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» Background:
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https://www.oreilly.com/library/view/the-incremental-commitment/9780132882965/ch00a.html

Dominion’s Needs for Model Calibration
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e Dominion’s models for planning are used for
operations analysis, forensics and control design
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Frequency (Hz)

e Modeling challenges 0

o  Conventional model validation require events happening but
system mostly in ambient conditions.

O  Operation conditions change throughout the day due to changing
nature of load, line switching, V setpoint change, etc.
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o Existing model needs to be updated due to unmodeled ° )
dynamics. Voltage Magnitude Spectrogram at
o Difficult to do when models and data are segregated. Unmodeled Generating Unit
e Vision: Cloud-based Data-assisted modeling with — e e
Modelica-based technologies P
o  Quickly accessible synchrophasor data using PredictiveGrid™
o  Portable model modules for various generator stations with S

enhanced functionalities to match to data (linearization).

O Quickly do model validation and calibration “on-demand” to
support planning and operation tasks.

Meta Data

Predictive Grid Synchrophasor Platform



The Modelica Language and the OpenIPSL Library
for Power System Modeling and Simulation

Non-proprietary, object-oriented,

equation-based ¢
modeling language Modelica
y 4 Language

for cyber physical systems .
Open access (no paywall) & standardized
language specification (link), maintained by the
Modelica Association

Open source Modelica Standard Library with
more than 1,600 components models.
Supported by 9 tools natively, both proprietary
(Dymola, Modelon Impact, etc.) and Open
Source (OpenModelica)

A vast number of proprietary and open-source
Modelica Libraries
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OpenlPSL is an open-source Modelica library for
power systems that:

Contains a vast number of power system
components for phasor time domain modeling
and simulation of power systems (transmission
and distribution)

Several models have been verified against a
number of reference tools (PSS/E, PSAT).

OpenlIPSL enables:

Unambiguous model exchange, use of model in
Modelica-compliant tools, and export with FMI.
Formal mathematical description, no
discretization w.r.t. specific integration method.
Separation of models from tools and solvers.
Using Dymola, as fast* as PSS/E (link).



https://github.com/modelica/ModelicaSpecification
https://www.modelica.org/association
https://mbe.modelica.university/components/packages/msl/
http://dymola.com
https://www.modelon.com/modelon-impact/
https://www.openmodelica.org/
https://modelica.org/libraries
https://github.com/openipsl
https://alsetlab.github.io/NYPAModelTransformation/
https://ep.liu.se/ecp/article.asp?issue=157&article=050&volume=

OpenIPSL Library and Example
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[ Note: Modelica uses object-orientation, so the swing equations are not shown because they are inherited from a base class, as they are the same for all models. ]




The Functional Mockup Interface Standard -fm I Mock-Up

FMI is an open access standard, also from the Modelica
Association.

It defines a container and an interface to exchange dynamic
models using a combination of XML files, binaries and/or
(source) C code zipped into a single file, called a Functional
Mock-up Unit (FMU) or .fmu.

CS
Supported by simulation 100+ tools!

FMI supports model export in two modes Co-Simulation (CS)
and Model Exchange (ME)
With a Model Exchange FMU, the numerical solver is
supplied by the importing tool. The solver in the importing
tool will determine what time steps to use, and how to
compute the states at the next time step. ME
With a Co-Simulation FMU, the numerical solver is
embedded and supplied by the exporting tool. The
importing tool sets the inputs, tells the FMU to step
forward a given time, and then reads the outputs

Functional
Interface
Master Tool Slave FMUs
: FMU
_C I Model I Solver I
FMI
Tool
: FMU
_C I Model | Solver I
FMI
FMU
—CO Model
Tool FMI
Solver
FMU
B



https://fmi-standard.org/downloads/
https://fmi-standard.org/tools/

Developing a Cloud-Based
Proof-of-Concept Prototype

e Challenge: Typical generator plant models are isolated in
simulation tool (PSS/E):

- e

o Limited to in-built -

capabilities of the tool
o Not possible to deploy N o T

existing PSS/E model in PredictiveGrid platform.

e Solution: use Modelica and FMI to create a portable
model! However, the models needed were not available
in OpenlIPSL.

e Approach:

o  Implement the model in Modelica and verify against PSS/E.
o Ifresults are the same, export Modelica model as an FMU
o  Deploy model in platform and build toolchain for model
calibration:
e Use Python functionalities to deploy the model in platform.
e Use Python and Jupyter notebooks to build calibration
“notebook” in cloud platform.

SW-to-SW verification of the plant model
(PSS@E vs. Modelica)

v

Export Modelica model as FMU with source
code

v

Predictive Grid Integration:
Query measurements data
Implement signal processing of PMU data
Couple the model (FMU) with PMU data
Integrate tools for model calibration, i.e.
optimization-based parameter estimation.

v

Manually Update PSS/E Model Data
(Could also be automated)




Models for Software-to-Software Verification

Plant configuration of the reference PSS@E model = Modelica Implementation using the OpenlPSL Library
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Verification: Modelica vs PSS/E

Sample Test: 3-phase fault to ground applied to bus FAULT of the test system at t=2sec for 0.15sec
Modelica model simulated in 2 different Modelica-based tools:
o Dymola: Modelica software tool from Dassault Systems, link.
o Modelon Impact: Modelica software tool from Modelon, link.

PSS/E: Siemens PTI, v33.
Other verification examples online at: hitps://alsetlab.qgithub.io/NYPAModelTransformation/
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https://www.3ds.com/products-services/catia/products/dymola/
https://www.modelon.com/modelon-impact/
https://alsetlab.github.io/NYPAModelTransformation/

Model Variant:
Coupling for PMU-data Replay and FMI Export
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Record with system data

Blocks with power flow data as a
parameter.

Controlled voltage source
Generator model (GENROE)
Turbine Governor model (IEEEG1)
Power System Stabilizer model
(PSS2A)

Automatic Voltage Regulator model
(ESST1A)

Model interfaces giving the output
active and reactive power of the
generator (4)

Inputs for measurements




# Determining data:

sub_line_list = [[' kv','VPHM','A',0],
Sub-station ;o
Signal Processing =

kV Delta','IPHM','A',0],

Voltage kV Delta','IPHM','B',0],
K

V Delta','IPHM','C',0],
L I kv Delta Ia','IPHA','A',0],
eve kv Delta Ib','IPHA','B',0],

kV Delta Ic','IPHA','C',0]]

Data is retrieved
° PMU stream is selected .
Time window is selected nline = len(sub_line list)

. . . # Get all streams
° Samp“ng frequency is determined AL Streams = getstreams DFR(conn, [sub_line list[ii][0] for ii in range(nline)l,

[sub_line list[ii][2] for ii in range(nline)],
[sub_line_ list[ii][3] for ii in range(nline)],
[sub_line list[ii][l] for ii in range(nline)])

All Streams = [All_Streams[i][sub_line list[i][4]] for i in range(nline)]

basevals = get_base(conn,All_Streams)

# Time window

= T _window = 1*60 # window size in seconds
Data Is prepared tstart = datetime(2020, 8, 26, 20, 58, 0, 0).timestamp()*le9

trange np.array([tstart,tstart+T_window*1le9]) # time window

e Data passes a high pass filter (very low Pyl i

frequenc|es removed) fdatamat_pre,tdata = ExtractData resample 2(conn, All_Streams, '', trange[0], trange[l], 1/fs, basevals)
e Data passess a low pass filter (noise)
e Data is resampled (match time step of solver) o EZZ#’i"?EZ?;i;i?ZZ'E:i;E‘EiE3ff;§t§:i§?§;ishape<datamaﬂii])) o8 10 I rmnn hendasamaty ]

datamat_process = [(np.array(datamat[ii])-np.mean(datamat[ii])).tolist() for ii in range(len(datamat))]
datamat_process = butter_filter(datamat_process, 'high',f filter[0],fs) # detrend

[
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datamat_process butter_filter(datamat_process, 'low',f_filter[1],fs) # denoise
# add mean again
datamat_process = (np.array(datamat_process)+mean).tolist()

- - - if f filter[l] < fs/2:
Final Signals for Model Coupling ? domanple
s_re = 2*f filter
e Current and voltage magnitudes and angles e e
else:

become phasors in per unit e

fs_re = fs

e Calculated, positive sequence V, |, P and Q. return dstamat_process, tdat_ve, fa_re

#--— Filter data:

e Real and imag. parts of voltage are extracted e e o 5 R e P e T




Coupling: Model, Measurements and Optimizer

Import a specific user defined library for connection to the 1

platform and retrieve data J

.

Import standard Python modules for mathematical calculations, data \\

from Chetan_libe2 import *
conn = btrdb.connect("internal.api.dominion.predictivegrid

import time

import os

import pandas as pd

import numpy as np

from modestpy import Estimation

processing and ModestPy tool after its installation J

.

# Instantiate FMU
[ Instantiation of the FMU l———';2:51ii.gd;i“i;ilfiﬂli'

—

[ Defining inputs/outputs after signal processing Miﬁiiip”?m?m“ it
ideal['Pout’'] = P

-

from modestpy.utilities.sysarch import get_sys_arch
from modestpy.fmi.model import Model

import matplotlib.pyplot as plt

import seaborn as sns

# Inputs

inp = pd.DataFrame()|

t = tnew

inp['time'] = t
inp['Vvreal’] = Vre
inp['vim'] = vim

inp = inp.set_index('time')

ideal['Qout’] = Q
ideal - ideal.set_index('time')

[ Defining parameters to be estimated }

.

# Load definit

of estimated parameters (name, initial value, bounds)

est :(1.26,1.,1.5),
1.T_A':(1.4e-06,1.0e-6,0.0001),
':(183600000.,133000000.,184000000),
HE )}
# Session
session = Estimation(workdir, fmu_file, inp, known, est, ideal,
p_n-1, 1p_len-None, lp_frame-None,
vp=None,
methods=(
— ga_opts={ s': True},

ps_opts={

[ Defining estimation ]
algorithms and settings

scipy_opts={

ftype="RMSE’, seed=1,
default_log-True, logfile="C.log')




Parameter Estimation Under Ambient Conditions

After a linear analysis of the plant, it has been noticed that the exciter could contribute to the
anomalous behavior.

Therefore, an estimation of the voltage regulator gain Ka and time constant Ta and the steady state
active (P0) and reactive power (Q0), has been performed for ambient conditions.
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Results: Parameter Estimation Results for 4 parameters

e From the results, the exciter gain Ka (uncalibrated value 160) keeps a value of the same order of magnitude in
both scenarios whereas the time constant Ta (uncalibrated value 0.029s) has a difference of several orders of
magnitude.

e Current parameters being used do not represent dynamics accurately (damped response (measurements) vs.
undamped response of model):

o  More parameters for different parts of the model need to be included (e.g. turbine, PSS, etc).
o  Component models may need to be revisited (e.g. many parameters not used, modelers don’t know why).

e More scenarios and different combinations of parameters will be tested since the preliminary results could also be
affected by correlation between parameters:

o  Uncertainty quantification and sensitivity analysis methods need to be available in the platform.
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Conclusions and Future Work

e Open access, standards-based, portable and reusable modeling using Modelica and FMI:
o  Open access, interoperable standards for modeling exchange provide model portability — new implemented models
in OpenlIPSL can now be used by Dominion (and others!) for multiple tasks.
o Modelica and FMI standards provide great benefits for integration with modern platforms (e.g. cloud).
o  Model portability provides the flexibility to perform any type of simulation analysis without a specific tool dependency.

e Cloud-based PredictiveGrid Platform:
o  Availability of Python tools, allowed for quickly prototyping a new solution in a cloud-based platform.
o  Custom Python routines for signal processing to couple models with data were also implemented.
o  This new prototype has helped identify feature enhancements and new functionalities needed in the platform to
facilitate quicker development of new applications (e.g. AWS instance resources for optimization).

e Proof of concept successfully implemented:

Results show great promise for automation for model calibration within a synchrophasor utility platform.
Provides a framework that can be generalized for any other generator stations, FACTS devices, etc.
Open source tools (i.e. ModestPy used for optimization) reduced development effort.

Need to develop methods and tools for parameter selection and correlation analysis.

o O O O

e Future work: enhance prototype and expand coverage for other stations in Dominion’s grid; implement
new applications based on the developed models.
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Model Calibration:
Parameter Estimation mo d est”

e ModestPy is an Open Source Python tool for parameter estimation.

e Developed by the University of Southern Denmark, compatible with Python 3 and possible to use in
Linux (platform requirement).

e |t facilitates parameter estimation in models compliant with Functional Mock-up Interface (FMI)
standard. That means it works with both CS and ME FMUs!

e |t uses a combination of global and local search methods (genetic algorithm, pattern search, truncated
Newton method, L-BFGS-B, sequential least squares) that can be applied in a sequentially.

e For our proof-of-concept we have used a Co-Simulation FMU of the plant exported with source code to
allow for its use on the platform.
o The CS FMU showed a more stable behavior on the PingThings platform



https://github.com/sdu-cfei/modest-py
https://fmi-standard.org/

Testing: Parameter Estimation Under Ambient Conditions

After a linear analysis of the plant, it has been noticed that the exciter could contribute to the
anomalous behavior.

Therefore, an estimation of the voltage regulator gain Ka and time constant Ta and the steady state
active (P0) and reactive power (Q0), has been performed for ambient conditions.
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Testing: Parameter Estimation Under a Transient

e The estimation of the voltage regulator gain Ka and time constant Ta, active (P0) and reactive
power (Q0), has been performed for transient conditions..
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