x0 =[
x
(1)
0 x

(2)
0 . . . x

(n)
0

]T
. The input values are placed in the first column since it is assumed

that the RNN will deal only with a single output. This matrix unveils that the RNN sees

both the state and the exogenous signal u as inputs.

After defining the input to the RNN, the output is generated by applying an input

to the system and solving the underlying system of differential equations. For simplicity,

we assume an arbitrary random initial state, although assuming the system to be initially

relaxed (i.e., zero initial states) is a common practice. The input is taken to be a random

signal to guarantee that most system modes are excited and can be detected in the output

measurements.

In this way, training, testing, and validation data are produced by setting a different

vector of initial conditions and a random input for each instance in the batch. Then, RNN

training is formulated as a regression problem using mean squared error as a loss function,

feeding the inputs uRNN and computing the outputs y = x. For both experiments, 500

instances are generated, 10% of which is used for validation. Training is performed using

k-fold cross-validation over 5-folds.

This experimentation is performed using two different nonlinear systems as

benchmarks: a pendulum (2nd-order) and a fluid flow (3rd-order) dynamics. Performance

is evaluated using averaged mean absolute error over five-folds.

Pendulum

The mathematical model of the pendulum is similar to that one in (9.24):

ẋ1 = x2

ẋ2 = − bx2 − c sin (x1) + u
(9.30)

with b = 0.5 and c = 1.0. The main difference is that viscous friction is considered. In this
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Table 9.1: Prediction error at final step averaged over 5-fold for the dynamic
system prediction experiment for five different seeds.

Model
Pendulum
(no noise;
linear)

Pendulum
(noisy;
linear)

Pendulum
(no noise;
nonlinear)

Pendulum
(noisy;

nonlinear)

Fluid
Flow (no
noise)

Fluid
Flow

(noisy)

Ladder
0.0150 ±
0.0050

0.0116 ±
0.0018

0.1819 ±
0.1041

0.1929 ±
0.1261

0.5348 ±
0.0373

0.5135 ±
0.0626

Laguerre
0.0146 ±
0.0029

0.0168 ±
0.0057

0.1249 ±
0.0060

0.1257 ±
0.0059

0.5166 ±
0.1338

0.7973 ±
0.5440

LMU
0.2261 ±
0.0986

0.1914 ±
0.0817

0.5132 ±
0.2465

0.5012 ±
0.1133

1.3952 ±
0.0013

1.3942 ±
0.0025

BRC
21.8499 ±
1.8473

23.1749 ±
1.8363

14.0479 ±
4.1699

18.0374 ±
1.7233

0.7843 ±
0.1754

0.6973 ±
0.1684

nBRC
2.1914 ±
0.9910

1.7015 ±
0.4043

2.6853 ±
1.5883

3.0102 ±
1.0030

0.5939 ±
0.0266

0.5656 ±
0.0481

model, x1 corresponds to the angular displacement of the pendulum, and x2 is the angular

speed. u (input to the system) corresponds to the force applied to the pendulum which

causes its movement by creating a torque.

Fluid Flow

The fluid flow model is the same as in Equation (9.31) with an input u affecting the

first state:

ẋ1 = µx1 − ωx2 + Ax1x3 + u

ẋ2 = ωx1 + µx2 + Ax2x3

ẋ3 = − λ
(
x3 − x2

1 − x2
2

)
.

(9.31)

9.4.3 Implementation

All experiments have been implemented in TensorFlow 1 using the keras API. Training

settings were adapted from those implemented by [73] and [113]. Consequently, the training

routine has three main callbacks: ModelCheckpoint to save only the best model during

training, EarlyStopping to avoid setting by hand the number of epochs for each model,

and ReduceLROnPlateau to adjust the learning rate automatically if the algorithm is stuck
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in a plateau of the loss function.

The implementation of the Ladder and Laguerre architectures rely on the

python-control library. For the Laguerre network, the (A,B) matrices are constructed

from the CT equations (9.12) and (9.11). Then, a CT state-space object is constructed

and discretized using the sample function of the StateSpace class. For the Ladder

network, the transfer function G (z) is constructed firstly using numerator and denominator

convolutions taking advantage of the mathematical representation of transfer functions of

DT delays. Then, G (z) is converted into a state-space realization by tf2ss which returns

the (A,B,C,D) matrices used for the implementation of the RNN.

Experiments were executed on three different machines. The characteristics are shown

in Table 9.2. All servers run on Ubuntu 18.04.3 LTS. The commands to dispatch the

simulations are available in the GitHub3 repository.

Table 9.2: Details of the testing equipment.

Server Processor RAM GPU

LittleMan
AMD Ryzen

Threadripper 3960X
(24 cores @ 2.20 GHz)

128 GB
(2x) Quadro RTX
6000 (24 GB each)

Fatboy
AMD Epyc (64 Cores

@ 2.70 GHz)
512 GB

(2x) Titan RTX (24
GB each)

DeepGrid
Intel Xeon E5-1650 (6
Cores @ 3.60 GHz)

256 GB
(4x) GeForce GTX
1080 (12 GB each)

9.5 Discussion

9.5.1 Experimental Results

Results for the time-series prediction and the dynamical systems experiments are

reported in Tables 9.1 and 9.4. All results are reported as an average over 5-fold with

the corresponding standard deviation. For the time-series prediction benchmark, we see

that the proposed Ladder and Laguerre architectures show the best performance for both

systems in noiseless and noisy conditions.

In Fig. 9.4 we can see how the prediction error remains constant for the Laguerre

architecture as the prediction step increases, whereas for LMU and Ladder the error increases

3https://github.com/sergio-dorado/LaguerreRNNs.

https://github.com/sergio-dorado/LaguerreRNNs
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Figure 9.4: Relative prediction error for the noisy nonlinear pendulum
experiment.

progressively accompanied by a larger variance. An important observation is that the

Laguerre and Ladder network can adapt to nonlinear environments despite having a linear

system construction.

Moreover, it was found empirically that the results were particularly sensitive to the

optimizer choice. Results are reported using the Fltr algorithm.

As pointed out in [126], one of the virtues a dynamical system-based RNN such as an

LMU is the reduction on the number of trainable compared to conventional architectures.

For the case of Laguerre and Ladder networks, we must underline that the relationship

between the number of the trainable parameters and the characteristics of the network is

fully interpretable. Table 9.3 shows that the Ladder network balances the trade-off between

number of trainable parameters and performance (the BRC architecture despite having

the smallest number of trainable parameters shows the worst performance in almost all

benchmarks). The Laguerre network counts with as many trainable parameters as LMUs.

It must be underlined that there exists a connection between the number of trainable

parameters and the number of states of the network. Moreover, the larger the number of
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states, the more complex dynamics the memory policy can adapt. However, since the state

is a part of the output layer, the network will need to train a larger number of weights for

higher-order memory dynamics.

While controlling the states is also a characteristic of LMUs, their design requires a

specification of the time shifting parameter to determine the orthogonality domain of the

Legendre polynomials. This fact could be counterintuitive to a designer.

For the case of Laguerre units, only the number of states can be set directly by the

designer. By doing so, all the advantages of controlling the number of states (and hence

the number of trainable parameters) are preserved. Nevertheless, Laguerre layers require no

further parameter specification in contrast to Legendre units.

On the other hand, the delay network needs to specify only the delay amount, from

which the number of states is directly computed. This characteristic reduces the number of

inputs while providing a straightforward interpretation to the designer.

Table 9.3: Number of parameters for the nonlinear pendulum experiment.

Model
Trainable
Parameters

Ladder 59,788

Laguerre 100,792

LMU 100,536

BRC 4,802

nBRC 324,002

For the system identification experiments, all RNN architectures were capable of

learning the system behavior with a small error. This is a consequence of the fact that

a RNN is naturally a dynamic system and the parameters of the network can adapt its

behavior to match the given data. In regards to the proposed architectures, we observe that

the Laguerre network adjusts better to the nonlinear environment than the Ladder RNN.
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Table 9.5: Characteristics of the UCR/psMNIST benchmarks.

Dataset Task Dimensions Length Instances Number of Classes

psMNIST
Sequential
Multi-class
Classification

1 784 70000 10

Chlorine
Concentration

Univariate
Time-series
Multi-class
Classification

1 166 4307 3

Pen Digits

Multivariate
Time-Series
Multi-class
Classification

2 8 10992 10

Phoneme
Spectra

Multivariate
Time-Series
Multi-class
Classification

11 217 6688 39

Wafer
Binary

Time-Series
Classification

1 152 7164 2

Table 9.4: MAE averaged over 5-fold for the system identification experiment.

Model Pendulum Fluid Flow

Ladder 0.0133 ± 0.0012 0.0206 ± 0.0095
Laguerre 0.0185 ± 0.0024 0.0037 ± 0.0001
LMU 0.0074 ± 0.0020 0.0066 ± 0.0003
BRC 0.0891 ± 0.0005 0.0040 ± 0.0009
nBRC 0.0067 ± 0.0065 0.0014 ± 0.0005

9.6 Further Discussion

9.6.1 Results on UCR and psMNIST datasets

The purpose of this section is to validate the performance of the proposed architectures

on several standard datasets. Each of these was selected so that the testing conditions of the

NN covered a broad range of scenarios where it could be deployed in practical applications.

The characteristics of each dataset is presented in Table 9.5.
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The psMNIST dataset has been employed ubiquitously by the Machine Learning

community to assess the performance of novel RNN architectures (e.g., [113], [117]). Table

9.6 shows the experiment outcomes for the testing dataset in terms of the F1 scores. Notice

that the Laguerre and Ladder architectures outperform conventional and recent proposals.

Table 9.6: F1 results for the psMNIST dataset.

Model
Testing
F1-Score

Ladder 0.9765

Laguerre 0.9647

LMU 0.9580

BRC 0.6409

nBRC 0.9271

LMU 0.9157

LSTM 0.9092

Table 9.7 presents the results in terms of testing accuracy. The results of the models

in blue were obtained in our experimental setup. The rest are reported in [117].

Table 9.7: Accuracy results for the psMNIST dataset (extended from [117]).

Model
Testing

Accuracy

Ladder 0.9767

Laguerre 0.9650

LMU 0.9584

NRU 0.9538

EURNN 0.9450

nBRC 0.9280

SRU 0.9249

JANET 0.9194

GRU 0.9167

LSTM 0.9105

RNN.orth 0.8926

LSTM-chrono 0.8843

GORU 0.8700

RNN.id 0.8613

BRC 0.6485
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For k-fold cross validation, with k = 5, we experienced some convergence problems to

validate all benchmarking architectures. More specifically, the k-fold training algorithm did

not converge for the BRC, LMU and nBRC models. Results for five folds on the F1 score

are summarized in Table 9.8.

Table 9.8: F1 results for k-fold cross validation for the psMNIST dataset.

Model Testing F1-Score

Ladder 0.9952 ± 0.009

Laguerre 0.9922 ± 0.014

LMU 0.9585 ± 0.029

LSTM 0.9674 ± 0.033

In regards to the UCR datasets, we see that our architectures rank among the best

performing models for all experiments as shown in Table 9.9.

Table 9.9: Performance on the UCR datasets over 5-fold.

Model
Chlorine

Concentration
Pen Digits

Phoneme
Spectra

Wafer
(AUROC)

Ladder
0.9995 ±
0.0012

0.9979 ±
0.0036

0.2206 ±
0.1208

0.9999 ±
0.0000

Laguerre
0.9987 ±
0.0012

0.9698 ±
0.0172

0.0398 ±
0.0097

0.9999 ±
0.0003

LMU
0.9997 ±
0.0006

0.9962 ±
0.0050

0.2760 ±
0.1721

0.9995 ±
0.0009

BRC
0.2981 ±
0.0122

0.9974 ±
0.0025

0.1725 ±
0.0554

0.9992 ±
0.0005

nBRC
0.3554 ±
0.0567

0.9977 ±
0.0025

0.3598 ±
0.1197

0.9986 ±
0.0012

Numerical Constraints on DT Laguerre Network Design

The purpose of this section is to illustrate some of the caveats of a direct discrete-time

Laguerre network formulation. Let lk ∈ RN×1 be a vector expressing the value of the first N

Laguerre functions at time k, lk =
[
ℓ
(1)
k ℓ

(2)
k . . . ℓ

(N)
k

]T
. The set of N Laguerre functions

satisfy

lk+1 = Aℓlk (9.32)
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with initial condition

l0 =
√

β



1

−a
a2

−a3
...

(−1)N−1 aN−1


(9.33)

The matrix Aℓ has some important characteristics, just as its continuous-time counterpart.

First, it is lower-triangular

Aℓ =


a11 0 . . . 0

a21 a22 . . . 0
...

...
. . .

...

aN1 aN2 . . . aNN

 . (9.34)

Secondly, Aℓ is parametrized in terms of a and β := (1 − a2), and it has a Toeplitz

structure. The first column of Aℓ, written as a1
ℓ , is:

a1
ℓ =



a

β

−aβ
a2β

−a3β
...

(−a)N−2 β


(9.35)

Moreover, Aℓ has a sparse characteristic. If Aℓ ∈ RN×N , the sparsity of Aℓ measured

by the ratio of zero entries to the total number of elements is:

sAℓ
=

∑N−1
k=1 N − k

N2
=

N − 1

2N
(9.36)

The parameter a together with the order of the network N characterize completely the

structure of the Laguerre representation. Theoretically, the higher the order of the network,
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the better the approximation to any unknown dynamics, including delays as happens with

LMUs. However, a high-order Laguerre representation can show numerical problems since

the Aℓ matrix can become too sparse.

This practical upper limit on the order of the approximation can be understood by

analyzing the computation of the kth entry of a1
ℓ for k ≥ 3:

[
a1
ℓ

]
k
= (−a)k−2(1− a2)

The magnitude of this expression is bounded by |a|k. Since 0 ≤ a < 1 for stability, the

kth entry of a1
ℓ will tend to zero for large k (Fig. 9.5. This increases the sparsity of A, but,

in the limit, will turn the matrix ill-conditioned. Despite this, an upper bound on N reduces

the number of trainable parameters since it defines the number of states in Eq. (9.5). A

conclusion from this analysis is that the use of a DT Laguerre representation will imply a

reduced number of learned parameters in order to preserve numerical stability.

Figure 9.5: Magnitude of the non-zero entries of the Laguerre matrix as a
function of the approximation order for several values of a.

It is possible to use float precision to exploit Laguerre functions at the expense of

more memory usage. By setting the a value close to the stability boundary, the numerical
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condition of the Aℓ matrix for the discrete-time design improves. Fig. 9.6 depicts how

increasing the order of the network leads to more ill-conditioned matrices Aℓ. However, by

increasing the value of a close to 1, the condition number can be improved for any Laguerre

order of practical interest. Here, the numerical precision is fundamental: if a is taken as

larger than 1, the dynamics in Eq. (9.5) will be unstable and the memory values will become

unbounded after a few iterations.

Figure 9.6: Condition number of the matrix Aℓ as a function of the parameter
a.

9.7 Conclusions

This work has introduced two novel RNN architectures inspired by DT dynamical

systems: the Laguerre and the Ladder network. In both cases, the memory update policy of

the RNN is constrained by the state equation of a DTLTI system, which is fully parametrized

in terms of the matrices (A,B). For the Laguerre network, (A,B) are obtained after

discretizing the CT Laguerre polynomials. This set of functions has the desirable property

of orthonormality based on which they can be used to represent any stable DTLTI system

through the coordinate matrix C. C is learned during training by the Laguerre RNN so

that the RNN steers the dynamical behavior of the memory towards the optimal LTI system

according to the cost function.

For the Ladder network, (A,B,C) are fixed so that the memory exhibits a delay
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behavior from input to output. This design is carried out directly in the discrete-time

domain where the convenience of the mathematical representation of discrete-time delays

in frequency domain are exploited to embed such system inside the RNN representation.

Thanks to the direct connection of both architectures to LTI system theory, the RNN

behavior is explainable from the dynamical systems perspective: the inclusion of an LTI

basis (Laguerre polynomials) enhances the expressibility of the network, and the delay input-

output behavior guarantees dynamically that the memory flow is preserved through time.

The performance of the networks was evaluating in a forecasting benchmark where

the RNN is subjected to predict dynamical systems data. The experimental result suggests

that both architectures perform better than other dynamics-based RNN proposals which

have received attention recently. These promising empirical results suggest potential for

deployment in industrial applications as a building block for AI-based solutions.



CHAPTER 10

CONCLUSIONS

In the context of 21st-century power systems analysis, this document presented a

methodology to generate synthetic data via phasor time-domain simulations in Modelica.

Also, we profit from the potential of data to develop solutions to assist power system

operators in tasks such as small-signal analysis and forced oscillation detection.

In Chapter 2, we introduced a benchmark analysis to underline the advantages and

disadvantages of different Modelica IDEss from the point of view of simulation performance.

This study helps users make an educated tool and solver selection according to their

particular needs. In Chapter 3, we dive deeper into the importance of power flow

computations for power system dynamic simulations. We employed GridCal, an open-source

Python library, to perform power flow computations. The obtained power flow results are

close to solver tolerance to those of PSS®E, the industry standard for dynamical studies

in power systems. In addition, we introduced a novel data structure taking advantage

of the Modelica Records class to handle power flow variables. Researchers in other

domains can benefit from such a hierarchical, object-oriented approach for efficient parameter

management in the Modelica environments.

Chapter 4 introduced a method for contingency generation based on two-stage Monte

Carlo sampling. Also, we presented the first application of synthetic data in developing a

small-signal stability classifier using “conventional” or “classical” ML techniques.

Chapter 5 described in detail one of the most relevant contributions of this thesis:

ModelicaGridData . This Python-based software tool utilizes load profiles obtained from

the NYISO to generate different initial conditions. The resulting power flows are employed

for simulating highly non-linear power system models under contingency scenarios. The tool

also counts with a data post-processing routine where the user can extract different signals

from the simulation data.

Afterwards, applications of data-driven techniques in power grids were discussed.

Chapter 6 introduced a method for time series-based small-signal stability assessment based

on CNNs. In contrast to conventional (signal processing-based or system identification
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techniques), we showed that the CNNs show a remarkable computational efficiency. This

characteristic of DL methods invited us to explore the potential for real-time applications,

which is the subject of Chapters 7 and 8. The former described a low-cost hardware platform

that can validate the performance of ML solution deployed in IoT devices for inference at the

edge. Chapter 9 presented an application of DL techniques for forced oscillation detection

at the edge, showing excellent performance when subjected to ambient and synthetic data.

Finally, Chapter 9 introduced a novel RNN architecture inspired by DTLTI systems.

The Laguerre network employs a Laguerre polynomial representation as a basis and learns the

coordinates of the stable LTI system that best suits the underlying task. The Ladder network

embeds the dynamics of DT delays to increase the long-term memory retention of the RNN.

Both architectures show state-of-the-art performance in several benchmarks for classifying

and forecasting time series data. This kind of physics-aware solution is fundamental for

conceiving algorithms to help the power system engineers operate the sustainable and greener

electrical networks of the 21st-century.
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